Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural and functional diversity of type IV secretion systems

Abstract

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host–pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The functional versatility of type IV secretion systems.
Fig. 2: Structure of minimal type IV secretion system and pilus biogenesis mechanism model.
Fig. 3: Structural organization of expanded type IV secretion system.
Fig. 4: Examples of type IV secretion system subunit adaptations for functional diversification.
Fig. 5: Structure of VirD4-like and VirB11-like ATPases.
Fig. 6: Models for substrate recruitment and transport through the type IV secretion system.
Fig. 7: Structure comparison between minimal, expanded and archaea pilus.

Similar content being viewed by others

References

  1. Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Christie, P. J. The mosaic type IV secretion systems. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0020-2015 (2016).

  5. Waksman, G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep. 20, e47012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cabezon, E., de la Cruz, F. & Arechaga, I. Conjugation inhibitors and their potential use to prevent dissemination of antibiotic resistance genes in bacteria. Front. Microbiol. 8, 2329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boudaher, E. & Shaffer, C. L. Inhibiting bacterial secretion systems in the fight against antibiotic resistance. MedChemComm 10, 682–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F. & Arechaga, I. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39, 81–95 (2015).

    PubMed  Google Scholar 

  10. Costa, T. R. D. et al. Type IV secretion systems: advances in structure, function, and activation. Mol. Microbiol. 115, 436–452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheedlo, M. J., Ohi, M. D., Lacy, D. B. & Cover, T. L. Molecular architecture of bacterial type IV secretion systems. PLoS Pathog. 18, e1010720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sgro, G. G. et al. Bacteria-killing type IV secretion systems. Front. Microbiol. 10, 1078 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez-Rivera, C., Bhatty, M. & Christie, P. J. Mechanism and function of type IV secretion during infection of the human host. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0024-2015 (2016).

  14. Macé, K. et al. Cryo-EM structure of a type IV secretion system. Nature 607, 191–196 (2022). The study reports high-resolution atomic structure of a nearly complete T4SS, representing a significant leap forward in the understanding of type IV secretion, as it reveals crucial details of assembly, function and subunit interfaces, opening new possibilities for rational drug design and establishing a workflow for structural determination of these complex machineries.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  15. Amin, H., Ilangovan, A. & Costa, T. R. D. Architecture of the outer-membrane core complex from a conjugative type IV secretion system. Nat. Commun. 12, 6834 (2021). The study presents the high-resolution structure of the outer membrane core complex from an expanded conjugative T4SS, shedding light on the mechanisms of conjugative pilus outgrowth and DNA translocation during bacterial conjugation, revealing structural adaptations that contribute to the dynamic properties of the machinery.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, 266–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J. 32, 1195–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550–553 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Gordon, J. E. et al. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol. Microbiol. 105, 273–293 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sgro, G. G. et al. Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. Nat. Microbiol. 3, 1429–1440 (2018). The paper reports the high-resolution cryo-EM structure of a T4SS involved in bacterial killing, advancing our understanding of the structural similarities and differences among functionally distinct T4SSs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cascales, E., Atmakuri, K., Sarkar, M. K. & Christie, P. J. DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J. Bacteriol. 195, 2691–2704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cascales, E. & Christie, P. J. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Banta, L. M. et al. An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J. Bacteriol. 193, 2566–2574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darbari, V. C. et al. Electrostatic switching controls channel dynamics of the sensor protein VirB10 in A. tumefaciens type IV secretion system. ACS Omega 5, 3271–3281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Souza, D. P. et al. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog. 7, e1002031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakano, N., Kubori, T., Kinoshita, M., Imada, K. & Nagai, H. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog. 6, e1001129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lockwood, D. C., Amin, H., Costa, T. R. D. & Schroeder, G. N. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. Microbiology https://doi.org/10.1099/mic.0.001187 (2022).

  29. Aly, K. A. & Baron, C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766–3775 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Jakubowski, S. J., Krishnamoorthy, V., Cascales, E. & Christie, P. J. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J. Mol. Biol. 341, 961–977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hospenthal, M. K., Costa, T. R. D. & Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Backert, S., Fronzes, R. & Waksman, G. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 16, 409–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Bönig, T., Olbermann, P., Bats, S. H., Fischer, W. & Josenhans, C. Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains. Sci. Rep. 6, 38101 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Pham, K. T. et al. CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS ONE 7, e35341 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Khara, P., Song, L., Christie, P. J. & Hu, B. In situ visualization of the pKM101-encoded type IV secretion system reveals a highly symmetric ATPase energy center. mBio 12, e0246521 (2021).

    Article  PubMed  Google Scholar 

  36. Liu, X., Khara, P., Baker, M. L., Christie, P. J. & Hu, B. Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids. Nat. Commun. 13, 379 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Kitao, T., Kubori, T. & Nagai, H. Recent advances in structural studies of the Legionella pneumophila Dot/Icm type IV secretion system. Microbiol. Immunol. 66, 67–74 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomez-Valero, L. et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl Acad. Sci. USA 116, 2265–2273 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Asrat, S., de Jesus, D. A., Hempstead, A. D., Ramabhadran, V. & Isberg, R. R. Bacterial pathogen manipulation of host membrane trafficking. Annu. Rev. Cell Dev. Biol. 30, 79–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Durie, C. L. et al. Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. eLife 9, e59530 (2020). This study reports high-resolution structure of the L. pneumophila Dot/Icm T4SS, which plays a crucial role in niche establishment and the pathogenesis of Legionnaire’s disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheedlo, M. J. et al. Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS. eLife 10, e70427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varga, M. G. et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated Cag type IV secretion system. Oncogene 35, 6262–6269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tegtmeyer, N., Neddermann, M., Asche, C. I. & Backert, S. Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol. Microbiol. 105, 358–372 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Pfannkuch, L. et al. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J. 33, 9087–9099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cover, T. L., Lacy, D. B. & Ohi, M. D. The Helicobacter pylori Cag type IV secretion system. Trends Microbiol. 28, 682–695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frick-Cheng, A. E. et al. Molecular and structural analysis of the Helicobacter pylori Cag type IV secretion system core complex. mBio 7, e02001–e02015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheedlo, M. J. et al. Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex. eLife 9, e59495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu, B., Khara, P. & Christie, P. J. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc. Natl Acad. Sci. USA 116, 14222–14227 (2019). The study presents in situ cryo-electron tomography visualization of the entire conjugative F T4SS, revealing four distinct conformational states of the machinery, and providing a step-by-step mechanism of bacterial conjugation and pilus outgrowth, along with architectural representations of the machinery in each state.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Ghosal, D., Chang, Y. W., Jeong, K. C., Vogel, J. P. & Jensen, G. J. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18, 726–732 (2017). The study reports cryo-electron tomography visualization of the Dot/Icm T4SS in L. pneumophila, revealing a common overall architecture shared across functionally diverse T4SSs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chetrit, D., Hu, B., Christie, P. J., Roy, C. R. & Liu, J. A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nat. Microbiol. 3, 678–686 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, D., Steiner, S., Shao, M., Roy, C. R. & Liu, J. Developmental transitions coordinate assembly of the Coxiella burnetii Dot/Icm type IV secretion system. Infect. Immun. 90, e0041022 (2022).

    Article  PubMed  Google Scholar 

  52. Newton, H. J., McDonough, J. A. & Roy, C. R. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS ONE 8, e54566 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Chang, Y. W., Shaffer, C. L., Rettberg, L. A., Ghosal, D. & Jensen, G. J. In vivo structures of the Helicobacter pylori Cag type IV secretion system. Cell Rep. 23, 673–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu, B. et al. In situ molecular architecture of the Helicobacter pylori Cag type IV secretion system. mBio https://doi.org/10.1128/mBio.00849-19 (2019).

  55. Chung, J. M. et al. Structure of the Helicobacter pylori Cag type IV secretion system. eLife 8, e47644 (2019). The paper presents the high-resolution structure of the H. pylori Cag T4SS, which is required for H. pylori infection of the human gastrointestinal tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tegtmeyer, N. et al. Toll-like receptor 5 activation by the CagY repeat domains of Helicobacter pylori. Cell Rep. 32, 108159 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Audette, G. F., Manchak, J., Beatty, P., Klimke, W. A. & Frost, L. S. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153, 442–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Marrero, J. & Waldor, M. K. Determinants of entry exclusion within Eex and TraG are cytoplasmic. J. Bacteriol. 189, 6469–6473 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gillespie, J. J. et al. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS ONE 4, e4833 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  60. Gillespie, J. J. et al. Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect. Immun. 78, 1809–1823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rancès, E., Voronin, D., Tran-Van, V. & Mavingui, P. Genetic and functional characterization of the type IV secretion system in Wolbachia. J. Bacteriol. 190, 5020–5030 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nagai, H. & Roy, C. R. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Skoog, E. C. et al. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding. mBio 9, e00717–e00718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aras, R. A., Kang, J., Tschumi, A. I., Harasaki, Y. & Blaser, M. J. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl Acad. Sci. USA 100, 13579–13584 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Barrozo, R. M. et al. Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog. 9, e1003189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Llosa, M. & Alkorta, I. in Type IV Secretion in Gram-Negative and Gram-Positive Bacteria (eds Backert, S. & Grohmann, E.) 143–168 (Springer International, 2017).

  67. Gomis-Rüth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).

    Article  PubMed  ADS  Google Scholar 

  68. Whitaker, N. et al. The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J. Bacteriol. 197, 2335–2349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oka, G. U. et al. Structural basis for effector recognition by an antibacterial type IV secretion system. Proc. Natl Acad. Sci. USA 119, e2112529119 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Atmakuri, K., Cascales, E. & Christie, P. J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol. 54, 1199–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ripoll-Rozada, J., Zunzunegui, S., de la Cruz, F., Arechaga, I. & Cabezon, E. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J. Bacteriol. 195, 4195–4201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hare, S., Bayliss, R., Baron, C. & Waksman, G. A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J. Mol. Biol. 360, 56–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Park, D., Chetrit, D., Hu, B., Roy, C. R. & Liu, J. Analysis of Dot/Icm type IVB secretion system subassemblies by cryoelectron tomography reveals conformational changes induced by DotB binding. mBio 11, e03328–03319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sagulenko, E., Sagulenko, V., Chen, J. & Christie, P. J. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J. Bacteriol. 183, 5813–5825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hilleringmann, M. et al. Inhibitors of Helicobacter pylori ATPase Cagα block CagA transport and Cag virulence. Microbiology 152, 2919–2930 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Nagai, H. et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826–831 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Cambronne, E. D. & Roy, C. R. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3, e188 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kim, H. et al. Structural basis for effector protein recognition by the Dot/Icm type IVB coupling protein complex. Nat. Commun. 11, 2623 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences. Mol. Microbiol. 96, 175–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Meir, A., Chetrit, D., Liu, L., Roy, C. R. & Waksman, G. Legionella DotM structure reveals a role in effector recruiting to the type 4B secretion system. Nat. Commun. 9, 507 (2018). The paper presents the crystallographic structure of DotM, revealing a novel mechanism of effector recognition by the Dot/Icm T4SS in L. pneumophila.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  82. Mace, K. et al. Proteins DotY and DotZ modulate the dynamics and localization of the type IVB coupling complex of Legionella pneumophila. Mol. Microbiol. 117, 307–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Meir, A., Macé, K., Vegunta, Y., Williams, S. M. & Waksman, G. Substrate recruitment mechanism by Gram-negative type III, IV, and VI bacterial injectisomes. Trends Microbiol. 31, 916–932 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Kwak, M. J. et al. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat. Microbiol. 2, 17114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meir, A. et al. Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat. Commun. 11, 2864 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Vincent, C. D., Friedman, J. R., Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 85, 378–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, J. et al. Structural insights into the roles of the IcmS–IcmW complex in the type IVb secretion system of Legionella pneumophila. Proc. Natl Acad. Sci. USA 114, 13543–13548 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Pattis, I., Weiss, E., Laugks, R., Haas, R. & Fischer, W. The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153, 2896–2909 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Wu, X. et al. Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ. Nat. Commun. 14, 479 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. de la Cruz, F., Frost, L. S., Meyer, R. J. & Zechner, E. L. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34, 18–40 (2010).

    Article  PubMed  Google Scholar 

  91. Ilangovan, A. et al. Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169, 708–721.e12 (2017). The study reveals the structure of the relaxase protein, the core component of the relaxosome complex involved in DNA processing prior to conjugation, showing that two distinct activities of the relaxase, the transesterase activity required for DNA nicking and the helicase activity essential for DNA unwinding, are simultaneously performed by two distinct structural conformers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Datta, S., Larkin, C. & Schildbach, J. F. Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Structure 11, 1369–1379 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Rice, P. A., Yang, S., Mizuuchi, K. & Nash, H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Luo, Y., Gao, Q. & Deonier, R. C. Mutational and physical analysis of F plasmid traY protein binding to oriT. Mol. Microbiol. 11, 459–469 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, J. et al. Structural basis of specific TraD–TraM recognition during F plasmid-mediated bacterial conjugation. Mol. Microbiol. 70, 89–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Beranek, A. et al. Thirty-eight C-terminal amino acids of the coupling protein traD of the F-like conjugative resistance plasmid R1 are required and sufficient to confer binding to the substrate selector protein TraM. J. Bacteriol. 186, 6999–7006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong, J. J., Lu, J., Edwards, R. A., Frost, L. S. & Glover, J. M. Structural basis of cooperative DNA recognition by the plasmid conjugation factor, TraM. Nucleic Acids Res. 39, 6775–6788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rêgo, A. T., Chandran, V. & Waksman, G. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem. J. 425, 475–488 (2010).

    Article  PubMed  Google Scholar 

  99. Prevost, M. S. & Waksman, G. X-ray crystal structures of the type IVb secretion system DotB ATPases. Protein Sci. 27, 1464–1475 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jakubowski, S. J., Cascales, E., Krishnamoorthy, V. & Christie, P. J. Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J. Bacteriol. 187, 3486–3495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Redzej, A. et al. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J. 36, 3080–3095 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burns, D. L. Secretion of pertussis toxin from Bordetella pertussis. Toxins 13, 574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dehio, C. & Tsolis, R. M. Type IV effector secretion and subversion of host functions by Bartonella and Brucella species. Curr. Top. Microbiol. Immunol. 413, 269–295 (2017).

    CAS  PubMed  Google Scholar 

  104. Costa, T. R. D. et al. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166, 1436–1444.e10 (2016). The paper presents the structure of the conjugative F pilus, uncovering the incorporation of phospholipid molecules within the molecular architecture of pilus filament, establishing the basis for structural characterization of conjugative pili and leading to a surge in available architectures of other conjugative pili with their respective phospholipid types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng, W. et al. Cryoelectron-microscopic structure of the pKpQIL conjugative pili from carbapenem-resistant Klebsiella pneumoniae. Structure 28, 1321–1328.e2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kreida, S. et al. Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals stoichiometric protein-phospholipid assembly. Structure 31, 385–394.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Amro, J. et al. Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure 31, 375–384 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Beltran, L. C. et al. Archaeal DNA-import apparatus is homologous to bacterial conjugation machinery. Nat. Commun. 14, 666 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Patkowski, J. B. et al. The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Nat. Commun. 14, 1879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rozwandowicz, M. et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73, 1121–1137 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Bradley, D. E. Morphological and serological relationships of conjugative pili. Plasmid 4, 155–169 (1980).

    Article  CAS  PubMed  Google Scholar 

  112. Paschos, A. et al. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun. 79, 1033–1043 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Shaffer, C. L. et al. Peptidomimetic small molecules disrupt type IV secretion system activity in diverse bacterial pathogens. mBio 7, e00221-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ripoll-Rozada, J. et al. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation. Mol. Microbiol. 100, 912–921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Casu, B., Arya, T., Bessette, B. & Baron, C. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101. Sci. Rep. 7, 14907 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  116. Getino, M. & de la Cruz, F. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0015-2016 (2018).

  117. Garcia-Cazorla, Y. et al. Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPase TrwD, providing a mechanism to inhibit bacterial conjugation. J. Biol. Chem. 293, 16923–16930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arya, T. et al. Fragment-based screening identifies inhibitors of ATPase activity and of hexamer formation of Cagalpha from the Helicobacter pylori type IV secretion system. Sci. Rep. 9, 6474 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  119. Alvarez-Rodriguez, I. et al. Type IV coupling proteins as potential targets to control the dissemination of antibiotic resistance. Front. Mol. Biosci. 7, 201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brown, P. J. B., Chang, J. H. & Fuqua, C. Agrobacterium tumefaciens: a transformative agent for fundamental insights into host-microbe interactions, genome biology, chemical signaling, and cell biology. J. Bacteriol. 205, e0000523 (2023).

    Article  PubMed  Google Scholar 

  121. Hamilton, T. A. et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 10, 4544 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  122. Vrancianu, C. O., Popa, L. I., Bleotu, C. & Chifiriuc, M. C. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance. Front. Microbiol. 11, 761 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Reuter, A. et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 49, 3584–3598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bier, E. & Nizet, V. Driving to safety: CRISPR-based genetic approaches to reducing antibiotic resistance. Trends Genet. 37, 745–757 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Robledo, M. et al. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res. 50, 12938–12950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of authors was supported by the Welcome Trust grants 215164/Z/18/Z and 217089/Z/19/Z to T.R.D.C. and G.W., respectively, and by the National Institutes of Health grants NIH 1R35GM131892 and NIH 1R21AI159970 to P.J.C.

Author information

Authors and Affiliations

Authors

Contributions

T.R.D.C., J.B.P. and P.J.C. wrote the article. T.R.D.C., J.B.P., P.J.C. and K.M. researched data for the article. K.M. made the figures and supplementary table with contributions from T.R.D.C. and J.B.P. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Tiago R. D. Costa, Peter J. Christie or Gabriel Waksman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adhesins

Proteins found on the surface of cells that facilitate attachment to other biotic or abiotic surfaces.

Biofilm

An assemblage of bacteria on a biotic or abiotic surface, often with a defined architecture, that is embedded in an extracellular matrix typically composed of proteins, DNA, lipids and other biological molecules.

Biotic and abiotic adhesion

The attachment of microorganisms to living (biotic) or non-living (abiotic) surfaces, a process that typically facilitates biofilm formation, niche establishment or infection.

Co-evolution

The reciprocal influence and evolution patterns between two proteins that interact or are dependent on each other for function, and have evolved in a coordinated, nonrandom manner reflecting their mutual adaptation over time.

Conjugation

A type of horizontal gene transfer in bacteria where genetic material, such as plasmids containing genes for antibiotic resistance, is transferred from a donor bacterium to a recipient bacterium.

Conjugative pili

Helical hair-like appendages formed by protein–phospholipid complexes that assemble on the surface of bacteria and can act as conduits for DNA transfer between donor and recipient bacteria.

Conjugative plasmid

A type of a bacterial plasmid that encodes a conjugative machinery, through which the plasmid and its cargoes of antimicrobial resistance genes, virulence factors or other fitness traits are delivered between bacterial cells.

Correlative light and electron microscopy

(CLEM). Imaging technique that combines fluorescence microscopy and electron microscopy to correlate high-resolution structural information with specific molecular or cellular labelling in the same sample.

Crosslinking

Artificial formation of covalent bonds by a crosslinker between different molecules that interact or co-localize within a biological sample, with the common application of studying protein–protein or protein–ligand interactions.

Cryo-electron microscopy

(cryo-EM). Electron microscopy imaging technique that involves freezing samples in vitreous ice to preserve their native state and is used to visualize the three-dimensional structure of biological molecules and complexes at near-atomic resolution.

Cryo-electron tomography

(cryo-ET). Specialized variation of cryo-electron microscopy that enables the visualization of large cellular components or organelles within their cellular environment.

Cryo-focused ion beam

(cryo-FIB). A technique used to prepare samples for cryo-electron microscopy by thinning frozen samples with a focused ion beam, leading to an improved signal-to-noise ratio and resolution in the imaging of biological samples.

Effector

Bacterial protein, often secreted through a dedicated secretion system, that interacts with and manipulates cellular processes within a host organism, promoting bacterial survival, colonization or infection.

Nanobodies

Single-domain antibody fragments derived from heavy-chain-only IgG antibodies that are naturally found in the Camelidae family, which includes camels, llamas and alpacas.

Polytopic topology

Protein structure that contains multiple transmembrane segments embedded in the cell membrane.

Relaxosome

A complex of proteins responsible for specific nicking of the double-stranded DNA, unwinding of DNA strands and delivering the single-stranded DNA transfer intermediate to the type IV secretion apparatus before conjugation.

Rotational raise

Angle at which adjacent rings stack in helical assemblies, influencing the overall helical symmetry and packing of the structure.

Site-directed mutagenesis

Molecular biology technique used to introduce specific nucleotide mutations into DNA sequences, with the purpose of studying their effects on protein structure and function.

Toll-like receptor

A family of pattern recognition receptors in the immune system that specifically recognize conserved patterns in pathogens and trigger an immune response.

Translocation signals

Specific amino acid sequences that confer recognition of a protein as a substrate for a dedicated transport machinery for delivery to a specific cellular location, the extracellular milieu or another bacterial or eukaryotic cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, T.R.D., Patkowski, J.B., Macé, K. et al. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 22, 170–185 (2024). https://doi.org/10.1038/s41579-023-00974-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00974-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing