Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibiotic-induced collateral damage to the microbiota and associated infections

Abstract

Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient’s resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient’s microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient’s microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two mechanisms of infection following antibiotic treatment.
Fig. 2: Factors contributing to antibiotic-induced disruption of microbiota homeostasis.
Fig. 3: Overgrowth and infection from pre-existing pathogens within the microbiota.
Fig. 4: Recovery of the microbiota after antibiotic treatment ends.
Fig. 5: Strategies to minimize antibiotic-associated infections.

Similar content being viewed by others

References

  1. Browne, A. J. et al. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planet. Health 5, e893–e904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stewardson, A. J., Huttner, B. & Harbarth, S. At least it won’t hurt: the personal risks of antibiotic exposure. Curr. Opin. Pharmacol. 11, 446–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hogenauer, C., Hammer, H. F., Krejs, G. J. & Reisinger, E. C. Mechanisms and management of antibiotic‐associated diarrhea. Clin. Infect. Dis. 27, 702–710 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. McFarland, L. V. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig. Dis. Basel Switz. 16, 292–307 (1998).

    Article  CAS  Google Scholar 

  6. Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00833-7 (2022). A comprehensive review on the mechanisms and regulation of colonization resistance.

    Article  PubMed  Google Scholar 

  7. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wypych, T. P. & Marsland, B. J. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 39, 697–711 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, J. et al. Long-term use of antibiotics and risk of type 2 diabetes in women: a prospective cohort study. Int. J. Epidemiol. 49, 1572–1581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park, S. J. et al. Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci. Rep. 11, 21681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Trasande, L. et al. Infant antibiotic exposures and early-life body mass. Int. J. Obes. 37, 16–23 (2013).

    Article  CAS  Google Scholar 

  15. Teng, C., Reveles, K. R., Obodozie-Ofoegbu, O. O. & Frei, C. R. Clostridium difficile infection risk with important antibiotic classes: an analysis of the FDA adverse event reporting system. Int. J. Med. Sci. 16, 630–635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Högenauer, C. et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N. Engl. J. Med. 355, 2418–2426 (2006).

    Article  PubMed  Google Scholar 

  17. Shukla, A. & Sobel, J. D. Vulvovaginitis caused by Candida species following antibiotic exposure. Curr. Infect. Dis. Rep. 21, 44 (2019).

    Article  PubMed  Google Scholar 

  18. Ben-Ami, R. et al. Antibiotic exposure as a risk factor for fluconazole-resistant Candida bloodstream infection. Antimicrob. Agents Chemother. 56, 2518–2523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2014).

    Article  PubMed  Google Scholar 

  21. Bush, K. et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 9, 894–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016). This longitudinal study of the infant gut microbiome observed transient blooms of specific species and resistance levels during antibiotic treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stecher, B., Maier, L. & Hardt, W.-D. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11, 277–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen, Z. et al. Emerging carriage of NDM-5 and MCR-1 in Escherichia coli from healthy people in multiple regions in China: a cross sectional observational study. eClinicalMedicine 6, 11–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Hattem, J. M. et al. Prolonged carriage and potential onward transmission of carbapenemase-producing Enterobacteriaceae in Dutch travelers. Future Microbiol. 11, 857–864 (2016).

    Article  PubMed  Google Scholar 

  27. Hu, Y. et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 4, 2151 (2013).

    Article  PubMed  Google Scholar 

  28. Group, B. M. J. P. Superinfections during antibiotic treatment. Br. Med. J. 1, 537–538 (1952).

    Article  Google Scholar 

  29. Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sullivan, Å. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 1, 101–114 (2001). A review of the drug-specific effects of antibiotic on the microbiota, including extra-intestinal microbiota sites.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, L. et al. The varying effects of antibiotics on gut microbiota. AMB Express 11, 116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021). This study comprehensively screened gut commensals to identify drug combinations active against pathogens but that minimize collateral damage against other species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kelly, S. A., Rodgers, A. M., O’Brien, S. C., Donnelly, R. F. & Gilmore, B. F. Gut check time: antibiotic delivery strategies to reduce antimicrobial resistance. Trends Biotechnol. 38, 447–462 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011). This study highlights the differences between individuals in the microbiota response and recovery to antibiotics.

    Article  CAS  PubMed  Google Scholar 

  35. Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann, M., Patil, K. R., Typas, A. & Maier, L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol. Syst. Biol. 17, e10116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gjonbalaj, M. et al. Antibiotic degradation by commensal microbes shields pathogens. Infect. Immun. 88, e00012–e00020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Elvers, K. T. et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open 10, e035677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zimmermann, P. & Curtis, N. The effect of antibiotics on the composition of the intestinal microbiota — a systematic review. J. Infect. 79, 471–489 (2019).

    Article  PubMed  Google Scholar 

  42. Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North. Am. 23, 791–815 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Levy, R. M., Huang, E. Y., Roling, D., Leyden, J. J. & Margolis, D. J. Effect of antibiotics on the oropharyngeal flora in patients with acne. Arch. Dermatol. 139, 467–471 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kelly, S. A. et al. Antibiotic therapy and the gut microbiome: investigating the effect of delivery route on gut pathogens. ACS Infect. Dis. 7, 1283–1296 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, L., Huang, Y., Zhou, Y., Buckley, T. & Wang, H. H. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob. Agents Chemother. 57, 3659–3666 (2013). A comparison of oral and intravenous antibiotic administration on the spread of antibiotic resistance in the mouse intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Finegold, S. M. Anaerobic infections in humans: an overview. Anaerobe 1, 3–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Donskey, C. J. et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932 (2000). This study of patients colonized with vancomycin-resistant enterococci showed overgrowth in the intestine during treatment with various anti-anaerobic antibiotics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brook, I., Wexler, H. M. & Goldstein, E. J. C. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin. Microbiol. Rev. 26, 526–546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012). Intestinal domination by various bacteria is associated with subsequent bacteraemia in patients undergoing haematopoietic stem cell transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Young, V. B. & Schmidt, T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 1203–1206 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wiström, J. et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J. Antimicrob. Chemother. 47, 43–50 (2001).

    Article  PubMed  Google Scholar 

  54. Ma, H. et al. Combined administration of antibiotics increases the incidence of antibiotic-associated diarrhea in critically ill patients. Infect. Drug. Resist. 12, 1047–1054 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rashidi, A. et al. Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome 9, 211 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Arvidsson, A., Leijd, B., Nord, C. E. & Angelin, B. Interindividual variability in biliary excretion of ceftriaxone: effects on biliary lipid metabolism and on intestinal microflora. Eur. J. Clin. Invest. 18, 261–266 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Anthony, W. E. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 39, 110649 (2022). This study shows short- and long-term effects of antibiotics on the gut microbiota of healthy volunteers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yee, A. L. et al. Longitudinal microbiome composition and stability correlate with increased weight and length of very-low-birth-weight infants. mSystems 4, e00229-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cubillos-Ruiz, A. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6, 910–921 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Sun, J. et al. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 11, 1427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Montandon, S. A. & Jornayvaz, F. R. Effects of antidiabetic drugs on gut microbiota composition. Genes 8, 250 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Le Bastard, Q. et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 47, 332–345 (2018).

    Article  PubMed  Google Scholar 

  69. Kwok, C. S. et al. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am. J. Gastroenterol. 107, 1011–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Trifan, A. et al. Proton pump inhibitors therapy and risk of Clostridium difficile infection: systematic review and meta-analysis. World J. Gastroenterol. 23, 6500–6515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Caballero-Flores, G., Pickard, J. M., Fukuda, S., Inohara, N. & Núñez, G. An enteric pathogen subverts colonization resistance by evading competition for amino acids in the gut. Cell Host Microbe 28, 526–533.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  Google Scholar 

  73. Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pamer, E. G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352, 535–538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Freter, R. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97, 57–65 (1955). An early study identifying the protection against infection conferred by an intact microbiota.

    Article  CAS  PubMed  Google Scholar 

  79. Miller, C. P., Bohnhoff, M. & Rifkind, D. The effect of an antibiotic on the susceptibility of the mouse’s intestinal tract to Salmonella infection. Trans. Am. Clin. Climatol. Assoc. 68, 51–58 (1957).

    CAS  PubMed Central  Google Scholar 

  80. Sekirov, I. et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun. 76, 4726–4736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hensgens, M. P. M., Goorhuis, A., Dekkers, O. M. & Kuijper, E. J. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J. Antimicrob. Chemother. 67, 742–748 (2012). A multicenter case–control study to determine the period at risk for CDI after cessation of antibiotics.

    Article  CAS  PubMed  Google Scholar 

  82. Tvede, M. & Rask-Madsen, J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 333, 1156–1160 (1989).

    Article  Google Scholar 

  83. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  Google Scholar 

  84. Buffie, C. G. et al. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015). Bile-acid-mediated colonization resistance against C. difficile could be restored by the human gut commensal C. scindens.

    Article  CAS  PubMed  Google Scholar 

  85. Aguirre, A. M. et al. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 17, e1010015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gregory, A. L., Pensinger, D. A. & Hryckowian, A. J. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis. PLoS Pathog. 17, e1009959 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iwata, K. et al. A systematic review for pursuing the presence of antibiotic associated enterocolitis caused by methicillin resistant Staphylococcus aureus. BMC Infect. Dis. 14, 247 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lane, A. B., Copeland, N. K., Onmus-Leone, F. & Lawler, J. V. Methicillin-resistant Staphylococcus aureus as a probable cause of antibiotic-associated enterocolitis. Case Rep. Infect. Dis. 2018, e3106305 (2018).

    Google Scholar 

  89. Lichtman, J. S. et al. Host–microbiota interactions in the pathogenesis of antibiotic-associated diseases. Cell Rep. 14, 1049–1061 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pavia, A. T. et al. Epidemiologic evidence that prior antimicrobial exposure decreases resistance to infection by antimicrobial-sensitive Salmonella. J. Infect. Dis. 161, 255–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Holmberg, S. D., Osterholm, M. T., Senger, K. A. & Cohen, M. L. Drug-resistant Salmonella from animals fed antimicrobials. N. Engl. J. Med. 311, 617–622 (1984).

    Article  CAS  PubMed  Google Scholar 

  92. Gradel, K. O., Dethlefsen, C., Ejlertsen, T., Schønheyder, H. C. & Nielsen, H. Increased prescription rate of antibiotics prior to non-typhoid Salmonella infections: a one-year nested case–control study. Scand. J. Infect. Dis. 40, 635–641 (2008).

    Article  PubMed  Google Scholar 

  93. Doorduyn, Y., Van Den Brandhof, W. E., Van Duynhoven, Y. T. H. P., Wannet, W. J. B. & Van Pelt, W. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiol. Infect. 134, 617–626 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Malik, U. et al. Association between prior antibiotic therapy and subsequent risk of community-acquired infections: a systematic review. J. Antimicrob. Chemother. 73, 287–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Humphreys, H. et al. Four country healthcare associated infection prevalence survey 2006: risk factor analysis. J. Hosp. Infect. 69, 249–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota–host interactions. Nature 553, 427–436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Belkaid, Y. & Segre, J. A. Dialogue between skin microbiota and immunity. Science 346, 954–959 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, Q. et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbe 27, 68–78.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Man, W. H., de Steenhuijsen Piters, W. A. A. & Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clark, S. E. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr. Opin. Immunol. 66, 42–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santagati, M., Scillato, M., Patanè, F., Aiello, C. & Stefani, S. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol. Med. Microbiol. 65, 23–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Horn, K. J. et al. Corynebacterium species inhibit Streptococcus pneumoniae colonization and infection of the mouse airway. Front. Microbiol. 12, 804935 (2021).

    Article  PubMed  Google Scholar 

  105. Thackray, L. B. et al. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep. 22, 3440–3453.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Margolis, D. J., Bowe, W. P., Hoffstad, O. & Berlin, J. A. Antibiotic treatment of acne may be associated with upper respiratory tract infections. Arch. Dermatol. 141, 1132–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Smith, H. S. et al. Antecedent antimicrobial use increases the risk of uncomplicated cystitis in young women. Clin. Infect. Dis. 25, 63–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Robinson, C. J. & Young, V. B. Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes 1, 279–284 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zacharioudakis, I. M., Zervou, F. N., Pliakos, E. E., Ziakas, P. D. & Mylonakis, E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 110, 381–390 (2015).

    Article  PubMed  Google Scholar 

  110. Stevens, E. J., Bates, K. A. & King, K. C. Host microbiota can facilitate pathogen infection. PLoS Pathog. 17, e1009514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kluytmans-van den Bergh, M. F. Q. et al. Rectal carriage of extended-spectrum-β-lactamase-producing enterobacteriaceae in hospitalized patients: selective preenrichment increases yield of screening. J. Clin. Microbiol. 53, 2709–2712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sheppard, S. K. Strain wars and the evolution of opportunistic pathogens. Curr. Opin. Microbiol. 67, 102138 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Donskey, C. J. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin. Infect. Dis. 39, 219–226 (2004).

    Article  PubMed  Google Scholar 

  114. Sim, C. K. et al. A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae. Microbiome 10, 43 (2022). Mice colonized with resistant bacteria at undetectable levels showed overgrowth following antibiotic treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bottery, M. J. et al. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 16, 812–821 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Tavernier, S. et al. Community composition determines activity of antibiotics against multispecies biofilms. Antimicrob. Agents Chemother. 61, e00302–e00317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    Article  PubMed  Google Scholar 

  119. Mayer, F. L., Wilson, D. & Hube, B. Candida albicans pathogenicity mechanisms. Virulence 4, 119–128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Xu, J. et al. Effect of antibiotics on vulvovaginal candidiasis: a MetroNet study. J. Am. Board. Fam. Med. 21, 261–268 (2008).

    Article  PubMed  Google Scholar 

  121. MacDonald, T. M. et al. The risks of symptomatic vaginal candidiasis after oral antibiotic therapy. Q. J. Med. 86, 419–424 (1993).

    CAS  PubMed  Google Scholar 

  122. Tan, C. T., Xu, X., Qiao, Y. & Wang, Y. A peptidoglycan storm caused by β-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat. Commun. 12, 2560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Seelig, M. S. The role of antibiotics in the pathogenesis of Candida infections. Am. J. Med. 40, 887–917 (1966).

    Article  CAS  PubMed  Google Scholar 

  124. Takahashi, S. et al. Septic pulmonary embolism caused by Candida albicans after treatment for urinary multidrug-resistant Pseudomonas aeruginosa. J. Infect. Chemother. 14, 436–438 (2008).

    Article  PubMed  Google Scholar 

  125. Zhai, B. et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat. Med. 26, 59–64 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Samonis, G. et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob. Agents Chemother. 37, 51–53 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Spigaglia, P., Mastrantonio, P. & Barbanti, F. in Updates on Clostridium difficile in Europe: Advances in Microbiology, Infectious Diseases and Public Health Volume 8 (eds Mastrantonio, P. & Rupnik, M.) 137–159 (Springer International, 2018). https://doi.org/10.1007/978-3-319-72799-8_9.

  128. Toth, M., Stewart, N. K., Smith, C. & Vakulenko, S. B. Intrinsic class D β-lactamases of Clostridium difficile. mBio 9, e01803–e01818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Eyre, D. W. et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369, 1195–1205 (2013). A study showing that many C. difficile infections are not the result of transmission chains in hospital settings.

    Article  CAS  PubMed  Google Scholar 

  130. Ayres, J. S., Trinidad, N. J. & Vance, R. E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18, 799–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Segura Munoz, R. R. et al. Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. ISME J. 16, 1594–1604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    Article  CAS  PubMed  Google Scholar 

  133. Lentsch, V. et al. Combined oral vaccination with niche competition can generate sterilizing immunity against enteropathogenic bacteria. Preprint at bioRxiv https://doi.org/10.1101/2022.07.20.498444 (2022).

  134. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Murray, B. E., Rensimer, E. R. & Dupont, H. L. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim–sulfamethoxazole. N. Engl. J. Med. 306, 130–135 (1982).

    Article  CAS  PubMed  Google Scholar 

  136. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Vollaard, E. J., Clasener, H. A. L., van Griethuysen, A. J. A., Janssen, A. J. & Sanders-Reijmers, A. J. Influence of amoxycillin, erythromycin and roxithromycin on colonization resistance and on appearance of secondary colonization in healthy volunteers. J. Antimicrob. Chemother. 20, 131–138 (1987).

    Article  CAS  PubMed  Google Scholar 

  138. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010). This study showed how VRE overgrow in the intestine during antibiotic treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Soares, F. S. et al. Antibiotic-induced pathobiont dissemination accelerates mortality in severe experimental pancreatitis. Front. Immunol. 8, 1890 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Drummond, R. A. et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe 30, 1020–1033.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Knoop, K. A., McDonald, K. G., Kulkarni, D. H. & Newberry, R. D. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65, 1100–1109 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Forde, B. M. et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat. Commun. 10, 3643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wheatley, R. M. et al. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat. Commun. 13, 6523 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Magill, S. S. et al. Prevalence of antimicrobial use in US acute care hospitals, May–September 2011. J. Am. Med. Asssoc. 312, 1438–1446 (2014).

    Article  CAS  Google Scholar 

  148. Stracy, M. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 375, 889–894 (2022). Personalized antibiotic recommendations could reduce the emergence of resistance during antibiotic treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Caballero, J. D. et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 14, 4083 (2023).

    Article  Google Scholar 

  150. Tchesnokova, V. L. et al. Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced ability to persist in the gut and cause bacteriuria in healthy women. Clin. Infect. Dis. 70, 937–939 (2020).

    Article  PubMed  Google Scholar 

  151. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 344, 11–16 (2001).

    Article  Google Scholar 

  152. Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Korpela, K. et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7, 10410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiol. Read. Engl. 156, 3216–3223 (2010).

    Article  CAS  Google Scholar 

  155. Wenzler, E., Mulugeta, S. G. & Danziger, L. H. The antimicrobial stewardship approach to combating Clostridium difficile. Antibiotics 4, 198–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Baur, D. et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect. Dis. 17, 990–1001 (2017).

    Article  PubMed  Google Scholar 

  157. Aldeyab, M. A. et al. An evaluation of the impact of antibiotic stewardship on reducing the use of high-risk antibiotics and its effect on the incidence of Clostridium difficile infection in hospital settings. J. Antimicrob. Chemother. 67, 2988–2996 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Wiesch, P. A., zur, Kouyos, R., Abel, S., Viechtbauer, W. & Bonhoeffer, S. Cycling empirical antibiotic therapy in hospitals: meta-analysis and models. PLoS Pathog. 10, e1004225 (2014).

    Article  Google Scholar 

  159. Moser, C. et al. Antibiotic therapy as personalized medicine — general considerations and complicating factors. APMIS 127, 361–371 (2019).

    Article  PubMed  Google Scholar 

  160. Yeh, Y.-C., Huang, T.-H., Yang, S.-C., Chen, C.-C. & Fang, J.-Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front. Chem. 8, 286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, Y. et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J. Nanobiotechnol. 17, 103 (2019).

    Article  Google Scholar 

  162. Yao, J. et al. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob. Agents Chemother. 60, 4264–4273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mu, H. et al. Pathogen-targeting glycovesicles as a therapy for salmonellosis. Nat. Commun. 10, 4039 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gutiérrez, B. & Domingo-Calap, P. Phage therapy in gastrointestinal diseases. Microorganisms 8, 1420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins — a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Meade, E., Slattery, M. A. & Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics 9, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hatfull, G. F., Dedrick, R. M. & Schooley, R. T. Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med. 73, 197–211 (2022).

    Article  PubMed  Google Scholar 

  169. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, 987–994 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Yelin, I. et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat. Med. 25, 1728–1732 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Imperial, I. C. V. J. & Ibana, J. A. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front. Microbiol. 7, 1983 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500 (2013).

    Article  PubMed  Google Scholar 

  177. Pamer, E. G. Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunol. 7, 210–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  180. Amrane, S. & Lagier, J.-C. Fecal microbiota transplantation for antibiotic resistant bacteria decolonization. Hum. Microbiome J. 16, 100071 (2020). A comprehensive overview of the application of FMT to decolonize the gut of antibiotic resistance bacteria.

    Article  Google Scholar 

  181. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Stecher, B. & Hardt, W.-D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14, 82–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Pickard, J. M. & Núñez, G. Pathogen colonization resistance in the gut and its manipulation for improved health. Am. J. Pathol. 189, 1300–1310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Vital, M., Rud, T., Rath, S., Pieper, D. H. & Schlüter, D. Diversity of bacteria exhibiting bile acid-inducible 7α-dehydroxylation genes in the human gut. Comput. Struct. Biotechnol. J. 17, 1016–1019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ikuta, K. S. et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).

    Article  Google Scholar 

  190. Magruder, M. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Wellcome Trust grant 224212/Z/21/Z.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. L.d.N. and M.S. contributed substantially to discussion of the content. L.d.N. and M.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Mathew Stracy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Simone Becattini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Nies, L., Kobras, C.M. & Stracy, M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 21, 789–804 (2023). https://doi.org/10.1038/s41579-023-00936-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00936-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing