Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Algal blooms in the ocean: hot spots for chemically mediated microbial interactions

Abstract

The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals — metabolites that convey information — revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically mediated microbial interactions control algal bloom dynamics and affect the marine carbon cycle.
Fig. 2: Dimethyl sulfide — a multiscale infochemical.
Fig. 3: Context-dependent chemical communication in marine algal blooms.

Similar content being viewed by others

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493–509 (1978).

    Google Scholar 

  4. Glibert, P. M. Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55, 25–30 (2016).

    Article  PubMed  Google Scholar 

  5. de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    Article  PubMed  Google Scholar 

  6. Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  PubMed  Google Scholar 

  7. Behrenfeld, M. J. & Boss, E. S. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6, 167–194 (2014).

    Article  ADS  Google Scholar 

  8. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  PubMed  Google Scholar 

  9. Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    Article  PubMed  Google Scholar 

  10. Schatz, D. & Vardi, A. Extracellular vesicles new players in cell-cell communication in aquatic environments. Curr. Opin. Microbiol. 43, 148–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Kagami, M., Miki, T. & Takimoto, G. Mycoloop: chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brown, E. R., Cepeda, M. R., Mascuch, S. J., Poulson-Ellestad, K. L. & Kubanek, J. Chemical ecology of the marine plankton. Nat. Prod. Rep. 36, 1093–1116 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Deng, Y., Vallet, M. & Pohnert, G. Temporal and spatial signaling mediating the balance of the plankton microbiome. Annu. Rev. Mar. Sci. 14, 239–260 (2022).

    Article  ADS  Google Scholar 

  16. Moran, M. A. et al. Microbial metabolites in the marine carbon cycle. Nat. Microbiol. 7, 508–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Cirri, E. & Pohnert, G. Algae-bacteria interactions that balance the planktonic microbiome. New Phytol. 223, 100–106 (2019).

    Article  PubMed  Google Scholar 

  18. Grossart, H.-P. et al. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17, 339–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article  Google Scholar 

  20. Houdan, A. et al. Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). J. Plankton Res. 26, 875–883 (2004).

    Article  Google Scholar 

  21. Poulin, R. X. et al. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Sci. Rep. 8, 9572 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Vanelslander, B. et al. Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc. Natl Acad. Sci. USA 109, 2412–2417 (2012). This study describes the transient emission of allelochemicals by benthic diatoms following sunrise, in a process coined the ‘molecular toothbrush’.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Ternon, E., Pavaux, A.-S., Marro, S., Thomas, O. P. & Lemée, R. Allelopathic interactions between the benthic toxic dinoflagellate Ostreopsis cf. ovata and a co-occurring diatom. Harmful Algae 75, 35–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Fernández-Herrera, L. J. et al. Cell death and metabolic stress in Gymnodinium catenatum induced by allelopathy. Toxins 13, 506 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kubanek, J., Hicks, M. K., Naar, J. & Villareal, T. A. Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol. Oceanogr. 50, 883–895 (2005).

    Article  ADS  Google Scholar 

  26. Fistarol, G. O., Legrand, C. & Granéli, E. Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255, 115–125 (2003).

    Article  ADS  Google Scholar 

  27. Binzer, S. B. et al. A-, B- and C-type prymnesins are clade specific compounds and chemotaxonomic markers in Prymnesium parvum. Harmful Algae 81, 10–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Poulin, R. X., Poulson-Ellestad, K. L., Roy, J. S. & Kubanek, J. Variable allelopathy among phytoplankton reflected in red tide metabolome. Harmful Algae 71, 50–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Granéli, E. & Johansson, N. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2, 135–145 (2003).

    Article  Google Scholar 

  30. Sison-Mangus, M. P., Jiang, S., Tran, K. N. & Kudela, R. M. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. 8, 63–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Scalco, E., Stec, K., Iudicone, D., Ferrante, M. I. & Montresor, M. The dynamics of sexual phase in the marine diatom Pseudo-nitzschia multistriata (Bacillariophyceae). J. Phycol. 50, 817–828 (2014).

    Article  PubMed  Google Scholar 

  32. Klapper, F. A., Kiel, C., Bellstedt, P., Vyverman, W. & Pohnert, G. Structure elucidation of the first sex-inducing pheromone of a diatom. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202307165 (2023).

  33. Gillard, J. et al. Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew. Chem. Int. Ed. 52, 854–857 (2013). To our knowledge, this is the first identification of an infochemical that mediates sexual reproduction in diatoms.

    Article  CAS  Google Scholar 

  34. Moeys, S. et al. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci. Rep. 6, 19252 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Lembke, C. et al. Attraction pheromone of the benthic diatom Seminavis robusta: studies on structure-activity relationships. J. Chem. Ecol. 44, 354–363 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Bilcke, G. et al. Mating type specific transcriptomic response to sex inducing pheromone in the pennate diatom Seminavis robusta. ISME J. 15, 562–576 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Klapper, F., Audoor, S., Vyverman, W. & Pohnert, G. Pheromone mediated sexual reproduction of pennate diatom Cylindrotheca closterium. J. Chem. Ecol. 47, 504–512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bondoc, K. G., Lembke, C., Vyverman, W. & Pohnert, G. Selective chemoattraction of the benthic diatom Seminavis robusta to phosphate but not to inorganic nitrogen sources contributes to biofilm structuring. Microbiologyopen 8, e00694 (2019).

    Article  Google Scholar 

  39. Cirri, E., Vyverman, W. & Pohnert, G. Biofilm interactions - bacteria modulate sexual reproduction success of the diatom Seminavis robusta. FEMS Microbiol. Ecol. 94, fiy161 (2018).

    Article  CAS  Google Scholar 

  40. Bidle, K. D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Annu. Rev. Mar. Sci. 7, 341–375 (2015).

    Article  ADS  Google Scholar 

  41. Durand, P. M., Sym, S. & Michod, R. E. Programmed cell death and complexity in microbial systems. Curr. Biol. 26, R587–R593 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Ndhlovu, A., Durand, P. M. & Ramsey, G. Programmed cell death as a black queen in microbial communities. Mol. Ecol. 30, 1110–1119 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Gallo, C., d’Ippolito, G., Nuzzo, G., Sardo, A. & Fontana, A. Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat. Commun. 8, 1292 (2017). This study reveals infochemicals that control cell fate in ageing diatom populations.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  44. Nuzzo, G. et al. UPLC-MS/MS identification of sterol sulfates in marine diatoms. Mar. Drugs 17, 10 (2019).

    Article  CAS  Google Scholar 

  45. Kobayashi, J. I., Ishibashi, M., Nakamura, H., Ohizumi, Y. & Hirata, Y. Hymenosulphate, a novel sterol sulphate with Ca-releasing activity from the cultured marine haptophyte Hymenomonas sp. J. Chem. Soc., Perkin Trans. 1, 101–103 (1989).

    Article  Google Scholar 

  46. Vardi, A. et al. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 4, e60 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vardi, A. et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326, 861–865 (2009). To our knowledge, this study describes the first metabolic biomarker for viral infection in algal blooms.

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).

    Article  Google Scholar 

  49. Johnson, M. D., Edwards, B. R., Beaudoin, D. J., Van Mooy, B. A. S. & Vardi, A. Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environ. Microbiol. 22, 629–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Kâ, S. et al. Impact of the diatom-derived polyunsaturated aldehyde 2-trans,4-trans decadienal on the feeding, survivorship and reproductive success of the calanoid copepod Temora stylifera. Mar. Environ. Res. 93, 31–37 (2014).

    Article  PubMed  Google Scholar 

  51. Ianora, A. et al. Non-volatile oxylipins can render some diatom blooms more toxic for copepod reproduction. Harmful Algae 44, 1–7 (2015).

    Article  CAS  Google Scholar 

  52. Ianora, A. et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429, 403–407 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Franzè, G., Pierson, J. J., Stoecker, D. K. & Lavrentyev, P. J. Diatom-produced allelochemicals trigger trophic cascades in the planktonic food web. Limnol. Oceanogr. 63, 1093–1108 (2018).

    Article  ADS  Google Scholar 

  54. Russo, E. et al. RNA-seq and differential gene expression analysis in Temora stylifera copepod females with contrasting non-feeding nauplii survival rates: an environmental transcriptomics study. BMC Genomics 21, 693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tammilehto, A., Nielsen, T. G., Krock, B., Møller, E. F. & Lundholm, N. Calanus spp. - Vectors for the biotoxin, domoic acid, in the Arctic marine ecosystem? Harmful Algae 20, 165–174 (2012).

    Article  CAS  Google Scholar 

  56. Olson, M. B. & Lessard, E. J. The influence of the Pseudo-nitzschia toxin, domoic acid, on microzooplankton grazing and growth: a field and laboratory assessment. Harmful Algae 9, 540–547 (2010).

    Article  CAS  Google Scholar 

  57. Miesner, A. K., Lundholm, N., Krock, B. & Nielsen, T. G. The effect of Pseudo-nitzschia seriata on grazing and fecundity of Calanus finmarchicus and Calanus glacialis. J. Plankton Res. 38, 564–574 (2016).

    Article  CAS  Google Scholar 

  58. Selander, E., Thor, P., Toth, G. & Pavia, H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc. Biol. Sci. 273, 1673–1680 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Turner, J. T. & Borkman, D. G. Impact of zooplankton grazing on Alexandrium blooms in the offshore Gulf of Maine. Deep-Sea Res. Pt. II 52, 2801–2816 (2005).

    Article  ADS  Google Scholar 

  60. Xu, J. Y. & Kiørboe, T. Toxic dinoflagellates produce true grazer deterrents. Ecology 99, 2240–2249 (2018).

    Article  PubMed  Google Scholar 

  61. Long, M., Krock, B., Castrec, J. & Tillmann, U. Unknown extracellular and bioactive metabolites of the genus Alexandrium: a review of overlooked toxins. Toxins 13, 905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).

    Article  CAS  ADS  Google Scholar 

  63. Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010). To our knowledge, this is the first use of microfluidics to detect chemoattraction of marine microorganisms to infochemicals.

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015). This publication deciphers an algal enzyme that generates the smell of the sea.

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Shemi, A. et al. Dimethyl sulfide mediates microbial predator-prey interactions between zooplankton and algae in the ocean. Nat. Microbiol. 6, 1357–1366 (2021). This study shows a new role for alga-produced DMS as a chemoattractant for grazers.

    Article  CAS  PubMed  Google Scholar 

  66. Evans, C., Malin, G., Wilson, W. H. & Liss, P. S. Infectious titres of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethyl sulfide and acrylic acid. Limnol. Oceanogr. 51, 2468–2471 (2006).

    Article  CAS  ADS  Google Scholar 

  67. Garcés, E., Alacid, E., Reñé, A., Petrou, K. & Simó, R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 7, 1065–1068 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Savoca, M. S. & Nevitt, G. A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl Acad. Sci. USA 111, 4157–4161 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Article  CAS  ADS  Google Scholar 

  71. Selander, E. et al. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc. Natl Acad. Sci. USA 112, 6395–6400 (2015). This study reports a novel class of lipids from marine grazers that induces various defence mechanisms in algae during predator–prey interaction.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Selander, E. et al. Copepods drive large-scale trait-mediated effects in marine plankton. Sci. Adv. 5, eaat5096 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Grønning, J. & Kiørboe, T. Diatom defence: grazer induction and cost of shell-thickening. Funct. Ecol. 34, 1790–1801 (2020).

    Article  Google Scholar 

  74. Prevett, A., Lindström, J., Xu, J. Y., Karlson, B. & Selander, E. Grazer-induced bioluminescence gives dinoflagellates a competitive edge. Curr. Biol. 29, R564–R565 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Arias, A., Selander, E., Saiz, E. & Calbet, A. Predator chemical cue effects on the diel feeding behaviour of marine protists. Microb. Ecol. 82, 356–364 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Pondaven, P. et al. Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158, 21–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Long, J. D., Smalley, G. W., Barsby, T., Anderson, J. T. & Hay, M. E. Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc. Natl Acad. Sci. USA 104, 10512–10517 (2007).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).

    Article  Google Scholar 

  79. Amato, A. et al. Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi. ISME J. 12, 1594–1604 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harðardóttir, S. et al. Transcriptomic responses to grazing reveal the metabolic pathway leading to the biosynthesis of domoic acid and highlight different defense strategies in diatoms. BMC Mol. Biol. 20, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tomaru, Y. et al. New single-stranded DNA virus with a unique genomic structure that infects marine diatom Chaetoceros setoensis. Sci. Rep. 3, 3337 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat. Rev. Microbiol. 20, 721–736 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Forterre, P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C. R. Chim. 14, 392–399 (2011).

    Article  CAS  Google Scholar 

  84. Rosenwasser, S., Ziv, C., Graff van Creveld, S. & Vardi, A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Ku, C. et al. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci. Adv. 6, eaba4137 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Moniruzzaman, M., Gann, E. R. & Wilhelm, S. W. Infection by a giant girus (AaV) induces widespread physiological reprogramming in Aureococcus anophagefferens CCMP1984 – a harmful bloom algae. Front. Microbiol. 9, 752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rosenwasser, S. et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant. Cell 26, 2689–2707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Malitsky, S. et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210, 88–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Mutsafi, Y., Zauberman, N., Sabanay, I. & Minsky, A. Vaccinia-like cytoplasmic replication of the giant Mimivirus. Proc. Natl Acad. Sci. USA 107, 5978–5982 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Schatz, D. et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms. New Phytol. 204, 854–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  95. Monier, A. et al. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res. 19, 1441–1449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yutin, N. & Koonin, E. V. Evolution of DNA ligases of nucleo-cytoplasmic large DNA viruses of eukaryotes: a case of hidden complexity. Biol. Direct 4, 51 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Graves, M. V. et al. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae. Virology 257, 15–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Ziv, C. et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc. Natl Acad. Sci. USA 113, E1907–E1916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao, Z. et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 13, 2551–2565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma, X., Coleman, M. L. & Waldbauer, J. R. Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria. Environ. Microbiol. 20, 3001–3011 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Kuhlisch, C. et al. Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Sci. Adv. 7, eabf4680 (2021). To our knowledge, this work provides the first description of the metabolic composition of the viral shunt.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Schatz, D. et al. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2, 1485–1492 (2017). This study describes a new mode of communication during host–virus interaction in the marine environment.

    Article  CAS  PubMed  Google Scholar 

  103. Schatz, D. et al. Ecological significance of extracellular vesicles in modulating host-virus interactions during algal blooms. ISME J. 15, 3714–3721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thyrhaug, R., Larsen, A., Thingstad, F. T. & Bratbak, G. Stable coexistence in marine algal host-virus systems. Mar. Ecol. Prog. Ser. 254, 27–35 (2003).

    Article  ADS  Google Scholar 

  105. Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014). To our knowledge, this is the first description of phytoplankton-derived extracellular vesicles.

    Article  CAS  PubMed  ADS  Google Scholar 

  106. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Howard-Varona, C. et al. Protist impacts on marine cyanovirocell metabolism. ISME Commun. 2, 94 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Arthofer, P., Delafont, V., Willemsen, A., Panhölzl, F. & Horn, M. Defensive symbiosis against giant viruses in amoebae. Proc. Natl Acad. Sci. USA 119, e2205856119 (2022). This study describes a tripartite microbial interaction that mediates antiviral defence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Decelle, J. et al. Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host. ISME J. 16, 2348–2359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller, J. J., Delwiche, C. F. & Coats, D. W. Ultrastructure of Amoebophrya sp. and its changes during the course of infection. Protist 163, 720–745 (2012).

    Article  PubMed  Google Scholar 

  111. Chambouvet, A., Morin, P., Marie, D. & Guillou, L. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322, 1254–1257 (2008). This study describes an intracellular parasite that controls toxic algal blooms.

    Article  CAS  PubMed  ADS  Google Scholar 

  112. Long, M. et al. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME Commun. 1, 34 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  113. Rodríguez, F. & Figueroa, R. I. Confirmation of the wide host range of Parvilucifera corolla (Alveolata, Perkinsozoa). Eur. J. Protistol. 74, 125690 (2020).

    Article  PubMed  Google Scholar 

  114. Toth, G. B., Norén, F., Selander, E. & Pavia, H. Marine dinoflagellates show induced life-history shifts to escape parasite infection in response to water-borne signals. Proc. Biol. Sci. 271, 733–738 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Park, M. G., Kim, A., Jeon, B. S. & Kim, M. Parasite-mediated increase in prey edibility in the predator-prey interaction of marine planktonic protists. Harmful Algae 103, 101982 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Garvetto, A. et al. Novel widespread marine oomycetes parasitising diatoms, including the toxic genus Pseudo-nitzschia: genetic, morphological, and ecological characterisation. Front. Microbiol. 9, 2918 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Buaya, A. T., Scholz, B. & Thines, M. A new marine species of Miracula (Oomycota) parasitic to Minidiscus sp. in Iceland (dagger). Mycobiology 49, 355–362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Buaya, A., Kraberg, A. & Thines, M. Dual culture of the oomycete Lagenisma coscinodisci Drebes and Coscinodiscus diatoms as a model for plankton/parasite interactions. Helgol. Mar. Res. 73, 2 (2019).

    Article  ADS  Google Scholar 

  119. Vallet, M. et al. The oomycete Lagenisma coscinodisci hijacks host alkaloid synthesis during infection of a marine diatom. Nat. Commun. 10, 4938 (2019). This work identifies key metabolites that mediate the takeover of algal cells by parasites.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).

    Article  PubMed  Google Scholar 

  121. Scholz, B., Vyverman, W., Küpper, F. C., Ólafsson, H. G. & Karsten, U. Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: a laboratory case study. Botanica Mar. 60, 419–431 (2017).

    Article  CAS  Google Scholar 

  122. Scholz, B., Küpper, F. C., Vyverman, W., Ólafsson, H. G. & Karsten, U. Chytridiomycosis of marine diatoms – the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar. Drugs 15, 26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Klawonn, I. et al. Characterizing the “fungal shunt”: parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl Acad. Sci. USA 118, e2102225118 (2021). This publication provides novel insights into the ecological role of fungal parasites in the ocean.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sánchez Barranco, V. et al. Trophic position, elemental ratios and nitrogen transfer in a planktonic host-parasite-consumer food chain including a fungal parasite. Oecologia 194, 541–554 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  125. Pomeroy, L. R., Williams, P. J., Azam, F. & Hobbie, J. E. The microbial loop. Oceanography 20, 28–33 (2007).

    Article  Google Scholar 

  126. Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Cooper, M. B. et al. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 13, 334–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015). This study describes the metabolic exchange during an alga–bacterium interaction.

    Article  CAS  PubMed  ADS  Google Scholar 

  129. Mayali, X. & Doucette, G. J. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1, 277–293 (2002).

    Article  Google Scholar 

  130. Hünken, M., Harder, J. & Kirst, G. O. Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant. Biol. 10, 519–526 (2008).

    Article  PubMed  Google Scholar 

  131. Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 15, 762–773 (2021).

    Article  PubMed  Google Scholar 

  132. Pollara, S. B. et al. Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality. mSphere 6, e00009-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Abada, A. et al. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. ISME J. 17, 1167–1183 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Seyedsayamdost, M. R., Case, R. J., Kolter, R. & Clardy, J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3, 331–335 (2011). To our knowledge, this is the first identification of algicidal infochemicals that are produced by marine bacteria in response to an algal precursor molecule.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, H., Tomasch, J., Jarek, M. & Wagner-Döbler, I. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front. Microbiol. 5, 311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Segev, E. et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 5, e17473 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sule, P. & Belas, R. A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis. J. Bacteriol. 195, 637–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Barak-Gavish, N. et al. Bacterial lifestyle switch in response to algal metabolites. eLife 12, e84400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Harvey, E. L. et al. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front. Microbiol. 7, 59 (2016). This article reveals a new function for quorum-sensing precursor molecules to act as algicides.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Whalen, K. E. et al. The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Sci. Rep. 8, 15498 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  142. Li, Y. et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci. Rep. 6, 21984 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Paul, C. & Pohnert, G. Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium. PLoS ONE 8, e57577 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Shibl, A. A. et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc. Natl Acad. Sci. USA 117, 27445–27455 (2020). This study reports the functional role of two algal metabolites in recruiting and promoting beneficial bacteria in the phycosphere.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  145. Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5, e11888 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Behringer, G. et al. Bacterial communities of diatoms display strong conservation across strains and time. Front. Microbiol. 9, 659 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mars Brisbin, M., Mitarai, S., Saito, M. A. & Alexander, H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME J. 16, 2255–2264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sörenson, E. et al. Consistency in microbiomes in cultures of Alexandrium species isolated from brackish and marine waters. Environ. Microbiol. Rep. 11, 425–433 (2019).

    Article  PubMed  Google Scholar 

  149. Roth, P. B., Mikulski, C. M. & Doucette, G. J. Influence of microbial interactions on the susceptibility of Karenia spp. to algicidal bacteria. Aquat. Microb. Ecol. 50, 251–259 (2008).

    Article  Google Scholar 

  150. Henriksen, N. N. S. E. et al. Role is in the eye of the beholder – the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteriaceae. FEMS Microbiol. Rev. 46, fuac007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Evans, C. & Wilson, W. H. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol. Oceanogr. 53, 2035–2040 (2008).

    Article  ADS  Google Scholar 

  152. Pančić, M., Torres, R. R., Almeda, R. & Kiørboe, T. Silicified cell walls as a defensive trait in diatoms. Proc. Biol. Sci. 286, 20190184 (2019).

    PubMed  PubMed Central  Google Scholar 

  153. Prince, E. K., Irmer, F. & Pohnert, G. Domoic acid improves the competitive ability of Pseudo-nitzschia delicatissima against the diatom Skeletonema marinoi. Mar. Drugs 11, 2398–2412 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Simon, J.-C., Marchesi, J. R., Mougel, C. & Selosse, M.-A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hu, L. et al. Characterizing the interactions among a dinoflagellate, flagellate and bacteria in the phycosphere of Alexandrium tamarense (Dinophyta). Front. Mar. Sci. 2, 100 (2015).

    Article  Google Scholar 

  156. Kawakami, H. & Kawakami, N. Behavior of a virus in a symbiotic system, Paramecium bursaria–zoochlorella. J. Protozool. 25, 217–225 (1978).

    Article  Google Scholar 

  157. Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  158. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic ocean. Nat. Commun. 11, 1705 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  160. Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J. Phycol. 46, 220–235 (2010).

    Article  CAS  Google Scholar 

  161. Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Alempic, J.-M. et al. An update on eukaryotic viruses revived from ancient permafrost. Viruses 15, 564 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Holm, H. C. et al. Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation. Science 376, 1487–1491 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  164. Demory, D. et al. Temperature is a key factor in Micromonas-virus interactions. ISME J. 11, 601–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kendrick, B. J. et al. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae). PLoS ONE 9, e112134 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  166. Roggatz, C. C. et al. Saxitoxin and tetrodotoxin bioavailability increases in future oceans. Nat. Clim. Change 9, 840–844 (2019).

    Article  CAS  ADS  Google Scholar 

  167. Grønning, J. & Kiørboe, T. Grazer-induced aggregation in diatoms. Limnol. Oceanogr. Lett. 7, 492–500 (2022).

    Article  Google Scholar 

  168. Olesen, A. J., Ryderheim, F., Krock, B., Lundholm, N. & Kiorboe, T. Costs and benefits of predator-induced defence in a toxic diatom. Proc. Biol. Sci. 289, 20212735 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ternon, E. et al. Assessment of the allelochemical activity of Ostreopsis cf. ovata and the ovatoxins towards competitive benthic microalgae. Aquat. Ecol. 56, 475–491 (2022).

    Article  Google Scholar 

  170. Vardi, A. et al. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr. Biol. 18, 895–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Teegarden, G. J. Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Mar. Ecol. Prog. Ser. 181, 163–176 (1999).

    Article  CAS  ADS  Google Scholar 

  172. Ryderheim, F., Selander, E. & Kiorboe, T. Predator-induced defence in a dinoflagellate generates benefits without direct costs. ISME J. 15, 2107–2116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Toyofuku, M. et al. Membrane vesicle-mediated bacterial communication. ISME J. 11, 1504–1509 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Aaronson, S. Particle aggregation and phagotrophy by Ochromonas. Arch. Mikrobiol. 92, 39–44 (1973).

    Article  CAS  PubMed  Google Scholar 

  175. Tzipilevich, E., Habusha, M. & Ben-Yehuda, S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168, 186–199.e112 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Shang, J. et al. Cheminformatic insight into the differences between terrestrial and marine originated natural products. J. Chem. Inf. Model. 58, 1182–1193 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. González-Medina, M. & Medina-Franco, J. L. Chemical diversity of cyanobacterial compounds: a chemoinformatics analysis. ACS Omega 4, 6229–6237 (2019).

    Article  Google Scholar 

  178. Gebser, B. & Pohnert, G. Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Mar. Drugs 11, 2168–2182 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. McParland, E. L., Alexander, H. & Johnson, W. M. The osmolyte ties that bind: genomic insights into synthesis and breakdown of organic osmolytes in marine microbes. Front. Mar. Sci. 8, 689306 (2021).

    Article  Google Scholar 

  180. Saló, V., Simó, R., Vila-Costa, M. & Calbet, A. Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labelled prey. Environ. Microbiol. 11, 3063–3072 (2009).

    Article  PubMed  Google Scholar 

  181. Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4, 1706–1715 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Al-Horani, R. A. & Desai, U. R. Chemical sulfation of small molecules – advances and challenges. Tetrahedron 66, 2907–2918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Coughtrie, M. W. H., Sharp, S., Maxwell, K. & Innes, N. P. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem. Biol. Interact. 109, 3–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  184. Bradley, S. A., Zhang, J. & Jensen, M. K. Deploying microbial synthesis for halogenating and diversifying medicinal alkaloid scaffolds. Front. Bioeng. Biotechnol. 8, 594126 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gribble, G. W. Biological activity of recently discovered halogenated marine natural products. Mar. Drugs 13, 4044–4136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mollo, E., Garson, M. J., Polese, G., Amodeo, P. & Ghiselin, M. T. Taste and smell in aquatic and terrestrial environments. Nat. Prod. Rep. 34, 496–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Saha, M. & Fink, P. Algal volatiles – the overlooked chemical language of aquatic primary producers. Biol. Rev. Camb. Philos. Soc. 97, 2162–2173 (2022).

    Article  PubMed  Google Scholar 

  189. Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  190. Chivers, D. P., Dixson, D. L., White, J. R., McCormick, M. I. & Ferrari, M. C. O. Degradation of chemical alarm cues and assessment of risk throughout the day. Ecol. Evol. 3, 3925–3934 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jaramillo, M., Joens, J. A. & O’Shea, K. Fundamental studies of the singlet oxygen reactions with the potent marine toxin domoic acid. Environ. Sci. Technol. 54, 6073–6081 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  192. Amin, S. A., Green, D. H., Küpper, F. C. & Carrano, C. J. Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg. Chem. 48, 11451–11458 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Vincent, F. J. et al. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. ISME J. 12, 1094–1108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Breckels, M. N., Bode, N. W. F., Codling, E. A. & Steinke, M. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus. Mar. Drugs 11, 2486–2500 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Bartolek, Z. et al. Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana. ISME J. 16, 2741–2751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. van Creveld, S. G., Rosenwasser, S., Schatz, D., Koren, I. & Vardi, A. Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J. 9, 385–395 (2015).

    Article  PubMed  Google Scholar 

  197. Paul, C., Mausz, M. A. & Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9, 349–359 (2013).

    Article  CAS  Google Scholar 

  198. Kim, H. et al. Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate. ISME J. 16, 1036–1045 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Raina, J. B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022). This study describes the ecological relevance of bacterial chemotaxis in the marine environment.

    Article  CAS  PubMed  ADS  Google Scholar 

  200. Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Brunson, J. K. et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science 361, 1356 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  202. Brown, E. R., Moore, S. G., Gaul, D. A. & Kubanek, J. Predator cues target signaling pathways in toxic algal metabolome. Limnol. Oceanogr. 67, 1227–1237 (2022).

    Article  ADS  Google Scholar 

  203. Sanchez, F. et al. Simplified transformation of Ostreococcus tauri using polyethylene glycol. Genes 10, 399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kiørboe, T. et al. Reply to comment: prey perception in feeding-current feeding copepods. Limnol. Oceanogr. 61, 1169–1171 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Schleyer for his constructive and thorough feedback. A.V. holds the Bronfman Professorial Chair of Plant Science and discloses further support for this work from the European Research Council Advance Grant (VIBES, grant no. 101053543).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Assaf Vardi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Georg Pohnert, Patricia Glibert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Space Agency: https://www.esa.int/ESA_Multimedia/Images/2012/10/Algal_bloom_off_Ireland

Plymouth Marine Laboratory: https://www.pml.ac.uk/news/Huge-coccolithophore-bloom-spotted-from-space

Glossary

Allelopathy

An interaction in which one phytoplankton species inhibits the growth of competing phytoplankton species by releasing one or more allelochemicals.

Biotrophic parasite

A parasite that keeps the host cell alive during infection and until cell lysis.

Chemical communication

Exchange of information between two organisms via infochemicals.

Chemical cues

Molecules that are unintentionally released by an organism and that act as infochemicals for another organism.

Chemical signals

Molecules that have evolved to be intentionally released as infochemicals by an organism.

Fungal shunt

Alga-derived carbon is diverted to parasitic (fungal) zoospores, bypassing the microbial loop, as these zoospores incorporate algal carbon more effectively than associated bacteria.

Kairomones

Chemical compounds that mediate interactions between two species with beneficial effects for the recipient organism and deleterious effects for the releasing organism.

Mycoloop

Microbial grazing on fungal zoospores leads to carbon transfer from algae to higher trophic levels in cases where colonies are too large to be ingested by zooplankton and therefore would form aggregates that sediment to the ocean floor, contributing to the biological carbon pump.

Phytoplankton

Photosynthetic aquatic organisms that drift with water currents, including eukaryotic algae and prokaryotic cyanobacteria.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhlisch, C., Shemi, A., Barak-Gavish, N. et al. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 22, 138–154 (2024). https://doi.org/10.1038/s41579-023-00975-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00975-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology