Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibiotic perturbations to the gut microbiome

Abstract

Antibiotic-mediated perturbation of the gut microbiome is associated with numerous infectious and autoimmune diseases of the gastrointestinal tract. Yet, as the gut microbiome is a complex ecological network of microorganisms, the effects of antibiotics can be highly variable. With the advent of multi-omic approaches for systems-level profiling of microbial communities, we are beginning to identify microbiome-intrinsic and microbiome-extrinsic factors that affect microbiome dynamics during antibiotic exposure and subsequent recovery. In this Review, we discuss factors that influence restructuring of the gut microbiome on antibiotic exposure. We present an overview of the currently complex picture of treatment-induced changes to the microbial community and highlight essential considerations for future investigations of antibiotic-specific outcomes. Finally, we provide a synopsis of available strategies to minimize antibiotic-induced damage or to restore the pretreatment architectures of the gut microbial community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antibiotic-mediated destruction of the gut microbiome opens an opportunistic niche.
Fig. 2: Integrated understanding of how antibiotics remodel the microbiome.
Fig. 3: Assessing the effect of antibiotics on horizontal gene transfer rates.
Fig. 4: Approaches aimed at maintaining or restoring gut microbiome structure on antibiotic treatment.

Similar content being viewed by others

References

  1. Gomaa, E. Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek 113, 2019–2040 (2020).

    Article  PubMed  Google Scholar 

  2. Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  PubMed  Google Scholar 

  5. Nguyen, L. H. et al. Antibiotic use and the development of inflammatory bowel disease: a national case-control study in Sweden. Lancet Gastroenterol. Hepatol. 5, 986–995 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2015).

    Article  PubMed  Google Scholar 

  7. Farhana, L., Banerjee, H. N., Verma, M. & Majumdar, A. P. N. Role of microbiome in carcinogenesis process and epigenetic regulation of colorectal cancer. Methods Mol. Biol. 1856, 35–55 (2018).

    Article  PubMed  Google Scholar 

  8. Akimoto, N. et al. Rising incidence of early-onset colorectal cancer — a call to action. Nat. Rev. Clin. Oncol. 18, 230–243 (2021).

    Article  PubMed  Google Scholar 

  9. Johnson, S. et al. Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N. Engl. J. Med. 341, 1645–1651 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J. H. et al. Maternal antibiotic exposure during pregnancy is a risk factor for community-acquired urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in infants. Pediatr. Nephrol. 37, 163–170 (2022).

    Article  PubMed  Google Scholar 

  11. Lynch, I. J. & Martinez, F. J. Clinical relevance of macrolide-resistant Streptococcus pneumoniae for community-acquired pneumonia. Clin. Infect. Dis. 34, S27–S46 (2002).

    Article  Google Scholar 

  12. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull. World Health Organ. 79, 780–790 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adedeji, W. A. The treasure called antibiotics. Ann. Ib. Postgrad. Med. 14, 56–57 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Centers for Disease Control and Prevention. Life Expectancy. Centers for Disease Control and Prevention https://www.cdc.gov/nchs/fastats/life-expectancy.htm (2021).

  15. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fishbein, S. R. S. et al. Randomized controlled trial of oral vancomycin treatment in Clostridioides difficile-colonized patients. mSphere https://doi.org/10.1128/mSphere.00936-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (2019).

  18. Anthony, W. E., Burnham, C. D., Dantas, G. & Kwon, J. H. The gut microbiome as a reservoir for antimicrobial resistance. J. Infect. Dis. 223, S209–S213 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Hayase, E. et al. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. Cell 185, 3705–3719.e14 (2022). This study highlights an underexplored area in identifying antibiotic-induced microbiome perturbation as a contributor to intestinal graft-versus-host disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shono, Y. et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl Med. 8, 339ra371 (2016).

    Article  Google Scholar 

  21. Wypych, T. P. & Marsland, B. J. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 39, 697–711 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Klein, E. Y. et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl Acad. Sci. USA 115, E3463–E3470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gould, I. M. A review of the role of antibiotic policies in the control of antibiotic resistance. J. Antimicrob. Chemother. 43, 459–465 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Olesen, S. W. et al. The distribution of antibiotic use and its association with antibiotic resistance. eLife https://doi.org/10.7554/eLife.39435 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  26. Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gasparrini, A. J. et al. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes 7, 443–449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahmud, B. et al. Epidemiology of plasmid lineages mediating the spread of extended-spectrum beta-lactamases among clinical Escherichia coli. mSystems https://doi.org/10.1128/msystems.00519-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Forster, S. C. et al. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat. Commun. 13, 1445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stracy, M. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 375, 889–894 (2022). Using a machine-learning approach, this study leverages a massive bacterial genomics database tied to infection data to identify genomic predictors by which treatment-induced emergence of antibiotic resistance can be avoided.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Anthony, W. E. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 39, 110649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dubinsky, V. et al. Predominantly antibiotic-resistant intestinal microbiome persists in patients with pouchitis who respond to antibiotic therapy. Gastroenterology 158, 610–624.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Van Engelen, T. S. R. et al. Gut microbiome modulation by antibiotics in adult asthma: a human proof-of-concept intervention trial. Clin. Gastroenterol. Hepatol. 20, 1404–1407.e4 (2022).

    Article  PubMed  Google Scholar 

  36. Doan, T. et al. Mass azithromycin distribution and community microbiome: a cluster-randomized trial. Open Forum Infect. Dis. 5, ofy182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reyman, M. et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat. Commun. 13, 893 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raymond, F. et al. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 10, 707–720 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Reijnders, D. et al. Short-term microbiota manipulation and forearm substrate metabolism in obese men: a randomized, double-blind, placebo-controlled trial. Obes. Facts 11, 318–326 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zarrinpar, A. et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 9, 2872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kelly, C. P. et al. Saccharomyces boulardii CNCM I-745 modulates the fecal bile acids metabolism during antimicrobial therapy in healthy volunteers. Front. Microbiol. 10, 336 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsukuda, N. et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J. 15, 2574–2590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Young, V. B. & Schmidt, T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 1203–1206 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  Google Scholar 

  46. Isaac, S. et al. Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat. Commun. 13, 7718 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giel, J. L., Sorg, J. A., Sonenshein, A. L. & Zhu, J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS ONE 5, e8740 (2010). This study underscores the importance of microbial transformation of bile salts in conferring microbiome-mediated colonization resistance to a spore-forming pathogen.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reed, A. D., Nethery, M. A., Stewart, A., Barrangou, R. & Theriot, C. M. Strain-dependent inhibition of Clostridioides difficile by commensal clostridia carrying the bile acid-inducible (bai) operon. J. Bacteriol. https://doi.org/10.1128/JB.00039-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guinan, J., Wang, S., Hazbun, T. R., Yadav, H. & Thangamani, S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci. Rep. 9, 8872 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. MacPherson, C. W. et al. Gut bacterial microbiota and its resistome rapidly recover to basal state levels after short-term amoxicillin-clavulanic acid treatment in healthy adults. Sci. Rep. 8, 11192 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016). This study shows that in infant guts, the ARGs enriched after antibiotic treatment highly correlate with the abundance of single species. This study also utilizes functional screening to identify novel ARGs in stool metagenomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loo, V. G. et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353, 2442–2449 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Weill, F. X. et al. Genomic insights into the 2016-2017 cholera epidemic in Yemen. Nature 565, 230–233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reijnders, D. et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: A randomized double-blind placebo-controlled trial. Cell Metab. 24, 63–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Gao, H. et al. Antibiotic exposure has sex-dependent effects on the gut microbiota and metabolism of short-chain fatty acids and amino acids in mice. mSystems https://doi.org/10.1128/mSystems.00048-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sim, C. K. et al. A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae. Microbiome 10, 43 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stewardson, A. J. et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin. Microbiol. Infect. 21, 344.e1–344.e11 (2015).

    Article  Google Scholar 

  59. Willmann, M. et al. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol. 17, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hinterwirth, A. et al. Rapid reduction of Campylobacter species in the gut microbiome of preschool children after oral azithromycin: a randomized controlled trial. Am. J. Trop. Med. Hyg. 103, 1266–1269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chaima, D. et al. Biannual administrations of azithromycin and the gastrointestinal microbiome of Malawian children: a nested cohort study within a randomized controlled trial. Front. Public Health 10, 756318 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arzika, A. M. et al. Gut resistome of preschool children after prolonged mass azithromycin distribution: a cluster-randomized trial. Clin. Infect. Dis. 73, 1292–1295 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Doan, T. et al. Macrolide and nonmacrolide resistance with mass azithromycin distribution. N. Engl. J. Med. 383, 1941–1950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doan, T. et al. Macrolide resistance in MORDOR I — a cluster-randomized trial in Niger. N. Engl. J. Med. 380, 2271–2273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Doan, T. et al. Gut microbiome alteration in MORDOR I: a community-randomized trial of mass azithromycin distribution. Nat. Med. 25, 1370–1376 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Pickering, H. et al. Impact of azithromycin mass drug administration on the antibiotic-resistant gut microbiome in children: a randomized, controlled trial. Gut Pathog. 14, 5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oldenburg, C. E. et al. Effect of commonly used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: a randomized clinical trial. Open Forum Infect. Dis. 5, ofy289 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl Med. 8, 343ra381 (2016).

    Article  Google Scholar 

  69. Zlitni, S. et al. Strain-resolved microbiome sequencing reveals mobile elements that drive bacterial competition on a clinical timescale. Genome Med. 12, 50 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goltsman, D. S. A. et al. Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome. Genome Res. 28, 1467–1480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olm, M. R. et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci. Adv. 5, eaax5727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brito, I. L. et al. Transmission of human-associated microbiota along family and social networks. Nat. Microbiol. 4, 964–971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vinarov, Z. et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. 162, 105812 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Rao, S., Kupfer, Y., Pagala, M., Chapnick, E. & Tessler, S. Systemic absorption of oral vancomycin in patients with Clostridium difficile infection. Scand. J. Infect. Dis. 43, 386–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Connelly, S., Subramanian, P., Hasan, N. A., Colwell, R. R. & Kaleko, M. Distinct consequences of amoxicillin and ertapenem exposure in the porcine gut microbiome. Anaerobe 53, 82–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Singh, J., Burr, B., Stringham, D. & Arrieta, A. Commonly used antibacterial and antifungal agents for hospitalised paediatric patients: implications for therapy with an emphasis on clinical pharmacokinetics. Paediatr. Drugs 3, 733–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Leopold, S. R. et al. Murine model for measuring effects of humanized-dosing of antibiotics on the gut microbiome. Front. Microbiol. 13, 813849 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Browne, H. P. et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biol. 22, 204 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fawley, W. N. et al. Efficacy of hospital cleaning agents and germicides against epidemic Clostridium difficile strains. Infect. Control. Hosp. Epidemiol. 28, 920–925 (2007).

    Article  PubMed  Google Scholar 

  80. Baines, S. D., O’Connor, R., Saxton, K., Freeman, J. & Wilcox, M. H. Activity of vancomycin against epidemic Clostridium difficile strains in a human gut model. J. Antimicrob. Chemother. 63, 520–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Antunes, A. et al. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res. 40, 10701–10718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Normington, C. et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes 7, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere https://doi.org/10.1128/mSphere.00045-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Duncan, K., Carey-Ewend, K. & Vaishnava, S. Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 13, 1874815 (2021). This analysis utilizes a number of imaging techniques to characterize the microbial composition of the mucus layer in a mouse.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Elhenawy, W. et al. High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn’s disease-associated Escherichia coli. Nat. Commun. 12, 2032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bakkeren, E. et al. Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut. eLife https://doi.org/10.7554/eLife.69744 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bakkeren, E. et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature 573, 276–280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cabral, D. J. et al. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab. 30, 800–823.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chambers, S. A. et al. A solution to antifolate resistance in group B Streptococcus: untargeted metabolomics identifies human milk oligosaccharide-induced perturbations that result in potentiation of trimethoprim. mBio https://doi.org/10.1128/mBio.00076-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu, Y. et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat. Microbiol. 6, 874–884 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S. & Collins, J. J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl Acad. Sci. USA 110, 14420–14425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zarkan, A. et al. Inhibition of indole production increases the activity of quinolone antibiotics against E. coli persisters. Sci. Rep. 10, 11742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Varga, J. J. et al. Antibiotics drive expansion of rare pathogens in a chronic infection microbiome model. mSphere 7, e0031822 (2022).

    Article  PubMed  Google Scholar 

  94. Amor, D. R. & Gore, J. Fast growth can counteract antibiotic susceptibility in shaping microbial community resilience to antibiotics. Proc. Natl Acad. Sci. USA 119, e2116954119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bottery, M. J. et al. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 16, 812–821 (2022). This study utilizes a simple defined community framework to identify quantitative features of a small bacterial community that predict antibiotic susceptibility in the community.

    Article  CAS  PubMed  Google Scholar 

  96. Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Isaac, S. et al. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 72, 128–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aranda-Diaz, A. et al. Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife https://doi.org/10.7554/eLife.51493 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Adamowicz, E. M., Flynn, J., Hunter, R. C. & Harcombe, W. R. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 12, 2723–2735 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adamowicz, E. M., Muza, M., Chacon, J. M. & Harcombe, W. R. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hazleton, K. Z. et al. Dietary fat promotes antibiotic-induced Clostridioides difficile mortality in mice. NPJ Biofilms Microbiomes 8, 15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guasch-Ferre, M. et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 102, 1563–1573 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Leone, V., Chang, E. B. & Devkota, S. Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. J. Gastroenterol. 48, 315–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, J. Y. et al. High-fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 28, 273–284.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cabral, D. J., Wurster, J. I., Korry, B. J., Penumutchu, S. & Belenky, P. Consumption of a Western-style diet modulates the response of the murine gut microbiome to ciprofloxacin. mSystems https://doi.org/10.1128/mSystems.00317-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wurster, J. I. et al. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep. 37, 110113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tanes, C. et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe 29, 394–407.e5 (2021). This human clinical trial provides promising evidence that modulation of dietary elements can aide the microbiome in recovering its metabolic capacity following broad-spectrum antibiotic treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lindell, A. E., Zimmermann-Kogadeeva, M. & Patil, K. R. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat. Rev. Microbiol. 20, 431–443 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1679.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. de Nies, L. et al. Evolution of the murine gut resistome following broad-spectrum antibiotic treatment. Nat. Commun. 13, 2296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Looft, T. et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl Acad. Sci. USA 109, 1691–1696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Duan, Y. et al. Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals. Sci. Total Environ. 705, 135674 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. D’Souza, A. W. et al. Cotrimoxazole prophylaxis increases resistance gene prevalence and alpha-diversity but decreases beta-diversity in the gut microbiome of HIV-exposed, uninfected infants. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciz1186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Thanert, R. et al. Antibiotic-driven intestinal dysbiosis in pediatric short bowel syndrome is associated with persistently altered microbiome functions and gut-derived bloodstream infections. Gut Microbes 13, 1940792 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kokai-Kun, J. F. et al. Ribaxamase, an orally administered β-lactamase, diminishes changes to acquired antimicrobial resistance of the gut resistome in patients treated with ceftriaxone. Infect. Drug. Resist. 13, 2521–2535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, J. et al. Antibiotic treatment drives the diversification of the human gut resistome. Genomics Proteom. Bioinforma. 17, 39–51 (2019).

    Article  Google Scholar 

  121. Lofmark, S., Jernberg, C., Jansson, J. K. & Edlund, C. Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J. Antimicrob. Chemother. 58, 1160–1167 (2006).

    Article  PubMed  Google Scholar 

  122. Jakobsson, H. E. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5, e9836 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Oldenburg, C. E. et al. Gut resistome after oral antibiotics in preschool children in Burkina Faso: a randomized, controlled trial. Clin. Infect. Dis. 70, 525–527 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, L., Huang, Y., Zhou, Y., Buckley, T. & Wang, H. H. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob. Agents Chemother. 57, 3659–3666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Johnson, T. A. et al. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. mBio 7, e02214–e02215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rajer, F. & Sandegren, L. The role of antibiotic resistance genes in the fitness cost of multiresistance plasmids. mBio https://doi.org/10.1128/mbio.03552-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Esaiassen, E. et al. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front. Pediatr. 6, 347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rahman, S. F., Olm, M. R., Morowitz, M. J. & Banfield, J. F. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. mSystems https://doi.org/10.1128/mSystems.00123-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Papp, M. & Solymosi, N. Review and comparison of antimicrobial resistance gene databases. Antibiotics https://doi.org/10.3390/antibiotics11030339 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lal Gupta, C., Kumar Tiwari, R. & Cytryn, E. Platforms for elucidating antibiotic resistance in single genomes and complex metagenomes. Env. Int. 138, 105667 (2020).

    Article  Google Scholar 

  133. Xavier, B. B. et al. Consolidating and exploring antibiotic resistance gene data resources. J. Clin. Microbiol. 54, 851–859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS  PubMed  Google Scholar 

  135. Doster, E. et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48, D561–D569 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Mahmud, B., Boolchandani, M., Patel, S. & Dantas, G. Functional metagenomics to study antibiotic resistance. Methods Mol. Biol. 2601, 379–401 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Goren, M. G. et al. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patient. Emerg. Infect. Dis. 16, 1014–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 1, 4379 (2020). This study describes the implementation of Hi-C towards elucidating HGT networks in microbial communities.

    Article  Google Scholar 

  139. Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl Acad. Sci. USA 109, 1269–1274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Charpentier, X., Polard, P. & Claverys, J. P. Induction of competence for genetic transformation by antibiotics: convergent evolution of stress responses in distant bacterial species lacking SOS. Curr. Opin. Microbiol. 15, 570–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Slager, J., Kjos, M., Attaiech, L. & Veening, J. W. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 157, 395–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Prudhomme, M., Attaiech, L., Sanchez, G., Martin, B. & Claverys, J. P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313, 89–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013). In this study, the authors demonstrate that antibiotic treatment results in the expansion of the frequency of phage–bacteria interactions, resulting in broader dissemination of phage-encoded antimicrobial resistance genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jutkina, J., Marathe, N. P., Flach, C. F. & Larsson, D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616-617, 172–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Cairns, J. et al. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun. Biol. 1, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Barlow, M. What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol. Biol. 532, 397–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Huddleston, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect. Drug Resist. 7, 167–176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Maguire, F. et al. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic Islands. Microb. Genom. https://doi.org/10.1099/mgen.0.000436 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Brown, C. L. et al. Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Sci. Rep. 11, 3753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu, J. et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ. Int. 121, 1217–1226 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Jutkina, J., Rutgersson, C., Flach, C. F. & Joakim Larsson, D. G. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total Environ. 548-549, 131–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, P. Y. et al. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol. Lett. 348, 149–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, Y. et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J. 13, 509–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Handel, N., Otte, S., Jonker, M., Brul, S. & ter Kuile, B. H. Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains. PLoS ONE 10, e0123039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Johnsen, A. R. & Kroer, N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiol. Ecol. 59, 718–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Lopatkin, A. J. et al. Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol. 1, 16044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Feld, L. et al. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J. Antimicrob. Chemother. 61, 845–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Lopatkin, A. J., Sysoeva, T. A. & You, L. Dissecting the effects of antibiotics on horizontal gene transfer: analysis suggests a critical role of selection dynamics. Bioessays 38, 1283–1292 (2016). In this examination of the reports on the effects of antibiotics on conjugation, the authors make a compelling case for how antibiotic selection confounds the experimental results and their interpretation. The authors call for more careful experimental design that enables decoupling of the antibiotic effects on conjugation and bacterial growth rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Deng, F., Li, Y. & Zhao, J. The gut microbiome of healthy long-living people. Aging 11, 289–290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Connelly, S. et al. SYN-004 (ribaxamase), an oral beta-lactamase, mitigates antibiotic-mediated dysbiosis in a porcine gut microbiome model. J. Appl. Microbiol. 123, 66–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. de Gunzburg, J. et al. Protection of the human gut microbiome from antibiotics. J. Infect. Dis. 217, 628–636 (2018).

    Article  PubMed  Google Scholar 

  166. Wan, M. L. Y., Forsythe, S. J. & El-Nezami, H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit. Rev. Food Sci. Nutr. 59, 3320–3333 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Drolia, R. et al. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat. Commun. 11, 6344 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Koh, E. et al. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat. Commun. 13, 3834 (2022). This paper reports on the engineering of E. coli Nissle 1917 to selectively secrete a bile salt hydrolase in a dysbiotic environment, restoring the intestinal bile salt metabolism and impeding C. difficile germination and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ajami, N. J., Cope, J. L., Wong, M. C., Petrosino, J. F. & Chesnel, L. Impact of oral fidaxomicin administration on the intestinal microbiota and susceptibility to Clostridium difficile colonization in mice. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02112-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018). In this paper, the authors demonstrate that the combined activity of an antibiotic combination is commonly species specific and strain specific, providing evidence for the possibility of developing narrow-spectrum therapies based on drug combinations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stentz, R. et al. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics. J. Antimicrob. Chemother. 70, 701–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Kokai-Kun, J. F. et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect. Dis. 19, 487–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Cubillos-Ruiz, A. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00871-9 (2022). The authors of this paper generate an engineered L. lactis strain that degrades intestinal β-lactams through secretion of a heterodimeric β-lactamase. Notably, given its split nature and extracellular assembly, the β-lactamase protects the microbial community from β-lactams but does not confer resistance to the host L. lactis.

    Article  PubMed  Google Scholar 

  174. Vehreschild, M. et al. An open randomized multicentre phase 2 trial to assess the safety of DAV132 and its efficacy to protect gut microbiota diversity in hospitalized patients treated with fluoroquinolones. J. Antimicrob. Chemother. 77, 1155–1165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Burdet, C. et al. Protection of hamsters from mortality by reducing fecal moxifloxacin concentration with dav131a in a model of moxifloxacin-induced Clostridium difficile colitis. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00543-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. de Gunzburg, J. et al. Targeted adsorption of molecules in the colon with the novel adsorbent-based medicinal product, DAV132: a proof of concept study in healthy subjects. J. Clin. Pharmacol. 55, 10–16 (2015).

    Article  PubMed  Google Scholar 

  177. Hryckowian, A. J. et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3, 662–669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. McDonald, J. A. K. et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 155, 1495–1507.e15 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Pruss, K. M. et al. Mucin-derived O-glycans supplemented to diet mitigate diverse microbiota perturbations. ISME J. 15, 577–591 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Schnizlein, M. K., Vendrov, K. C., Edwards, S. J., Martens, E. C. & Young, V. B. Dietary xanthan gum alters antibiotic efficacy against the murine gut microbiota and attenuates Clostridioides difficile colonization. mSphere https://doi.org/10.1128/mSphere.00708-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Simpson, H. L. et al. Soluble non-starch polysaccharides from plantain (Musa × paradisiaca L.) diminish epithelial impact of Clostridioides difficile. Front. Pharmacol. 12, 766293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Roberts, C. L. et al. Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. J. Nutr. Biochem. 24, 97–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Button, J. E. et al. Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. Cell Host Microbe 30, 712–725.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Ghani, R., Mullish, B. H., Roberts, L. A., Davies, F. J. & Marchesi, J. R. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 14, 2038856 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Orenstein, R. et al. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: results from an open-label phase 2 clinical trial. BMC Infect. Dis. 22, 245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kao, D. et al. The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial. Lancet Gastroenterol. Hepatol. 6, 282–291 (2021).

    Article  PubMed  Google Scholar 

  188. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Dsouza, M. et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 30, 583–598.e8 (2022). This study is the first clinical demonstration of the therapeutic efficacy and safety of a rationally defined bacterial consortium developed to treat recurrent C. difficile infections.

    Article  CAS  PubMed  Google Scholar 

  190. Francis, M. B., Allen, C. A., Shrestha, R. & Sorg, J. A. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 9, e1003356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Winston, J. A. & Theriot, C. M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 41, 44–50 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kwak, S. et al. Impact of investigational microbiota therapeutic RBX2660 on the gut microbiome and resistome revealed by a placebo-controlled clinical trial. Microbiome 8, 125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  194. Zellmer, C. et al. Shiga toxin-producing Escherichia coli transmission via fecal microbiota transplant. Clin. Infect. Dis. 72, e876–e880 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Guarner, F. & Schaafsma, G. J. Probiotics. Int. J. Food Microbiol. 39, 237–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  196. Montassier, E. et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol. 6, 1043–1054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zuo, F., Chen, S. & Marcotte, H. Engineer probiotic bifidobacteria for food and biomedical applications — current status and future prospective. Biotechnol. Adv. 45, 107654 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Goh, Y. J. & Barrangou, R. Harnessing CRISPR–Cas systems for precision engineering of designer probiotic lactobacilli. Curr. Opin. Biotechnol. 56, 163–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Kwak, S., Mahmud, B. & Dantas, G. A tunable and expandable transactivation system in probiotic yeast Saccharomyces boulardii. ACS Synth. Biol. 11, 508–514 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. Gelfat, I. et al. Single domain antibodies against enteric pathogen virulence factors are active as curli fiber fusions on probiotic E. coli Nissle 1917. PLoS Pathog. 18, e1010713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Forkus, B., Ritter, S., Vlysidis, M., Geldart, K. & Kaznessis, Y. N. Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts. Sci. Rep. 7, 40695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tscherner, M., Giessen, T. W., Markey, L., Kumamoto, C. A. & Silver, P. A. A synthetic system that senses Candida albicans and inhibits virulence factors. ACS Synth. Biol. 8, 434–444 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Jayaraman, P., Holowko, M. B., Yeoh, J. W., Lim, S. & Poh, C. L. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6, 1403–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Palmer, J. D. et al. Engineered probiotic for the inhibition of salmonella via tetrathionate-induced production of microcin H47. ACS Infect. Dis. 4, 39–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Willmann, M. et al. Antibiotic selection pressure determination through sequence-based metagenomics. Antimicrob. Agents Chemother. 59, 7335–7345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Buelow, E. et al. Effects of selective digestive decontamination (SDD) on the gut resistome. J. Antimicrob. Chemother. 69, 2215–2223 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Brewster, R. et al. Surveying gut microbiome research in Africans: toward improved diversity and representation. Trends Microbiol. 27, 824–835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Stokholm, J. et al. Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin. Microbiol. Infect. 20, 629–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Dubos, R., Schaedler, R. W. & Stephens, M. The effect of antibacterial drugs on the fecal flora of mice. J. Exp. Med. 117, 231–243 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hertz, F. B. et al. Effects of antibiotics on the intestinal microbiota of mice. Antibiotics https://doi.org/10.3390/antibiotics9040191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zhang, Y., Limaye, P. B., Renaud, H. J. & Klaassen, C. D. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol. Appl. Pharmacol. 277, 138–145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sun, L. et al. Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front. Cell Infect. Microbiol. 9, 99 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Burdet, C. et al. Ceftriaxone and cefotaxime have similar effects on the intestinal microbiota in human volunteers treated by standard-dose regimens. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02244-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Tirelle, P. et al. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol. 20, 340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Stokholm, J., Sevelsted, A., Bonnelykke, K. & Bisgaard, H. Maternal propensity for infections and risk of childhood asthma: a registry-based cohort study. Lancet Respir. Med. 2, 631–637 (2014).

    Article  PubMed  Google Scholar 

  218. Tao, C., Zhang, Q., Zeng, W., Liu, G. & Shao, H. The effect of antibiotic cocktails on host immune status is dynamic and does not always correspond to changes in gut microbiota. Appl. Microbiol. Biotechnol. 104, 4995–5009 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Lavelle, A. et al. Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome 7, 111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Akbar, S. et al. Changes in the life history traits of Daphnia magna are associated with the gut microbiota composition shaped by diet and antibiotics. Sci. Total Environ. 705, 135827 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Harrison, C. A. et al. Sexual dimorphism in the response to broad-spectrum antibiotics during T cell-mediated colitis. J. Crohns Colitis 13, 115–126 (2019).

    Article  PubMed  Google Scholar 

  222. Ruczizka, U. et al. Early parenteral administration of ceftiofur has gender-specific short- and long-term effects on the fecal microbiota and growth in pigs from the suckling to growing phase. Animals https://doi.org/10.3390/ani10010017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Fujisaka, S. et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J. Clin. Invest. 126, 4430–4443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Jansen, K., Pou Casellas, C., Groenink, L., Wever, K. E. & Masereeuw, R. Humans are animals, but are animals human enough? A systematic review and meta-analysis on interspecies differences in renal drug clearance. Drug Discov. Today 25, 706–717 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory was supported in part by awards to G.D. through the National Institute of Allergy and Infectious Diseases (NIAID; award numbers U01AI123394 and R01AI155893), the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD; award number R01HD092414), and the National Center for Complementary and Integrative Health (NCCIH; award number R01AT009741) of the National Institutes of Health (NIH); through the National Institute for Occupational Safety and Health (NIOSH) of the US Centers for Disease Control and Prevention (CDC; award number R01OH011578); and through the Agency for Healthcare Research and Quality (AHRQ) of the US Department of Health & Human Services (DHHS; award number R01HS027621). S.R.S.F. was supported by an award from Paediatric Gastroenterology Research Training Program (T32DK077653) through the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

S.R.S.F. and B.M. researched data for the article. S.R.S.F., B.M. and G.D. substantially contributed to discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Gautam Dantas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Ilana Brito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fishbein, S.R.S., Mahmud, B. & Dantas, G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 21, 772–788 (2023). https://doi.org/10.1038/s41579-023-00933-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00933-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing