Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbially mediated metal corrosion

Abstract

A wide diversity of microorganisms, typically growing as biofilms, has been implicated in corrosion, a multi-trillion dollar a year problem. Aerobic microorganisms establish conditions that promote metal corrosion, but most corrosion has been attributed to anaerobes. Microbially produced organic acids, sulfide and extracellular hydrogenases can accelerate metallic iron (Fe0) oxidation coupled to hydrogen (H2) production, as can respiratory anaerobes consuming H2 as an electron donor. Some bacteria and archaea directly accept electrons from Fe0 to support anaerobic respiration, often with c-type cytochromes as the apparent outer-surface electrical contact with the metal. Functional genetic studies are beginning to define corrosion mechanisms more rigorously. Omics studies are revealing which microorganisms are associated with corrosion, but new strategies for recovering corrosive microorganisms in culture are required to evaluate corrosive capabilities and mechanisms. Interdisciplinary studies of the interactions among microorganisms and between microorganisms and metals in corrosive biofilms show promise for developing new technologies to detect and prevent corrosion. In this Review, we explore the role of microorganisms in metal corrosion and discuss potential ways to mitigate it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of microbial corrosion.
Fig. 2: Key reactions and diversity of microorganisms involved in metal corrosion.
Fig. 3: Details of key mechanisms for microbial corrosion of ferrous metals.
Fig. 4: Various methods for disrupting biofilms to prevent or mitigate microbial metal corrosion.

Similar content being viewed by others

References

  1. Camara, M. et al. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. npj Biofilms Microbiomes 8, 42 (2022). This perspective article discusses the substantial economic costs of microbial corrosive activity.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jacobson, G. A. Corrosion at Prudhoe Bay — a lesson on the line. Mater. Perform. 46, 26–34 (2007).

    Google Scholar 

  3. Spark, A., Wang, K., Cole, I., Law, D. & Ward, L. Microbiologically influenced corrosion: a review of the studies conducted on buried pipelines. Corros. Rev. 38, 231–262 (2020).

    Article  CAS  Google Scholar 

  4. Morita, R. Y. Is H2 the universal energy source for long-term survival? Microb. Ecol. 38, 307–320 (2000). This study discusses the central role of H2 in diverse microbial communities.

    Article  Google Scholar 

  5. Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Lovley, D. R. Electrotrophy: other microbial species, iron, and electrodes as electron donors for microbial respirations. Bioresour. Technol. 345, 126553 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Lekbach, Y. et al. Microbial corrosion of metals — the corrosion microbiome. Adv. Microb. Physiol. 78, 317–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Gaines, R. Bacterial activity as a corrosive influence in the soil. J. Ind. Eng. Chem. 2, 128–130 (1910). This study provides one of the earliest fact-documented evidences of corrosive activity of microorganisms on metal.

    Article  Google Scholar 

  9. Enning, D. & Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 80, 1226–1236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamilton, W. A. Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39, 195–217 (1985). This study presents a comprehensive historical account of early studies on the role of sulfate-reducing bacteria in corrosion.

    Article  CAS  PubMed  Google Scholar 

  11. Ueki, T. & Lovley, D. R. Desulfovibrio vulgaris as a model microbe for the study of corrosion under sulfate‐reducing conditions. mLife 1, 13–20 (2022).

    Article  CAS  Google Scholar 

  12. Daniels, L., Belay, N., Rajagopal, B. S. & Weimer, P. J. Bacterial methanogensis and growth from CO2 with elemental iron as the sole source of electrons. Science 237, 509–511 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Rajagopal, B. S. & LeGall, J. Utilization of cathodic hydrogen by hydrogen-oxidizing bacteria. Appl. Microbiol. Biotechnol. 31, 406–412 (1989).

    Article  CAS  Google Scholar 

  14. Tang, H.-Y., Holmes, D. E., Ueki, T., Palacios, P. A. & Lovley, D. R. Iron corrosion via direct metal-microbe electron transfer. mBio 10, e00303–e00319 (2019). To our knowledge, this study is the first to rigorously demonstrate direct metal-to-microorganism electron transfer with genetic analyses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guan, F. et al. Interaction between sulfate−reducing bacteria and aluminum alloys — corrosion mechanisms of 5052 and Al–Zn–In–Cd aluminum alloys. J. Mater. Sci. Technol. 36, 55–64 (2020).

    Article  CAS  Google Scholar 

  16. Wang, D. et al. Sulfate reducing bacterium Desulfovibrio vulgaris caused severe microbiologically influenced corrosion of zinc and galvanized steel. Int. Biodeterior. Biodegrad. 157, 105160 (2021).

    Article  CAS  Google Scholar 

  17. Wang, D. et al. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros. Sci. 177, 108993 (2020).

    Article  CAS  Google Scholar 

  18. Chen, Z., Dou, W., Chen, S., Pu, Y. & Xu, Z. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment. Bioelectrochemistry 144, 108040 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Emerson, D. The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34, 989–1000 (2019). This review presents important insights into how iron-oxidizing bacteria can contribute to metal corrosion.

    Article  Google Scholar 

  20. Wang, H., Ju, L.-K., Castandea, H., Cheng, G. & Newby, B. Z. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corros. Sci. 89, 250–257 (2014).

    Article  CAS  Google Scholar 

  21. Lee, J. S., McBeth, J. M., Ray, R. I., Little, B. J. & Emerson, D. Iron cycling at corroding carbon steel surfaces. Biofouling 29, 1243–1252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, H. et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros. Sci. 100, 484–495 (2015).

    Article  CAS  Google Scholar 

  23. Chen, S., Deng, H., Liu, G. & Zhang, D. Corrosioin of Q235 carbon steel in seawater containing Mariprofundus ferrooxydans and Thalassospira sp. Front. Microbiol. 10, 936 (2020).

    Article  CAS  Google Scholar 

  24. Yue, Y., Lv, M. & Du, M. The corrosion behavior and mechanism of X65 steel induced by iron‐oxidizing bacteria in the seawater environment. Mater. Corros. 70, 1852–1861 (2019).

    Article  CAS  Google Scholar 

  25. Little, B., Hinks, J. & Blackwood, D. J. Microbially influenced corrosion: towards an interdisciplinary perspective on mechanisms. Int. Biodeterior. Biodegrad. 154, 105062 (2020). This article presents an interdisciplinary analysis and synthesis of a wide range of abiotic and biotic corrosion studies.

    Article  CAS  Google Scholar 

  26. Hamilton, W. A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19, 65–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Dexter, S. C., Xu, K. & Luther, G. L. Mn cycling in marine biofilms: effect on the rate of localized corrosion. Biofouling 19, 139–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Wakai, S. et al. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb. Ecol. 68, 519–527 (2014). This study shows that a diversity of redox-active components can serve as electron shuttles to support corrosion.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, E. et al. Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Res. 219, 118553 (2022). This study shows that aerobic respiration generates anaerobic conditions within biofilms promoting corrosive microbial electron uptake.

    Article  CAS  PubMed  Google Scholar 

  30. Usher, K. M., Kaksonen, A. H. & MacLeod, I. D. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros. Sci. 83, 189–197 (2014).

    Article  CAS  Google Scholar 

  31. Wang, J. et al. Corrosion behavior of Aspergillus niger on 7075 aluminum alloy and the inhibition effect of zinc pyrithione biocide. J. Electrochem. Soc. 166, G39–G46 (2019).

    Article  CAS  Google Scholar 

  32. Zhang, T., Wang, J., Zhang, G. & Liu, H. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate. Corros. Sci. 176, 108930 (2020).

    Article  CAS  Google Scholar 

  33. Zhao, J., Csetenyi, L. & Gadd, G. M. Biocorrosion of copper metal by Aspergillus niger. Int. Biodeterior. Biodegrad. 154, 105081 (2020).

    Article  CAS  Google Scholar 

  34. Tang, H.-Y. et al. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. ISME J. 15, 3084–3093 (2021). This study demonstrates the lack of H2 generation from stainless steel as a tool for distinguishing the role of H2 in corrosion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holmes, D. E. et al. Cytochrome-mediated direct electron uptake from metallic iron by Methanosarcina acetivorans. mLife 1, 443–447 (2022). To our knowledge, this study provides the first genetic evidence for direct electron uptake from Fe0 by a methanogen.

    Article  CAS  Google Scholar 

  36. Liang, D. et al. Extracellular electron exchange capabilities of Desulfovibrio ferrophilus and Desulfopila corrodens. Environ. Sci. Technol. 55, 16195–16203 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Hernandez-Santana, A., Suflita, J. M. & Nanny, M. A. Shewanella oneidensis MR-1 accelerates the corrosion of carbon steel using multiple electron transfer mechanisms. Int. Biodeterior. Biodegrad. 173, 105439 (2022). This study presents a genetic approach to elucidate multiple iron corrosion mechanisms within one microorganism.

    Article  CAS  Google Scholar 

  38. Woodard, T. L., Ueki, T. & Lovley, D. R. H2 is a major intermediate in Desulfovibrio vulgaris corrosion of Iron. mBio 14, e00076-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rubin, B. E. et al. Species-and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Neria, I., Wang, E. T., Ramirez, F., Romero, J. M. & Hernandez-Rodriguez, C. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12, 122–133 (2006).

    Article  Google Scholar 

  41. Paisse, S. et al. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl. Microbiol. Biotechnol. 97, 749–7504 (2013).

    Article  Google Scholar 

  42. Zhang, G. et al. The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. Microbiome 6, 222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mugge, R. L., Lee, J. S., Brown, T. T. & Hamdan, L. J. Marine biofilm bacterial community response and carbon steel loss following Deepwater Horizon spill contaminant exposure. Biofouling 35, 870–882 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Salgar-Chaparro, S. J., Darwin, A., Kaksonen, A. H. & Machuca, L. L. Carbon steel corrosion by bacteria from failed seal rings at an offshore facility. Sci. Rep. 10, 12287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salgar-Chaparro, S. J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A. & Machuca, L. L. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl. Environ. Microbiol. 86, e02885-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lahme, S., Mand, J., Longwell, J., Smith, R. & Enning, D. Severe corrosion of carbon steel in oil field produced water can be linked to methanogenic archaea containing a special type of [NiFe] hydrogenase. Appl. Environ. Microbiol. 87, e01819–e01820 (2021). This study demonstrates the possibility of diagnosing microbial corrosion mechanisms with molecular analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garrison, C. E. & Field, E. K. Introducing a “core steel microbiome” and community functional analysis associated with microbially influenced corrosion. FEMS Microb. Ecol. 97, fiaa237 (2021).

    Article  CAS  Google Scholar 

  48. Wakai, S. et al. Dynamics of microbial communities on the corrosion behavior of steel in freshwater environment. npj Mater. Degrad. 6, 45 (2022). This work shows the dynamic succession of microbial communities during the initial stages of metal corrosion.

    Article  CAS  Google Scholar 

  49. Gosi, P. et al. Prediction of long-term localized corrosion rates in a carbon steel cooling water system is enhanced by metagenome analysis. Eng. Fail. Anal. 141, 106733 (2022).

    Article  CAS  Google Scholar 

  50. Tamisier, M. et al. Iron corrosion by methanogenic archaea characterized by stable isotope effects and crust mineralogy. Environ. Microbiol. 24, 583–595 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Enning, D. et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 14, 1772–1787 (2012). This study shows high rates of corrosion by D. ferrophilus and D. corrodens, highlighting the need to elucidate corrosive mechanisms in these microorganisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. von Wolzogen Kűhr, C. A. H. & van der Vlugt, L. S. The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water 18, 147–165 (1934).

    Google Scholar 

  53. Suflita, J. M., Phelps, T. J. & Little, B. Carbon dixoide corrosion and acetate: a hypothesis on the influence of microorganisms. Corrosion 64, 854–859 (2008).

    Article  CAS  Google Scholar 

  54. Ramos Monroy, O. A., Ruiz Ordaz, N., Hernández Gayosso, M. J., Juárez Ramírez, C. & Galíndez Mayer, J. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel. Environ. Sci. Pollut. Res. 26, 29991–30002 (2019).

    Article  CAS  Google Scholar 

  55. Kryachko, Y. & Hemmingsen, S. M. The role of localized acidity generation in microbialy inlfuenced corrosion. Curr. Microbiol. 74, 870–876 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Chatelus, C. et al. Hydrogenase activity in aged, nonviable Desulfovibrio vulgaris cultures and its significance in anaerobic biocorrosion. Appl. Environ. Microbiol. 53, 1708–1710 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Deutzmann, J. S., Sahin, M. & Spormann, A. M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6, e00496-15 (2015). This study demonstrates that assumptions of direct electron uptake are inadvisable without rigorous experimental validation.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rouvre, I. & Basseguy, R. Exacerbation of the mild steel corrosion process by direct electron transfer between [Fe–Fe]-hydrogenase and material surface. Corros. Sci. 111, 199–211 (2016).

    Article  CAS  Google Scholar 

  59. Tsurumaru, H. et al. An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis. Sci. Rep. 8, 1–10 (2018). This study reveals an important mechanism for microbial stimulation of H2 production from corroding iron.

    Article  CAS  Google Scholar 

  60. Dou, W. et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros. Sci. 150, 258–267 (2019). This study shows that the physiological state of microorganisms may be an important determinant impacting corrosive activity.

    Article  CAS  Google Scholar 

  61. Dinh, H. T. et al. Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. McCully, A. L. & Spormann, A. M. Direct cathodic electron uptake coupled to sulfate reduction by Desulfovibrio ferrophilus IS5 biofilms. Environ. Microbiol. 22, 4794–4807 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, D. et al. Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin. Bioelectrochemistry 142, 107920 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, L., Kijkla, P., Kumseranee, S., Punpruk, S. & Gu, T. “Corrosion-resistant” chromium steels for oil and gas pipelines can suffer from very severe pitting corrosion by a sulfate-reducing bacterium. J. Mater. Sci. Technol. https://doi.org/10.1016/j.jmst.2023.01.008 (2023).

    Article  Google Scholar 

  65. Ueki, T., Woodard, T. L. & Lovley, D. R. Genetic manipulation of Desulfovibrio ferrophilus and evaluation of Fe(III) oxide reduction mechanisms. Microbiol. Spectr. 10, e0392222 (2022).

    Article  PubMed  Google Scholar 

  66. Holmes, D. E. et al. A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy from extracellular electron transfer. mBio 10, e00789-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Holmes, D. E., Zhou, J., Ueki, T., Woodard, T. L. & Lovley, D. R. Mechanisms for electron uptake by Methanosarcina acetivorans during direct interspecies electron transfer. mBio 12, e02344-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Malvankar, N. S. et al. Tunable metallic-like conductivity in nanostructured biofilms comprised of microbial nanowires. Nat. Nanotechnol. 6, 573–579 (2011).

    Article  PubMed  Google Scholar 

  69. Shrestha, P. M. et al. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresour. Tech. 174, 306–310 (2014).

    Article  CAS  Google Scholar 

  70. Iino, T. et al. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl. Environ. Microbiol. 81, 1839–1846 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hirano, S. et al. Novel Methanobacterium strain induces severe corrosion by retrieving electrons from Fe0 under a freshwater environment. Microorganisms 10, 270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jin, Y. et al. Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel. Electrochim. Acta 316, 93–104 (2019).

    Article  CAS  Google Scholar 

  73. Li, H. et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS ONE 10, e0136183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, P., Xu, D., Li, Y., Yang, K. & Gu, T. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry 101, 14–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Nevin, K. P. & Lovley, D. R. Novel mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68, 2294–2299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kotloski, N. J. & Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4, e00553-12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu, D. et al. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy. J. Mater. Sci. Technol. 79, 101–108 (2021).

    Article  CAS  Google Scholar 

  78. Herrera, L. K. & Videla, H. A. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int. Biodeterior. Biodegrad. 63, 891–895 (2009).

    Article  CAS  Google Scholar 

  79. Valencia-Cantero, E. & Pena-Cabriales, J. J. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia. J. Microbiol. Biotechnol. 24, 280–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Hu, Y. et al. Microbiologically influenced corrosion of stainless steels by Bacillus subtilis via bidirectional extracellular electron transfer. Corros. Sci. 207, 110608 (2022).

    Article  CAS  Google Scholar 

  81. Huang, L. et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm. Corros. Sci. 199, 110159 (2022).

    Article  CAS  Google Scholar 

  82. Zhou, E. et al. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa. Water Res. 220, 118634 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Dong, Y. et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelctrochemistry 123, 34–44 (2018).

    Article  CAS  Google Scholar 

  84. Mand, J., Park, H. S., Jack, T. R. & Voordouw, G. The role of acetogens in microbially influenced corrosion of steel. Front. Microbiol. 5, 268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Capao, A., Moreira-Filho, P., Garcia, M., Bitati, S. & Procopio, L. Marine bacterial community analysis on 316L stainless steel coupons by illumina MiSeq sequencing. Biotechnol. Lett. 42, 1431–1448 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Salgar-Chaparro, S. J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A. & Machuca, L. L. Microbiologically influenced corrosion as a function of environmental conditions: a laboratory study using oilfield multispecies biofilms. Corros. Sci. 169, 108595 (2020).

    Article  CAS  Google Scholar 

  87. Zhou, E. et al. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing. J. Mater. Sci. Technol. 48, 72–83 (2020).

    Article  CAS  Google Scholar 

  88. Hirano, S., Nagaoka, T. & Matsumoto, N. Microbial community dynamics in a crust formed on carbon steel SS400 during corrosion. Corros. Eng. Sci. Technol. 55, 685–692 (2020).

    Article  CAS  Google Scholar 

  89. Huang, Y. et al. Responses of soil microbiome to steel corrosion. npj Biofilms Microbiomes 7, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tuck, B., Watkin, E., Somers, A. & Machuca, L. L. A critical review of marine biofilms on metallic materials. npj Mater. Degrad. 6, 25 (2022).

    Article  Google Scholar 

  91. Vigneron, A. et al. Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl. Environ. Microbiol. 82, 2545–2554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, X.-X. et al. Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front. Microbiol. 8, 2379 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rajala, P., Cheng, D.-Q., Rice, S. A. & Lauro, F. M. Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study. Microbiome 10, 4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, T., Fang, H. H. P. & Ko, B. C. B. Methanogen population in a marine biofilm corrosive to mild steel. Appl. Microbiol. Biotechnol. 63, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Uchiyama, T., Ito, K., Mori, K., Tsurumaru, H. & Harayama, S. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl. Environ. Microbiol. 76, 1783–1788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tan, J. L., Goh, P. C. & Blackwood, D. J. Influence of H2S-producing chemical species in culture medium and energy source starvation on carbon steel corrosion caused by methanogens. Corros. Sci. 119, 102–111 (2017).

    Article  CAS  Google Scholar 

  97. Xu, D., Li, Y., Song, F. & Gu, T. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci. 77, 385–390 (2013).

    Article  CAS  Google Scholar 

  98. Li, J., Liu, Z., Lou, Y., Du, C. & Li, X. Evidencing the uptake of electrons from X80 steel by Bacillus licheniformis with redox probe, 5-cyano-2,3-ditolyl tetrazolium chloride. Corros. Sci. 168, 108569 (2020).

    Article  CAS  Google Scholar 

  99. Jia, R., Yang, D., Xu, D. & Gu, T. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry 118, 38–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Lahme, S. et al. Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Appl. Environ. Microbiol. 85, e01891-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vigneron, A., Head, I. M. & Tsesmetzis, N. Damage to offshore production facilities by corrosive microbial biofilms. Appl. Microbiol. Biotechnol. 102, 2525–2533 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Lyles, C. N., Le, H. M., Beasley, W. H., McInerney, M. J. & Suflita, J. M. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion. Front. Microbiol. 5, 114 (2014). This study provides an example of the use of defined multi-species microbial consortia to investigate corrosion mechanisms.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Batmanghelich, F., Li, L. & Seo, Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron. Corros. Sci. 121, 94–104 (2017).

    Article  CAS  Google Scholar 

  104. Liu, H. & Chen, Y. F. Corrosion of X52 pipeline steel in a simulated soil solution with coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria. Corros. Sci. 173, 108753 (2020).

    Article  CAS  Google Scholar 

  105. Jia, R., Unsal, T., Xu, D., Lekbach, Y. & Gu, T. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. Int. Biodeterior. Biodegrad. 137, 42–58 (2019).

    Article  CAS  Google Scholar 

  106. Unsal, T. et al. Food‐grade d‐limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed‐culture biofilm consortium. Bioprocess. Bioeng. 45, 669–678 (2022).

    CAS  Google Scholar 

  107. Li, Y., Jia, R., Al-Mahamedh, H., Xu, D. & Gu, T. Enhanced biocide mititgtation of field biofilm consortia by a mixture of d-amino acids. Front. Microbiol. 7, 896 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Jia, R. et al. A sea anemone-inspired small synthetic peptide at sub-ppm concentrations enhanced biofilm mitigation. Int. Biodeterior. Biodegrad. 139, 78–85 (2019).

    Article  CAS  Google Scholar 

  109. Lou, Y. et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: a review. Bioelctrochemistry 141, 107883 (2021). This article presents a comprehensive review of strategies for inhibiting microbial corrosion.

    Article  CAS  Google Scholar 

  110. Ornek, D., Wood, T. K., Hsu, C. H., Sun, Z. & Mansfeld, F. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors. Corrosion 58, 761–767 (2002).

    Article  CAS  Google Scholar 

  111. Qiu, L. et al. Inhibition effect of Bedellovibrio bacteriovorus on the corrosion of X70 pipeline steel induced by sulfate-reducing bacteria. Anti-Corros. Methods Mater. 63, 260–274 (2016).

    Article  Google Scholar 

  112. Scarascia, G. et al. Effect of quorum sensing on the ability of Desulfovibrio vulgaris to form biofilms and to biocorrode carbon steel in saline conditions. Appl. Environ. Microbiol. 86, e01664-19 (2020).

    Article  Google Scholar 

  113. Li, Z. et al. Marine biofilms with significant corrosion inhibition performance by secreting extracellular polymeric substances. ACS Appl. Mater. Interfaces 13, 47272–47282 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Guo, N. et al. Marine bacteria inhibit corrosion of steel via synergistic biomineralization. J. Mater. Sci. Technol. 66, 82–90 (2021).

    Article  CAS  Google Scholar 

  115. Kip, N. et al. Methanogens predominate in natural corrosion protective layers on metal sheet piles. Sci. Rep. 7, 11899 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. In’t Zandt, M. H. et al. High-level abundances of Methanobacteriales and Syntrophobacterales may help to prevent corrosion of metal sheet piles. Appl. Environ. Microbiol. 85, e01369-19 (2019). This work uses field studies to show that some anaerobes may protect metal surfaces from corrosion rather than accelerating it.

    Article  PubMed  Google Scholar 

  117. Thorstenson, T. et al. in Conf. Proc. Corrosion 2002 02033 (NACE International, 2002).

  118. Falkow, S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10, S274–S276 (1988).

    Article  PubMed  Google Scholar 

  119. Fredricks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Mahadevan, R., Palsson, B. O. & Lovley, D. R. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat. Rev. Microbiol. 9, 39–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Esvap, E. & Ulgen, K. O. Advances in genome-scale metabolic modeling toward microbial community analysis of the human microbiome. ACS Synth. Biol. 10, 2121–2137 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Borer, B. & Or, D. Spatiotemporal metabolic modeling of bacterial life in complex habitats. Curr. Opin. Biotechnol. 67, 65–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorrodi, A. R. Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol. 26, 46–57 (2021).

    Article  CAS  Google Scholar 

  124. Philips, J. et al. An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides. FEMS Microbiol. Ecol. 95, fiy222 (2019).

    Article  CAS  Google Scholar 

  125. Ali, O. A. et al. Iron corrosion induced by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus at 70 °C. Int. Biodeterior. Biodegrad. 154, 105056 (2020).

    Article  Google Scholar 

  126. Jia, R., Yang, D., Xu, D. & Gu, T. Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corros. Sci. 145, 47–54 (2018). This study expands the known diversity of corrosive microorganisms to hyperthermophiles.

    Article  CAS  Google Scholar 

  127. Davidova, I. A., Duncan, K. E., Wiley, G. & Najar, F. Z. Desulfoferrobacter suflitae gen. nov., sp. nov., a novel sulphate-reducing bacterium in the Deltaproteobacteria capable of autotrophic growth with hydrogen or elemental iron. Int. J. Syst. Evol. Microbiol. 72, 005483 (2022).

    Article  CAS  Google Scholar 

  128. Magot, M. et al. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int. J. Syst. Bacteriol. 47, 818–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Kato, S., Yumoto, I. & Kamagata, Y. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81, 67–73 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lovley, D. R. Syntrophy goes electric: direct interspecies electron transfer. Ann. Rev. Microbiol. 71, 643–664 (2017).

    Article  CAS  Google Scholar 

  131. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103–e00110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lovley, D. R. & Nevin, K. P. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 385–390 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Tremblay, P.-L., Angenent, L. T. & Zhang, T. Extracellular electron uptake: among autotrophs and mediated by surfaces. Trends Biotechnol. 35, 360–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Logan, B. E., Rossi, R., Ragab, A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17, 307–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Venzlaff, H. et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 66, 88–96 (2013).

    Article  CAS  Google Scholar 

  136. Pal, M. K. & Lavanya, M. Microbially influenced corrosion: understanding bioadlhesion and biofilm formation. J. Bio. Tribo. Corros. 8, 76 (2022).

    Article  Google Scholar 

  137. Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jo, J., Price-Whelan, A. & Dietrich, L. E. P. Gradients and consequences of heterogeneity in biofilms. Nat. Rev. Microbiol. 20, 593–607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Usher, K. M., Kaksonen, A. H., Cole, I. & Marney, D. Critical review: microbially influenced corrosion of buried carbon steel pipes. Int. Biodeterior. Biodegrad. 93, 84–106 (2014).

    Article  CAS  Google Scholar 

  140. Traxler, I., Singewald, T. D., Schimo-Aichhorn, G., Hild, S. & Valtiner, M. Scanning electrochemical microscopy methods (SECM) and ion-selective microelectrodes for corrosion studies. Corros. Rev. 65, 1213–1224 (2022). This article overviews the emerging advanced methods for assessing microbial corrosion.

    Google Scholar 

  141. Li, Z. et al. Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Commun. Mater. 2, 67 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.X. was financially supported by the National Key Research and Development Program of China (No. 2022YFB3808800) and the National Natural Science Foundation of China (No. U2006219) while working on this Review. The authors apologize to all investigators whose excellent work could not be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Tingyue Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Daniel John Blackwood, Muhammad Awais Javed and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Gu, T. & Lovley, D.R. Microbially mediated metal corrosion. Nat Rev Microbiol 21, 705–718 (2023). https://doi.org/10.1038/s41579-023-00920-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00920-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research