Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viruses and autophagy: bend, but don’t break

Abstract

Autophagy is a constitutive cellular process of degradation required to maintain homeostasis and turn over spent organelles and aggregated proteins. For some viruses, the process can be antiviral, degrading viral proteins or virions themselves. For many other viruses, the induction of the autophagic process provides a benefit and promotes viral replication. In this Review, we survey the roles that the autophagic pathway plays in the replication of viruses. Most viruses that benefit from autophagic induction block autophagic degradation, which is a ‘bend, but don’t break’ strategy initiating but limiting a potentially antiviral response. In almost all cases, it is other effects of the redirected autophagic machinery that benefit these viruses. This rapid mechanism to generate small double-membraned vesicles can be usurped to shape membranes for viral genome replication and virion maturation. However, data suggest that autophagic maintenance of cellular homeostasis is crucial for the initiation of infection, as viruses have evolved to replicate in normal, healthy cells. Inhibition of autophagic degradation is important once infection has initiated. Although true degradative autophagy is probably a negative for most viruses, initiating nondegradative autophagic membranes benefits a wide variety of viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the autophagic pathway.
Fig. 2: Autophagic induction and cargo capture.
Fig. 3: Regulation of autophagic flux.
Fig. 4: Viral interactions with the autophagic signalling pathway.
Fig. 5: Viral inhibition of autophagic cargo loading.
Fig. 6: Viral inhibition of autophagic flux.

Similar content being viewed by others

References

  1. Yamaguchi, O., Murakawa, T., Nishida, K. & Otsu, K. Receptor-mediated mitophagy. J. Mol. Cell. Cardiol. 95, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Parzych, K. R. & Klionsky, D. J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin, Z.-H. Autophagy: Biology and Diseases: Basic Science (Springer Nature, 2019).

  4. Bhutia, S. K. & Dhiman, R. Autophagy Processes and Mechanisms (Elsevier Science, 2023).

  5. Rodolfo, C., Campello, S. & Cecconi, F. Mitophagy in neurodegenerative diseases. Neurochem. Int. 117, 156–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Cerri, S. & Blandini, F. Role of autophagy in Parkinson’s disease. Curr. Med. Chem. 26, 3702–3718 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Guo, F., Liu, X., Cai, H. & Le, W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 28, 3–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Henderson, P. & Stevens, C. The role of autophagy in Crohn’s disease. Cells 1, 492–519 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ichimiya, T. et al. Autophagy and autophagy-related diseases: a review. Int. J. Mol. Sci. 21, 8974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto, H., Zhang, S. & Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 24, 382–400 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Puri, C., Vicinanza, M. & Rubinsztein, D. C. Phagophores evolve from recycling endosomes. Autophagy 14, 1475–1477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubinsztein, D. C., Shpilka, T. & Elazar, Z. Mechanisms of autophagosome biogenesis. Curr. Biol. 22, R29–R34 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Katsuragi, Y., Ichimura, Y. & Komatsu, M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282, 4672–4678 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Lamark, T., Svenning, S. & Johansen, T. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 61, 609–624 (2017).

    Article  PubMed  Google Scholar 

  16. Zhao, Y. G., Codogno, P. & Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y. & Yu, L. Autophagic lysosome reformation. Exp. Cell Res. 319, 142–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Corona Velazquez, A. F. & Jackson, W. T. So many roads: the multi-faceted regulation of autophagy induction. Mol. Cell. Biol. 38, e00303-13 (2018).

    Article  Google Scholar 

  19. Zachari, M. & Ganley, I. G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61, 585–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wirth, M., Joachim, J. & Tooze, S. A. Autophagosome formation—the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Semin. Cancer Biol. 23, 301–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Menon, M. B. & Dhamija, S. Beclin 1 phosphorylation—at the center of autophagy regulation. Front. Cell Dev. Biol. 6, 137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maruyama, T. & Noda, N. N. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J. Antibiot. 71, 72–78 (2017).

    Article  Google Scholar 

  23. Tanida, I. Autophagy basics. Microbiol. Immunol. 55, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Tanida, I., Ueno, T. & Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–2518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakatogawa, H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55, 39–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Lystad, A. H., Carlsson, S. R. & Simonsen, A. Toward the function of mammalian ATG12-ATG5-ATG16L1 complex in autophagy and related processes. Autophagy 15, 1485–1486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell 55, 238–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanchez-Wandelmer, J. & Reggiori, F. Amphisomes: out of the autophagosome shadow? EMBO J. 32, 3116–3118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shvarev, D. et al. Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. eLife 11, e80901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song, H., Orr, A. S., Lee, M., Harner, M. E. & Wickner, W. T. HOPS recognizes each SNARE, assembling ternary trans-complexes for rapid fusion upon engagement with the 4th SNARE. eLife 9, e53559 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. McEwan, D. G. et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad, L., Mostowy, S. & Sancho-Shimizu, V. Autophagy-virus interplay: from cell biology to human disease. Front. Cell Dev. Biol. 6, 155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).

    CAS  PubMed  Google Scholar 

  34. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2, 301–314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Mochida, K. & Nakatogawa, H. ER-phagy: selective autophagy of the endoplasmic reticulum. EMBO Rep. 23, e55192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrell, J. E. Jr & Ha, S. H. Ultrasensitivity part I: michaelian responses and zero-order ultrasensitivity. Trends Biochem. Sci. 39, 496–503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrell, J. E. Jr & Ha, S. H. Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. Trends Biochem. Sci. 39, 556–569 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferrell, J. E. Jr & Ha, S. H. Ultrasensitivity part III: cascades, bistable switches, and oscillators. Trends Biochem. Sci. 39, 612–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferrell, J. E. Jr Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schaaf, M. B. E., Keulers, T. G., Vooijs, M. A. & Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 30, 3961–3978 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Bampton, E. T. W., Goemans, C. G., Niranjan, D., Mizushima, N. & Tolkovsky, A. M. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1, 23–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Dales, S., Eggers, H. J., Tamm, I. & Palade, G. E. Electron mcroscopic study of the formation of poliovirus. Virology 26, 379–389 (1965).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, J. D. & de Harven, E. Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. III. Cytochemical localization of lysosomal enzymes in infected cells. J. Virol. 26, 102–109 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Verpooten, D., Ma, Y., Hou, S., Yan, Z. & He, B. Control of TANK-binding kinase 1-mediated Signaling by the γ134.5 Protein of Herpes Simplex Virus 1. J. Biol. Chem. 284, 1097–1105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alexander, D. E., Ward, S. L., Mizushima, N., Levine, B. & Leib, D. A. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J. Virol. 81, 12128–12134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ames, J. et al. OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection. Nat. Commun. 12, 5401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubio, R. M. & Mohr, I. Inhibition of ULK1 and Beclin1 by an α-herpesvirus Akt-like Ser/Thr kinase limits autophagy to stimulate virus replication. Proc. Natl Acad. Sci. USA 116, 26941–26950 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, R. C. et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaumorcel, M. et al. The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J. Virol. 86, 2571–2584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mouna, L. et al. Analysis of the role of autophagy inhibition by two complementary human cytomegalovirus BECN1/Beclin 1-binding proteins. Autophagy 12, 327–342 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Castro-Gonzalez, S. et al. HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner. Autophagy 17, 553–577 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Li, J. C. B. et al. HIV-1 trans-activator protein dysregulates IFN-γ signaling and contributes to the suppression of autophagy induction. AIDS 25, 15–25 (2011).

    Article  PubMed  Google Scholar 

  62. Campbell, G. R. & Spector, S. A. Hormonally active vitamin D3 (1α,25-Dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. J. Biol. Chem. 286, 18890–18902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell, G. R. & Spector, S. A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 8, e1002689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Campbell, G. R., Bruckman, R. S., Chu, Y.-L. & Spector, S. A. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1. J. Biol. Chem. 290, 5028–5040 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Hernaez, B. et al. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr. Mol. Med. 13, 305–316 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Zvereva, A. S. et al. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. N. Phytol. 211, 1020–1034 (2016).

    Article  CAS  Google Scholar 

  67. Yang, M. et al. Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7-ATG8 interaction. Plant. Cell 30, 1582–1595 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corona, A. K., Saulsbery, H. M., Corona Velazquez, A. F. & Jackson, W. T. Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit. Cell Rep. 22, 3304–3314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mohamud, Y. et al. Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication. Cell Rep. 22, 3292–3303 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Jassey, A. et al. Starvation after infection restricts enterovirus D68 replication. Autophagy 19, 112–125 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ding, B. et al. Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production. Cell Host Microbe 15, 564–577 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Y. et al. Hepatitis B virus is degraded by autophagosome-lysosome fusion mediated by Rab7 and related components. Protein Cell 10, 60–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Lin, Y. et al. Synaptosomal-associated protein 29 is required for the autophagic degradation of hepatitis B virus. FASEB J. 33, 6023–6034 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Zhong, L., Hu, J., Shu, W., Gao, B. & Xiong, S. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis. 6, e1770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Metz, P. et al. Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62. J. Virol. 89, 8026–8041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miao, G. et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev. Cell 56, 427–442.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Y. et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov. 7, 31 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Granato, M. et al. Epstein-barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J. Virol. 88, 12715–12726 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gonnella, R. et al. BFRF1 protein is involved in EBV-mediated autophagy manipulation. Microbes Infect. 22, 585–591 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Gannagé, M. et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6, 367–380 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gladue, D. P. et al. Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J. Virol. 86, 12080–12090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sir, D. et al. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48, 1054–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, H. et al. Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy 9, 175–195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ke, P.-Y. & Chen, S. S.-L. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121, 37–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, L., Tian, Y. & Ou, J.-H. J. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 11, e1004764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aydin, Y. et al. Extracellular vesicle release promotes viral replication during persistent HCV infection. Cells 10, 984 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jones-Jamtgaard, K. N., Wozniak, A. L., Koga, H., Ralston, R. & Weinman, S. A. Hepatitis C virus infection increases autophagosome stability by suppressing lysosomal fusion through an Arl8b-dependent mechanism. J. Biol. Chem. 294, 14257–14266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, N. et al. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat. Commun. 7, 10631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dales, S., Eggers, H. J., Tamm, I. & Palade, G. E. Electron microscopic study of the formation of poliovirus. Virology 26, 379–389 (1965).

    Article  CAS  PubMed  Google Scholar 

  91. Jackson, W. T. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3, e156 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Taylor, M. P. & Kirkegaard, K. Modification of cellular autophagy protein LC3 by poliovirus. J. Virol. 81, 12543–12553 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Corona Velazquez, A., Corona, A. K., Klein, K. A. & Jackson, W. T. Poliovirus induces autophagic signaling independent of the ULK1 complex. Autophagy 14, 1201–1213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bird, S. W., Maynard, N. D., Covert, M. W. & Kirkegaard, K. Nonlytic viral spread enhanced by autophagy components. Proc. Natl Acad. Sci. USA 111, 13081–13086 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, Y.-H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Richards, A. L. & Jackson, W. T. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 8, e1003046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wen, W. et al. Selective autophagy receptor SQSTM1/ p62 inhibits Seneca Valley virus replication by targeting viral VP1 and VP3. Autophagy 17, 3763–3775 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hou, L. et al. Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways. Virology 537, 254–263 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Klein, K. A. & Jackson, W. T. Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells. J. Virol. 85, 9651–9654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wong, J. et al. Autophagosome supports coxsackievirus B3 replication in host cells. J. Virol. 82, 9143–9153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alirezaei, M., Flynn, C. T., Wood, M. R. & Whitton, J. L. Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host Microbe 11, 298–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, S.-C., Chang, C.-L., Wang, P.-S., Tsai, Y. & Liu, H.-S. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J. Med. Virol. 81, 1241–1252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fu, Y. et al. Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication. Antivir. Res. 124, 43–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, Y.-R., Wang, P.-S., Wang, J.-R. & Liu, H.-S. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model. J. Biomed. Sci. 21, 80 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ferraris, P., Blanchard, E. & Roingeard, P. Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J. Gen. Virol. 91, 2230–2237 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Sir, D. et al. Replication of hepatitis C virus RNA on autophagosomal membranes. J. Biol. Chem. 287, 18036–18043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dreux, M., Gastaminza, P., Wieland, S. F. & Chisari, F. V. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl Acad. Sci. USA 106, 14046–14051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, Y.-R. et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374, 240–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Panyasrivanit, M., Khakpoor, A., Wikan, N. & Smith, D. R. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J. Gen. Virol. 90, 448–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Khakpoor, A., Panyasrivanit, M., Wikan, N. & Smith, D. R. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J. Gen. Virol. 90, 1093–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Liang, Q. et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tiwari, S. K. et al. Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein FANCC. EMBO Rep. 21, e49183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cao, B., Parnell, L. A. & Diamond, M. S. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J. Exp. Med. 214, 2303–2313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sumpter, R. Jr et al. Fanconi anemia proteins function in mitophagy and immunity. Cell 165, 867–881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, Z. et al. Autophagy is involved in influenza A virus replication. Autophagy 5, 321–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, R. et al. Autophagy promotes replication of influenza A virus in vitro. J. Virol. 93, e01984-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sir, D. et al. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc. Natl Acad. Sci. USA 107, 4383–4388 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tian, Y., Sir, D., Kuo, C.-F., Ann, D. K. & Ou, J.-H. J. Autophagy required for hepatitis B virus replication in transgenic mice. J. Virol. 85, 13453–13456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, J. et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J. Virol. 85, 6319–6333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grégoire, I. P. et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog. 7, e1002422 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Richetta, C. et al. Sustained autophagy contributes to measles virus infectivity. PLoS Pathog. 9, e1003599 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nowag, H. et al. Macroautophagy proteins assist epstein barr virus production and get incorporated into the virus particles. EBioMedicine 1, 116–125 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Taisne, C. et al. Human cytomegalovirus hijacks the autophagic machinery and LC3 homologs in order to optimize cytoplasmic envelopment of mature infectious particles. Sci. Rep. 9, 4560 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Buckingham, E. M., Carpenter, J. E., Jackson, W. & Grose, C. Autophagy and the effects of its inhibition on varicella-zoster virus glycoprotein biosynthesis and infectivity. J. Virol. 88, 890–902 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Buckingham, E. M., Jarosinski, K. W., Jackson, W., Carpenter, J. E. & Grose, C. Exocytosis of varicella-zoster virus virions involves a convergence of endosomal and autophagy pathways. J. Virol. 90, 8673–8685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, J., Sun, Q., Mi, R. & Zhang, H. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling. J. Genet. Genomics 38, 533–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Meng, C. et al. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch. Virol. 157, 1011–1018 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun, Y. et al. Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J. Virol. 88, 525–537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Meng, S. et al. Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch. Virol. 157, 661–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Berryman, S. et al. Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway. J. Virol. 86, 12940–12953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. McFarlane, S. et al. Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus 1. J. Virol. 85, 4212–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shelly, S., Lukinova, N., Bambina, S., Berman, A. & Cherry, S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30, 588–598 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sun, P. et al. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 14, 336–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. O’Donnell, V. et al. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology 410, 142–150 (2011).

    Article  PubMed  Google Scholar 

  136. Huang, Y.-P. et al. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. J. Exp. Bot. 70, 4657–4670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Reggiori, F. et al. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7, 500–508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Noack, J., Bernasconi, R. & Molinari, M. How viruses hijack the ERAD tuning machinery. J. Virol. 88, 10272–10275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Miller, K. et al. Coronavirus interactions with the cellular autophagy machinery. Autophagy 16, 2131–2139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fletcher, K. et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 37, e97840 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Durgan, J. et al. Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Mol. Cell 81, 2031–2040.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, Y. et al. Control of infection by LC3-associated phagocytosis, CASM, and detection of raised vacuolar pH by the V-ATPase-ATG16L1 axis. Sci. Adv. 8, eabn3298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Suhy, D. A., Giddings, T. H. Jr & Kirkegaard, K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J. Virol. 74, 8953–8965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Benard, G. & Rossignol, R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signal. 10, 1313–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Bouchard, M. J. & Schneider, R. J. The enigmatic X gene of hepatitis B virus. J. Virol. 78, 12725–12734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, S.-J. et al. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog. 9, e1003722 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kim, S.-J., Syed, G. H. & Siddiqui, A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog. 9, e1003285 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, S.-J. et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl Acad. Sci. USA 111, 6413–6418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hara, Y. et al. Hepatitis C virus core protein suppresses mitophagy by interacting with parkin in the context of mitochondrial depolarization. Am. J. Pathol. 184, 3026–3039 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Jassey, A. et al. Hepatitis C virus non-structural protein 5A (NS5A) disrupts mitochondrial dynamics and induces mitophagy. Cells 8, 290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Afzal, M. S. et al. Regulation of core expression during the hepatitis C virus life cycle. J. Gen. Virol. 96, 311–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Ding, B. et al. The matrix protein of human parainfluenza virus type 3 induces mitophagy that suppresses interferon responses. Cell Host Microbe 21, 538–547.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Vescovo, T. et al. Autophagy protects cells from HCV-induced defects in lipid metabolism. Gastroenterology 142, 644–653.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Farré, J.-C. & Subramani, S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17, 537–552 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lennemann, N. J. & Coyne, C. B. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy 13, 322–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lipatova, Z. & Segev, N. A role for macro-ER-phagy in ER quality control. PLoS Genet. 11, e1005390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Jackson, Frieman and Coughlan labs for weekly discussion sessions and M. Patricia (2017) for inspiring the title. This work was funded by National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases (NIAID) grants R01AI141359 and R01AI104928 to W.T.J. The authors apologize to any authors whose work was missed or given short mention because of space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to William T. Jackson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Christian Münz; Rupert Beale, who co-reviewed with Carmen Figueras-Novoa; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassey, A., Jackson, W.T. Viruses and autophagy: bend, but don’t break. Nat Rev Microbiol 22, 309–321 (2024). https://doi.org/10.1038/s41579-023-00995-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00995-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing