Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The soil plastisphere

Abstract

Understanding the effects of plastic pollution in terrestrial ecosystems is a priority in environmental research. A central aspect of this suite of pollutants is that it entails particles, in addition to chemical compounds, and this makes plastic quite different from the vast majority of chemical environmental pollutants. Particles can be habitats for microbial communities, and plastics can be a source of chemical compounds that are released into the surrounding environment. In the aquatic literature, the term ‘plastisphere’ has been coined to refer to the microbial community colonizing plastic debris; here, we use a definition that also includes the immediate soil environment of these particles to align the definition with other concepts in soil microbiology. First, we highlight major differences in the plastisphere between aquatic and soil ecosystems, then we review what is currently known about the soil plastisphere, including the members of the microbial community that are enriched, and the possible mechanisms underpinning this selection. Then, we focus on outlining future prospects for research on the soil plastisphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The definition of the soil plastisphere and its place in the context of other soil compartments.
Fig. 2: Overview of the general difference between plastic in aquatic and soil ecosystems.
Fig. 3: The soil plastisphere microbial community differs from that in other soil compartments.
Fig. 4: Progressing our understanding of the soil plastisphere.

Similar content being viewed by others

References

  1. Thompson, R. C., Swan, S. H., Moore, C. J. & vom Saal, F. S. Our plastic age. Philos. Trans. R. Soc. B Biol. Sci. 364, 1973–1976 (2009).

    Article  Google Scholar 

  2. Bank, M. S. & Hansson, S. V. The plastic cycle: a novel and holistic paradigm for the Anthropocene. Environ. Sci. Technol. 53, 7177–7179 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).

    Article  Google Scholar 

  5. Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

    Article  CAS  Google Scholar 

  6. Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020). Key observational study showing that microplastic particles can rain down even in remote areas.

    Article  CAS  PubMed  Google Scholar 

  7. Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol. 50, 10777–10779 (2016). Paper highlighting the necessity to focus research on microplastic in agricultural settings.

    Article  CAS  PubMed  Google Scholar 

  8. Bläsing, M. & Amelung, W. Plastics in soil: analytical methods and possible sources. Sci. Total Environ. 612, 422–435 (2018).

    Article  PubMed  Google Scholar 

  9. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape, and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019).

    Article  CAS  Google Scholar 

  11. Science Advice for Policy by European Academies. A scientific perspective on microplastics in nature and society. SAPEA https://doi.org/10.26356/microplastics (2019).

  12. Frias, J. P. G. L. & Nash, R. Microplastics: finding a consensus on the definition. Mar. Pollut. Bull. 138, 145–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Koelmans, A. A. et al. Risk assessment of microplastic particles. Nat. Rev. Mater. 7, 138–152 (2022).

    Article  Google Scholar 

  14. Bergmann, M. et al. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 3, 323–337 (2022).

    Article  CAS  Google Scholar 

  15. Ward, C. P. & Reddy, C. M. We need better data about the environmental persistence of plastic goods. Proc. Natl Acad. Sci. USA 117, 14618–14621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017). Seminal paper estimating the production and fate of plastic materials.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Rillig, M. C., Lehmann, A., Ryo, M. & Bergmann, J. Shaping up: toward considering the shape and form of pollutants. Environ. Sci. Technol. 53, 7925–7926 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S. W., Waldman, W. R., Kim, T.-Y. & Rillig, M. C. Effects of different microplastics on nematodes in the soil environment: tracking the extractable additives using an ecotoxicological approach. Environ. Sci. Technol. 54, 13868–13878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rillig, M. C., Kim, S. W., Kim, T.-Y. & Waldman, W. R. The global plastic toxicity debt. Environ. Sci. Technol. 55, 2717–2719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Chae, Y., Kim, D., Kim, S. W. & An, Y.-J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci. Rep. 8, 284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Waldman, W. R. & Rillig, M. C. Microplastic research should embrace the complexity of secondary particles. Environ. Sci. Technol. 54, 7751–7753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Machado, A. A. et al. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).

    Article  Google Scholar 

  26. Rillig, M. C., Leifheit, E. & Lehmann, J. Microplastic effects on carbon cycling processes in soils. PLoS Biol. 19, e3001130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 838–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Rochman, C. M. Microplastics research — from sink to source. Science 360, 28–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Rillig, M. C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 46, 6453–6454 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems. Science 368, 1430–1431 (2020). Overview paper highlighting the shift in terrestrial microplastic research from a toxicological to a more global change and Earth system perspective.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, W., Ge, J., Yu, X. & Li, H. Environmental fate and impacts of microplastics in soil ecosystems: progress and perspective. Sci. Total Environ. 708, 134841 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020). Comprehensive review of the plastisphere in aquatic ecosystems.

    Article  CAS  PubMed  Google Scholar 

  34. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013). A paper that applies the term ‘plastisphere’ to the marine environment.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, C., Wang, L., Ok, Y. S., Tsang, D. C. W. & Hou, D. Soil plastisphere: exploration methods, influencing factors, and ecological insights. J. Hazard. Mater. 430, 128503 (2022). Detailed review of the soil plastisphere research field with a special emphasis on methods and on the factors influencing plastisphere effects.

    Article  CAS  PubMed  Google Scholar 

  36. Gkoutselis, G. et al. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci. Rep. 11, 13214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. MacLean, J. et al. The terrestrial plastisphere: diversity and polymer-colonizing potential of plastic-associated microbial communities in soil. Microorganisms 9, 1876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, Y., Shi, J., Wang, X., Ding, C. & Wang, J. Deciphering the mechanisms shaping the plastisphere microbiota in soil. mSystems 7, e0035222 (2022).

    Article  PubMed  Google Scholar 

  39. Beare, M. H., Coleman, D. C., Crossley, D. A., Hendrix, P. F. & Odum, E. P. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170, 5–22 (1995).

    Article  CAS  Google Scholar 

  40. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Curl, E. A. & Truelove, B. The Rhizosphere (Springer Science & Business Media, 2012).

  42. Dąbrowska, A. A roadmap for a plastisphere. Mar. Pollut. Bull. 167, 112322 (2021).

    Article  PubMed  Google Scholar 

  43. Cheng, J. et al. Relative influence of plastic debris size and shape, chemical composition and phytoplankton-bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Front. Microbiol. 11, 610231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Long, M. et al. Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar. Chem. 175, 39–46 (2015).

    Article  CAS  Google Scholar 

  45. Yu, Y. & Flury, M. Current understanding of subsurface transport of micro‐ and nanoplastics in soil. Vadose Zone J. 20, e20108 (2021).

    Article  CAS  Google Scholar 

  46. Ren, Z. et al. Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants — a critical review. J. Hazard. Mater. 419, 126455 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. O’Connor, D. et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ. Pollut. 249, 527–534 (2019).

    Article  PubMed  Google Scholar 

  48. Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).

    Article  CAS  Google Scholar 

  49. Zhang, G. S. & Liu, Y. F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 642, 12–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Bandopadhyay, S. et al. Soil microbial communities associated with biodegradable plastic mulch films. Front. Microbiol. 11, 587074 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Luo, G. et al. Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China. J. Hazard. Mater. 422, 126865 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, M. et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci. Total Environ. 688, 470–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, D., Ma, J., Li, G., Rillig, M. C. & Zhu, Y.-G. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. ISME J. 16, 521–532 (2022). Experimental work demonstrating the enrichment of antibiotic resistance genes and pathogens in the plastisphere microbial community.

    Article  CAS  PubMed  Google Scholar 

  55. Shi, Z., Xiong, L., Liu, T. & Wu, W. Alteration of bacterial communities and co-occurrence networks as a legacy effect upon exposure to polyethylene residues under field environment. J. Hazard. Mater. 426, 128126 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Li, K., Jia, W., Xu, L., Zhang, M. & Huang, Y. The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. J. Hazard. Mater. 442, 130011 (2023). A study highlighting the difference in the plastisphere between biodegradable and conventional microplastic particles.

    Article  CAS  PubMed  Google Scholar 

  57. Kublik, S. et al. Microplastics in soil induce a new microbial habitat, with consequences for bulk soil microbiomes. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.989267 (2022).

  58. Xiang, Q., Chen, Q.-L., Yang, X.-R., Li, G. & Zhu, D. Soil mesofauna alter the balance between stochastic and deterministic processes in the plastisphere during microbial succession. Sci. Total Environ. 849, 157820 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Y. et al. The composition, biotic network, and assembly of plastisphere protistan taxonomic and functional communities in plastic-mulching croplands. J. Hazard. Mater. 430, 128390 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Ding, J. et al. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. Sci. Total Environ. 792, 148417 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Lu, X.-M., Lu, P.-Z. & Liu, X.-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci. Total Environ. 709, 136276 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, L., Wang, H., Zhang, H. & Wu, H. Formation of a biofilm matrix network shapes polymicrobial interactions. ISME J. 17, 467–477 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Otto, M. Staphylococcal biofilms. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0023-2018 (2018).

  64. Ya, H., Xing, Y., Zhang, T., Lv, M. & Jiang, B. LDPE microplastics affect soil microbial community and form a unique plastisphere on microplastics. Appl. Soil Ecol. 180, 104623 (2022).

    Article  Google Scholar 

  65. Puglisi, E. et al. Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Sci. Rep. 9, 14138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rüthi, J. et al. The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling. J. Hazard. Mater. 441, 129941 (2023).

    Article  Google Scholar 

  67. Rüthi, J., Bölsterli, D., Pardi-Comensoli, L., Brunner, I. & Frey, B. The “plastisphere” of biodegradable plastics is characterized by specific microbial taxa of alpine and arctic soils. Front. Environ. Sci. 8, 562263 (2020).

    Article  Google Scholar 

  68. Sabev, H. A., Handley, P. S. & Robson, G. D. Y. Fungal colonization of soil-buried plasticized polyvinyl chloride (pPVC) and the impact of incorporated biocides. Microbiology 152, 1731–1739 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Y., Ma, J., O’Connor, P. & Zhu, Y.-G. Microbial communities on biodegradable plastics under different fertilization practices in farmland soil microcosms. Sci. Total Environ. 809, 152184 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, Y., Li, T., Liu, P., Li, H. & Hu, F. The formation of specific bacterial communities contributes to the enrichment of antibiotic resistance genes in the soil plastisphere. J. Hazard. Mater. 436, 129247 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).

    Article  PubMed  Google Scholar 

  72. Rillig, M. C. et al. Soil microbes and community coalescence. Pedobiologia 59, 37–40 (2016).

    Article  Google Scholar 

  73. Li, H.-Q. et al. Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil. Environ. Pollut. 287, 117339 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Yu, H. et al. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. J. Hazard. Mater. 395, 122690 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Luan, L. et al. Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil. Proc. Natl Acad. Sci. USA 120, e2207832120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Potrykus, M. et al. Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. Sci. Total Environ. 758, 143649 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y. et al. Effects of coexistence of tetracycline, copper and microplastics on the fate of antibiotic resistance genes in manured soil. Sci. Total Environ. 790, 148087 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Xie, H. et al. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics. Sci. Total Environ. 752, 142223 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. de Souza Machado, A. A. et al. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53, 6044–6052 (2019).

    Article  PubMed  Google Scholar 

  81. Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Rillig, M. C., Lehmann, A., Machado, A. A., de, S. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).

    Article  PubMed  Google Scholar 

  83. Kleunen, M., van, Brumer, A., Gutbrod, L. & Zhang, Z. A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet. 2, 157–166 (2020).

    Article  Google Scholar 

  84. Qi, Y. et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qin, M. et al. A review of biodegradable plastics to biodegradable microplastics: another ecological threat to soil environments? J. Clean. Prod. 312, 127816 (2021).

    Article  CAS  Google Scholar 

  87. Ju, Z. et al. The succession of bacterial community attached on biodegradable plastic mulches during the degradation in soil. Front. Microbiol. 12, 785737 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bi, M., He, Q. & Chen, Y. What roles are terrestrial plants playing in global microplastic cycling? Environ. Sci. Technol. 54, 5325–5327 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 218, 1327–1333 (2018).

    Article  PubMed  Google Scholar 

  90. Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, X. et al. Recent advances on the effects of microplastics on elements cycling in the environment. Sci. Total Environ. 849, 157884 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Ren, X., Tang, J., Liu, X. & Liu, Q. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ. Pollut. 256, 113347 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Lozano, Y. M. et al. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J. Appl. Ecol. 58, 988–996 (2021).

    Article  CAS  Google Scholar 

  94. Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Leifheit, E. F., Lehmann, A. & Rillig, M. C. Potential effects of microplastic on arbuscular mycorrhizal fungi. Front. Plant Sci. 12, 626709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rillig, M. C. et al. Evolutionary implications of microplastics for soil biota. Environ. Chem. 16, 3–7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).

    Article  Google Scholar 

  98. Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends Ecol. Evol. 36, 402–410 (2021).

    Article  PubMed  Google Scholar 

  99. Rillig, M. C., Ryo, M. & Lehmann, A. Classifying human influences on terrestrial ecosystems. Glob. Chang. Biol. 27, 2273–2278 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Ji, L., Tanunchai, B., Wahdan, S. F. M., Schädler, M. & Purahong, W. Future climate change enhances the complexity of plastisphere microbial co-occurrence networks, but does not significantly affect the community assembly. Sci. Total Environ. 844, 157016 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Erktan, A., Or, D. & Scheu, S. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).

    Article  CAS  Google Scholar 

  102. Andriuzzi, W. S., Bolger, T. & Schmidt, O. The drilosphere concept: fine-scale incorporation of surface residue-derived N and C around natural Lumbricus terrestris burrows. Soil Biol. Biochem. 64, 136–138 (2013).

    Article  CAS  Google Scholar 

  103. Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 (2002).

    Article  Google Scholar 

  104. Wu, X., Liu, Z., Li, M., Bartlam, M. & Wang, Y. Integrated metagenomic and metatranscriptomic analysis reveals actively expressed antibiotic resistomes in the plastisphere. J. Hazard. Mater. 430, 128418 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Wright, R. J., Bosch, R., Gibson, M. I. & Christie-Oleza, J. A. Plasticizer degradation by marine bacterial isolates: a proteogenomic and metabolomic characterization. Environ. Sci. Technol. 54, 2244–2256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, R., Zhu, L., Cui, L. & Zhu, Y.-G. Viral diversity and potential environmental risk in microplastic at watershed scale: evidence from metagenomic analysis of plastisphere. Environ. Int. 161, 107146 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Yang, K. et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ. Sci. Technol. 54, 11322–11332 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Neumann, G., George, T. S. & Plassard, C. Strategies and methods for studying the rhizosphere — the plant science toolbox. Plant Soil 321, 431–456 (2009).

    Article  CAS  Google Scholar 

  109. Downie, H. F. et al. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ. 38, 1213–1232 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, J. et al. Label-free multiphoton imaging of microbes in root, mineral, and soil matrices with time-gated coherent Raman and fluorescence lifetime imaging. Environ. Sci. Technol. 56, 1994–2008 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.C.R. acknowledges funding from a European Research Council Advanced Grant and from the European Union projects MINAGRIS and PAPILLIONS, as well as from the BMBF-funded project µPlastic. Y.-G.Z. is supported by the National Natural Science Foundation of China (42021005).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Matthias C. Rillig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Linda Amaral-Zettler, Jennifer DeBruyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rillig, M.C., Kim, S.W. & Zhu, YG. The soil plastisphere. Nat Rev Microbiol 22, 64–74 (2024). https://doi.org/10.1038/s41579-023-00967-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00967-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology