Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Respiratory syncytial virus infection and novel interventions

Abstract

The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world’s first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global disease burden of respiratory syncytial virus.
Fig. 2: The respiratory syncytial virus virion and replication cycle.
Fig. 3: Crystal structures of the respiratory syncytial virus fusion protein in pre-fusion and post-fusion state and its neutralizing epitopes.
Fig. 4: Factors associated with respiratory syncytial virus disease severity in infants.
Fig. 5: Combined antiviral and immunomodulatory therapy for the treatment of respiratory syncytial virus infections.
Fig. 6: Preventive and therapeutic pipeline for the treatment of respiratory syncytial virus infections.

References

  1. Li, Y. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet 399, 2047–2064 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shi, T., Vennard, S., Jasiewicz, F., Brogden, R. & Nair, H. Disease burden estimates of respiratory syncytial virus related acute respiratory infections in adults with comorbidity: a systematic review and meta-analysis. J. Infect. Dis. 226, S17–S21 (2022).

    Article  PubMed  Google Scholar 

  3. Kim, H. W. H. A. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422–434 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Castilow, E. M. & Varga, S. M. Overcoming T cell-mediated immunopathology to achieve safe RSV vaccination. Future Virol. 3, 445–454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Committee on Infectious Diseases and Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134, 415–420 (2014).

    Article  Google Scholar 

  6. Hayden, F. G. & Whitley, R. J. Respiratory syncytial virus antivirals: problems and progress. J. Infect. Dis. 222, 1417–1421 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Battles, M. B. & McLellan, J. S. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 17, 233–245 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vidal Valero, M. ‘A good day’: FDA approves world’s first RSV vaccine. Nature https://www.nature.com/articles/d41586-023-01529-5 (2023).

  9. GSK. US FDA approves GSK’s Arexvy, the world’s first respiratory syncytial virus (RSV) vaccine for older adults. GSK https://www.gsk.com/en-gb/media/press-releases/us-fda-approves-gsk-s-arexvy-the-world-s-first-respiratory-syncytial-virus-rsv-vaccine-for-older-adults/ (2023).

  10. FDA. U.S. FDA approves ABRYSVO™, Pfizer’s vaccine for the prevention of respiratory syncytial virus (RSV) in older adults. FDA https://www.pfizer.com/news/press-release/press-release-detail/us-fda-approves-abrysvotm-pfizers-vaccine-prevention#:~:text=(NYSE%3A%20PFE)%20announced%20today,individuals%2060%20years%20and%20olde (2023).

  11. EMA. New medicine to protect babies and infants from respiratory syncytial virus (RSV) infection. European Medicines Agency https://www.ema.europa.eu/en/news/new-medicine-protect-babies-infants-respiratory-syncytial-virus-rsv-infection (2022).

  12. AstraZeneca. Beyfortus approved in the EU for the prevention of RSV lower respiratory tract disease in infants. AstraZeneca https://www.astrazeneca.com/media-centre/press-releases/2022/beyfortus-approved-in-the-eu-for-the-prevention-of-rsv-lower-respiratory-tract-disease-in-infants.html (2022).

  13. Kampmann, B. et al. Bivalent prefusion F vaccine in pregnancy to prevent RSV illness in infants. N. Engl. J. Med. 388, 1451–1464 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Moderna. Moderna announces mRNA-1345, an investigational respiratory syncytial virus (RSV) vaccine, has met primary efficacy endpoints in phase 3 trial in older adults. Moderna https://investors.modernatx.com/news/news-details/2023/Moderna-Announces-mRNA-1345-an-Investigational-Respiratory-Syncytial-Virus-RSV-Vaccine-Has-Met-Primary-Efficacy-Endpoints-in-Phase-3-Trial-in-Older-Adults/default.aspx (2023).

  15. ArkBio. ArkBio announces positive results of phase 3 study with ziresovir in infants and children hospitalized with respiratory syncytial virus infection. GlobeNewswire https://www.globenewswire.com/en/news-release/2022/04/07/2418164/0/en/ArkBio-Announces-Positive-Results-of-Phase-3-Study-with-Ziresovir-in-Infants-and-Children-Hospitalized-with-Respiratory-Syncytial-Virus-Infection.html (2022).

  16. O’Brien, K. L. et al. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet 394, 757–779 (2019).

    Article  Google Scholar 

  17. Caballero, M. T. & Polack, F. P. Respiratory syncytial virus is an ‘opportunistic’ killer. Pediatr. Pulmonol. 53, 664–667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gill, C. J. et al. Infant deaths from respiratory syncytial virus in Lusaka, Zambia from the ZPRIME study: a 3-year, systematic, post-mortem surveillance project. Lancet Glob. Health 10, e269–e277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. RSV in infants and young children. Centers for Disease Control and Prevention https://www.cdc.gov/rsv/high-risk/infants-young-children.html (2020).

  20. Bont, L. & Houben, M. L. Commentary: why are young healthy term infants protected against respiratory syncytial virus bronchiolitis? Pediatr. Infect. Dis. J. 30, 785–786 (2011).

    Article  PubMed  Google Scholar 

  21. Hall, C. B. et al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 360, 588–598 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wildenbeest, J. G. et al. The burden of respiratory syncytial virus in healthy term-born infants in Europe: a prospective birth cohort study. Lancet Respir. Med. 11, 341–353 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bont, L. et al. Defining the epidemiology and burden of severe respiratory syncytial virus infection among infants and children in Western Countries. Infect. Dis. Ther. 5, 271–298 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haerskjold, A. et al. Risk factors for hospitalization for respiratory syncytial virus infection: a population-based cohort study of Danish Children. Pediatr. Infect. Dis. J. 35, 61–65 (2016).

    Article  PubMed  Google Scholar 

  25. Hall, C. B. et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics 132, e341–e348 (2013).

    Article  PubMed  Google Scholar 

  26. Brunwasser, S. M. et al. Assessing the strength of evidence for a causal effect of respiratory syncytial virus lower respiratory tract infections on subsequent wheezing illness: a systematic review and meta-analysis. Lancet Respir. Med. 8, 795–806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rossi, G. A., Ballarini, S., Salvati, P., Sacco, O. & Colin, A. A. Alarmins and innate lymphoid cells 2 activation: a common pathogenetic link connecting respiratory syncytial virus bronchiolitis and later wheezing/asthma? Pediatr. Allergy Immunol. 33, e13803 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Rosas-Salazar, C. et al. Respiratory syncytial virus infection during infancy and asthma during childhood in the USA (INSPIRE): a population-based, prospective birth cohort study. Lancet https://doi.org/10.1016/S0140-6736(23)00811-5 (2023).

    Article  PubMed  Google Scholar 

  29. Billard, M.-N. & Bont, L. J. The link between respiratory syncytial virus infection during infancy and asthma during childhood. Lancet https://doi.org/10.1016/S0140-6736(23)00672-4 (2023).

    Article  PubMed  Google Scholar 

  30. Shi, T. et al. Global disease burden estimates of respiratory syncytial virus-associated acute respiratory infection in older adults in 2015: a systematic review and meta-analysis. J. Infect. Dis. 222, S577–S583 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Korsten, K. et al. Burden of respiratory syncytial virus infection in community-dwelling older adults in Europe (RESCEU): an international prospective cohort study. Eur. Respir. J. 57, 2002688 (2021).

    Article  PubMed  Google Scholar 

  32. World Economics. High income countries. World Economics https://www.worldeconomics.com/Regions/High-Income-Countries (2022).

  33. Falsey, A. R. et al. Respiratory syncytial virus-associated illness in adults with advanced chronic obstructive pulmonary disease and/or congestive heart failure. J. Med. Virol. 91, 65–71 (2019).

    Article  PubMed  Google Scholar 

  34. Prasad, N. et al. Respiratory syncytial virus-associated hospitalizations among adults with chronic medical conditions. Clin. Infect. Dis. 73, e158–e163 (2021).

    Article  PubMed  Google Scholar 

  35. Obando-Pacheco, P. et al. Respiratory syncytial virus seasonality: a global overview. J. Infect. Dis. 217, 1356–1364 (2018).

    Article  PubMed  Google Scholar 

  36. Staadegaard, L. et al. Defining the seasonality of respiratory syncytial virus around the world: national and subnational surveillance data from 12 countries. Influenza Other Respir. Viruses 15, 732–741 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Delestrain, C. et al. Impact of COVID-19 social distancing on viral infection in France: a delayed outbreak of RSV. Pediatr. Pulmonol. 56, 3669–3673 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eden, J.-S. et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat. Commun. 13, 2884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Government of Canada. Respiratory virus detections in Canada. Government of Canada https://www.canada.ca/en/public-health/services/surveillance/respiratory-virus-detections-canada.html (2023).

  40. Billard, M.-N. & Bont, L. J. Quantifying the RSV immunity debt following COVID-19: a public health matter. Lancet Infect. Dis. 23, 3–5 (2022).

    Article  PubMed  Google Scholar 

  41. Billard, M.-N. et al. International changes in respiratory syncytial virus (RSV) epidemiology during the COVID-19 pandemic: association with school closures. Influenza Other Respir. Viruses 16, 926–936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bardsley, M. J. et al. The epidemiology of respiratory syncytial virus in children under five years-old during the COVID-19 pandemic measured by laboratory, clinical and syndromic surveillance in England: a retrospective observational study including the 2020/21 winter season. Lancet Infect. Dis. 23, 56–66 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dee, K. et al. Influenza A and respiratory syncytial virus trigger a cellular response that blocks severe acute respiratory syndrome virus 2 infection in the respiratory tract. J. Infect. Dis. https://doi.org/10.1093/infdis/jiac494 (2022).

    Article  PubMed Central  Google Scholar 

  44. Haney, J. et al. Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles. Nat. Microbiol. 7, 1879–1890 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Gan, S.-W. et al. The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J. Biol. Chem. 287, 24671–24689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schepens, B., Schotsaert, M. & Saelens, X. Small hydrophobic protein of respiratory syncytial virus as a novel vaccine antigen. Immunotherapy 7, 203–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Chatterjee, S. et al. Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nat. Microbiol. 2, 17101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pei, J. et al. Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Rep. 37, 109803 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, B., Wang, Y. & Zheng, M. Inhibition of autophagy promotes human RSV NS1-induced inflammation and apoptosis in vitro. Exp. Ther. Med. 22, 1054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Conley, M. J. et al. Helical ordering of envelope-associated proteins and glycoproteins in respiratory syncytial virus. EMBO J. 41, e109728 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Vignuzzi, M. & López, C. B. Defective viral genomes are key drivers of the virus–host interaction. Nat. Microbiol. 4, 1075–1087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cifuentes-Muñoz, N., Dutch, R. E. & Cattaneo, R. Direct cell-to-cell transmission of respiratory viruses: the fast lanes. PLoS Pathog. 14, e1007015 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. McLellan, J. S. Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Curr. Opin. Virol. 11, 70–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krarup, A. et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 6, 8143 (2015).

    Article  PubMed  Google Scholar 

  55. Jones, H. G. et al. Structural basis for recognition of the central conserved region of RSV G by neutralizing human antibodies. PLoS Pathog. 14, e1006935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pandya, M. C., Callahan, S. M., Savchenko, K. G. & Stobart, C. C. A contemporary view of respiratory syncytial virus (RSV) biology and strain-specific differences. Pathogens 8, 67 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hause, A. M. et al. Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B. PLoS ONE 12, e0175792 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Joyce, M. G. et al. Crystal structure and immunogenicity of the DS-Cav1-stabilized fusion glycoprotein from respiratory syncytial virus subtype B. Pathog. Immun. 4, 294–323 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Crank, M. C. et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365, 505–509 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Walsh, E. E. et al. Efficacy and safety of a bivalent RSV prefusion F vaccine in older adults. N. Engl. J. Med. 388, 1465–1477 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Mufson, M. A., Orvell, C., Rafnar, B. & Norrby, E. Two distinct subtypes of human respiratory syncytial virus. J. Gen. Virol. 66, 2111–2124 (1985).

    Article  CAS  PubMed  Google Scholar 

  63. Muñoz-Escalante, J. C., Comas-García, A., Bernal-Silva, S. & Noyola, D. E. Respiratory syncytial virus B sequence analysis reveals a novel early genotype. Sci. Rep. 11, 3452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yu, J.-M., Fu, Y.-H., Peng, X.-L., Zheng, Y.-P. & He, J.-S. Genetic diversity and molecular evolution of human respiratory syncytial virus A and B. Sci. Rep. 11, 12941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salimi, V. et al. Proposal for human respiratory syncytial virus nomenclature below the species level. Emerg. Infect. Dis. 27, 1–9 (2021).

    Article  PubMed  Google Scholar 

  66. Ramaekers, K. et al. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol. 6, veaa052 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tapia, L. I. et al. Gene sequence variability of the three surface proteins of human respiratory syncytial virus (HRSV) in Texas. PLoS One 9, e90786 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Teng, M. N., Whitehead, S. S. & Collins, P. L. Contribution of the respiratory syncytial virus G Glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. Virology 289, 283–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Widjojoatmodjo, M. N. et al. A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats. Virol. J. 7, 114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. King, T., Mejias, A., Ramilo, O. & Peeples, M. E. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog. 17, e1009469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Griffiths, C. D. et al. IGF1R is an entry receptor for respiratory syncytial virus. Nature 583, 615–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Feldman, S. A., Hendry, R. M. & Beeler, J. A. Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J. Virol. 73, 6610–6617 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Currier, M. G. et al. EGFR interacts with the fusion protein of respiratory syncytial virus strain 2-20 and mediates infection and Mucin expression. PLoS Pathog. 12, e1005622 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Behera, A. K. et al. Blocking intercellular adhesion molecule-1 on human epithelial cells decreases respiratory syncytial virus infection. Biochem. Biophys. Res. Commun. 280, 188–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Kieser, Q. et al. ARNI0214: IGF1R and PKCzeta activation mediate plasma membrane remodelling during RSV entry. isirv https://isirv.org/site/images/conferences/RSV/RSV2022/RSV_2022_Abstracts_POSTERS%20Rev%20Dec22.pdf (2022).

  77. Besteman, S. B. et al. Recurrent respiratory syncytial virus infection in a CD14-deficient patient. J. Infect. Dis. 226, 258–269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lingemann, M. et al. The alpha-1 subunit of the Na+, K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells. PLoS Pathog. 15, e1007963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Krzyzaniak, M. A., Zumstein, M. T., Gerez, J. A., Picotti, P. & Helenius, A. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 9, e1003309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, M., Bogoyevitch, M. A. & Jans, D. A. Impact of respiratory syncytial virus infection on host functions: implications for antiviral strategies. Physiol. Rev. 100, 1527–1594 (2020).

    Article  PubMed  Google Scholar 

  81. Cervantes-Ortiz, S. L., Zamorano Cuervo, N. & Grandvaux, N. Respiratory syncytial virus and cellular stress responses: impact on replication and physiopathology. Viruses 8, 124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cao, D., Gao, Y. & Liang, B. Structural insights into the respiratory syncytial virus RNA synthesis complexes. Viruses 13, 834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Piedra, F.-A. et al. Non-gradient and genotype-dependent patterns of RSV gene expression. PLoS ONE 15, e0227558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Donovan-Banfield, I. et al. Direct RNA sequencing of respiratory syncytial virus infected human cells generates a detailed overview of RSV polycistronic mRNA and transcript abundance. PLoS ONE 17, e0276697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shaikh, F. Y. & Crowe, J. E. J. Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiol. 8, 123–131 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod. Pathol. 20, 108–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Villenave, R. et al. In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc. Natl Acad. Sci. USA 109, 5040–5045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kast, J. I. et al. Respiratory syncytial virus infection influences tight junction integrity. Clin. Exp. Immunol. 190, 351–359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsutsumi, H. et al. Respiratory syncytial virus infection and the tight junctions of nasal epithelial cells. Adv. Otorhinolaryngol. 72, 153–156 (2011).

    PubMed  Google Scholar 

  90. Garcia-Mauriño, C. et al. Viral load dynamics and clinical disease severity in infants with respiratory syncytial virus infection. J. Infect. Dis. 219, 1207–1215 (2019).

    Article  PubMed  Google Scholar 

  91. Haddadin, Z. et al. Respiratory syncytial virus disease severity in young children. Clin. Infect. Dis. 73, e4384–e4391 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Openshaw, P. J. M. & Tregoning, J. S. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin. Microbiol. Rev. 18, 541–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Russell, C. D., Unger, S. A., Walton, M. & Schwarze, J. The human immune response to respiratory syncytial virus infection. Clin. Microbiol. Rev. 30, 481–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Citron, M. P. et al. Transplacental antibody transfer of respiratory syncytial virus specific IgG in non-human primate mother-infant pairs. Pathogens 10, 1441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guo-Parke, H. et al. Relative respiratory syncytial virus cytopathogenesis in upper and lower respiratory tract epithelium. Am. J. Respir. Crit. Care Med. 188, 842–851 (2013).

    Article  PubMed  Google Scholar 

  96. Sartorius, R., Trovato, M., Manco, R., D’Apice, L. & De Berardinis, P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 6, 127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Openshaw, P. J. M., Chiu, C., Culley, F. J. & Johansson, C. Protective and harmful immunity to RSV infection. Annu. Rev. Immunol. 35, 501–532 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Hijano, D. R. et al. Role of type I interferon (IFN) in the respiratory syncytial virus (RSV) immune response and disease severity. Front. Immunol. 10, 566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sebina, I. & Phipps, S. The contribution of neutrophils to the pathogenesis of RSV bronchiolitis. Viruses 12, 808 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Geerdink, R. J., Pillay, J., Meyaard, L. & Bont, L. Neutrophils in respiratory syncytial virus infection: a target for asthma prevention. J. Allergy Clin. Immunol. 136, 838–847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Habibi, M. S. et al. Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection. Science 370, eaba9301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Siefker, D. T. et al. Respiratory syncytial virus disease severity is associated with distinct CD8+ T-cell profiles. Am. J. Respir. Crit. Care Med. 201, 325–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vu, L. D. et al. Elevated levels of type 2 respiratory innate lymphoid cells in human infants with severe respiratory syncytial virus bronchiolitis. Am. J. Respir. Crit. Care Med. 200, 1414–1423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mousa, J. J. et al. Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein. Proc. Natl Acad. Sci. USA 113, E6849–E6858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Habibi, M. S. et al. Impaired antibody-mediated protection and defective IgA B-cell memory in experimental infection of adults with respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 191, 1040–1049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Steenhuijsen Piters, W. A. A., Binkowska, J. & Bogaert, D. Early life microbiota and respiratory tract infections. Cell Host Microbe 28, 223–232 (2020).

    Article  PubMed  Google Scholar 

  107. Pattaroni, C. et al. Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24, 857–865.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Man, W. H., de Steenhuijsen Piters, W. A. A. & Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lapidot, R. et al. Nasopharyngeal dysbiosis precedes the development of lower respiratory tract infections in young infants, a longitudinal infant cohort study. Preprint at medRxiv https://doi.org/10.1101/2021.10.13.21264939 (2021).

    Article  Google Scholar 

  110. Blanken, M. O. et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N. Engl. J. Med. 368, 1791–1799 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Achten, N. B. et al. Interference between respiratory syncytial virus and human rhinovirus infection in infancy. J. Infect. Dis. 215, 1102–1106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mazur, N. I. et al. Severity of respiratory syncytial virus lower respiratory tract infection with viral coinfection in HIV-uninfected children. Clin. Infect. Dis. 64, 443–450 (2017).

    PubMed  Google Scholar 

  113. Semple, M. G. et al. Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J. Infect. Dis. 191, 382–386 (2005).

    Article  PubMed  Google Scholar 

  114. Weinberger, D. M., Klugman, K. P., Steiner, C. A., Simonsen, L. & Viboud, C. Association between respiratory syncytial virus activity and pneumococcal disease in infants: a time series analysis of US hospitalization data. PLoS Med. 12, e1001776 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rybak, A. et al. Association of nonpharmaceutical interventions during the COVID-19 pandemic with invasive pneumococcal disease, pneumococcal carriage, and respiratory viral infections among children in France. JAMA Netw. Open. 5, e2218959 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Danino, D. et al. Decline in pneumococcal disease in young children during the coronavirus disease 2019 (COVID-19) pandemic in israel associated with suppression of seasonal respiratory viruses, despite persistent pneumococcal carriage: a prospective cohort study. Clin. Infect. Dis. 75, e1154–e1164 (2022).

    Article  PubMed  Google Scholar 

  117. Smith, C. M. et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am. J. Respir. Crit. Care Med. 190, 196–207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Madhi, S. A. & Klugman, K. P. A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat. Med. 10, 811–813 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Manna, S. et al. Synergism and antagonism of bacterial-viral coinfection in the upper respiratory tract. mSphere 7, e0098421 (2022).

    Article  PubMed  Google Scholar 

  120. Ventre, K. & Randolph, A. G. Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000181.pub3 (2007).

    Article  PubMed  Google Scholar 

  121. Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Turner, T. L. et al. Respiratory syncytial virus: current and emerging treatment options. Clinicoecon. Outcomes Res. 6, 217–225 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cunningham, S. et al. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 9, 21–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Löwensteyn, Y. N. & Bont, L. J. Clinical development of respiratory syncytial virus antivirals — what we can learn from oseltamivir. Clin. Infect. Dis. 71, 2796–2798 (2020).

    Article  PubMed  Google Scholar 

  125. Tahamtan, A. et al. Neutrophils in respiratory syncytial virus infection: from harmful effects to therapeutic opportunities. Br. J. Pharmacol. 178, 515–530 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Ermers, M. J. J., Rovers, M. M., van Woensel, J. B., Kimpen, J. L. L. & Bont, L. J. The effect of high dose inhaled corticosteroids on wheeze in infants after respiratory syncytial virus infection: randomised double blind placebo controlled trial. Br. Med. J. 338, b897 (2009).

    Article  Google Scholar 

  127. GlobeNewswire. Ark Biopharmaceutical presents positive results in phase 3 AIRFLO study of Ziresovir in RSV-infected hospitalized infants at 12th International RSV Symposium. GlobeNewswire https://www.globenewswire.com/en/news-release/2022/10/07/2530040/0/en/Ark-Biopharmaceutical-Presents-Positive-Results-in-Phase-3-AIRFLO-Study-of-Ziresovir-in-RSV-Infected-Hospitalized-Infants-at-12th-International-RSV-Symposium.html (2022).

  128. DeVincenzo, J. et al. A randomized, placebo-controlled, respiratory syncytial virus human challenge study of the antiviral efficacy, safety, and pharmacokinetics of RV521, an inhibitor of the RSV-F protein. Antimicrob. Agents Chemother. 64, e01884-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ahmad, A. et al. EDP-938, a respiratory syncytial virus inhibitor, in a human virus challenge. N. Engl. J. Med. 386, 655–666 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Enanta Pharmaceuticals. Enanta Pharmaceuticals reports topline data from the RSVP study of EDP-938 in otherwise healthy adults with community-acquired respiratory syncytial virus (RSV). Entana https://ir.enanta.com/news-releases/news-release-details/enanta-pharmaceuticals-reports-topline-data-rsvp-study-edp-938 (2022).

  131. Levene R. E. et al. ARNI0044: In vivo efficacy of EDP-323, a novel L-protein inhibitor, for the treatment of respiratory syncytial virus. isirv https://isirv.org/site/images/conferences/RSV/RSV2022/RSV_2022_Abstracts_POSTERS%20Rev%20Dec22.pdf (2022).

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04583280 (2022).

  133. Taylor, P. Johnson & Johnson takes $630 M hit on RSV drug bought with Alios. Fierce Biotech https://www.fiercebiotech.com/biotech/j-j-takes-630m-hit-rsv-drug-bought-alios (2018).

  134. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05559905 (2023).

  135. Sourimant, J. et al. 4′-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science 375, 161–167 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Stray, K. et al. Drug resistance assessment following administration of respiratory syncytial virus (RSV) fusion inhibitor presatovir to participants experimentally infected with RSV. J. Infect. Dis. 222, 1468–1477 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Mazur, N. I. et al. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. Lancet Infect. Dis. 23, e2–e21 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Groothuis, J. R. et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. N. Engl. J. Med. 329, 1524–1530 (1993).

    Article  CAS  PubMed  Google Scholar 

  139. Meissner, H. C. & Long, S. S., American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn. Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. Pediatrics 112, 1447–1452 (2003).

    Article  PubMed  Google Scholar 

  140. Wasserman, R. L., Greener, B. N. & Mond, J. RI-002, an intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses for use in primary immunodeficiency disease and other immune compromised populations. Expert. Rev. Clin. Immunol. 13, 1107–1119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gonzales, T. et al. Effectiveness and safety of palivizumab for the prevention of serious lower respiratory tract infection caused by respiratory syncytial virus: a systematic review. Am. J. Perinatol. https://doi.org/10.1055/a-1990-2633 (2023).

    Article  PubMed  Google Scholar 

  142. Fitzpatrick, T. et al. Palivizumab’s real-world effectiveness: a population-based study in Ontario, Canada, 1993–2017. Arch. Dis. Child. 106, 173–179 (2021).

    Article  PubMed  Google Scholar 

  143. Shahabi, A., Peneva, D., Incerti, D., McLaurin, K. & Stevens, W. Assessing variation in the cost of palivizumab for respiratory syncytial virus prevention in preterm infants. Pharmacoecon. Open 2, 53–61 (2018).

    Article  PubMed  Google Scholar 

  144. Rodriguez-Fernandez, R., Mejias, A. & Ramilo, O. Monoclonal antibodies for prevention of respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 40, S35–S39 (2021).

    Article  PubMed  Google Scholar 

  145. Feltes, T. F. et al. A randomized controlled trial of motavizumab versus palivizumab for the prophylaxis of serious respiratory syncytial virus disease in children with hemodynamically significant congenital heart disease. Pediatr. Res. 70, 186–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Simões, E. A. F. et al. Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants. Clin. Infect. Dis. 73, e4400–e4408 (2021).

    Article  PubMed  Google Scholar 

  147. Zhu, Q. et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci. Transl. Med. 9, eaaj1928 (2017).

    Article  PubMed  Google Scholar 

  148. Griffin, M. P. et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 383, 415–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Hammitt, L. L. et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 386, 837–846 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. AstraZeneca. Nirsevimab significantly protected infants against RSV disease in Phase III MELODY trial. AstraZenica https://www.astrazeneca.com/media-centre/press-releases/2022/nirsevimab-significantly-protected-infants-against-rsv-disease-in-phase-iii-melody-trial.html (2022).

  151. Sanofi. Press release: new nirsevimab data analyses reinforce efficacy against RSV. Sanofi https://www.sanofi.com/en/media-room/press-releases/2022/2022-05-11-06-00-00-2440425 (2022).

  152. Maas, B. M. et al. Pharmacokinetics, serum-neutralizing activity, and efficacy against RSV MALRI from a phase 1b/2a study of monoclonal antibody clesrovimab (MK-1654) in infants. ReSViNET https://resvinet.org/wp-content/uploads/2023/02/RSVVW23-Abstract-Booklet.pdf.

  153. Aliprantis, A. O. et al. A phase 1 randomized, double-blind, placebo-controlled trial to assess the safety, tolerability, and pharmacokinetics of a respiratory syncytial virus neutralizing monoclonal antibody MK-1654 in healthy adults. Clin. Pharmacol. Drug. Dev. 10, 556–566 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Orito, Y. et al. A phase I study to evaluate safety, pharmacokinetics, and pharmacodynamics of respiratory syncytial virus neutralizing monoclonal antibody MK-1654 in healthy Japanese adults. Clin. Transl. Sci. 15, 1753–1763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04938830 (2022).

  156. Nuñez Castrejon, A. M., O’Rourke, S. M., Kauvar, L. M. & DuBois, R. M. Structure-based design and antigenic validation of respiratory syncytial virus G immunogens. J. Virol. 96, e0220121 (2022).

    Article  PubMed  Google Scholar 

  157. Langedijk, A. C. & Bont, L. J. How viral sequence analysis may guide development of respiratory syncytial virus monoclonal antibodies. Clin. Infect. Dis. 73, e4409–e4410 (2021).

    Article  PubMed  Google Scholar 

  158. Zhu, Q. et al. Prevalence and significance of substitutions in the fusion protein of respiratory syncytial virus resulting in neutralization escape from antibody MEDI8897. J. Infect. Dis. 218, 572–580 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Wilkins, D. et al. Nirsevimab binding-site conservation in respiratory syncytial virus fusion glycoprotein worldwide between 1956 and 2021: an analysis of observational study sequencing data. Lancet Infect. Dis. S1473-3099(23)00062-2 (2023).

  160. PATH. RSV vaccine and mAb snapshot. PATH https://www.path.org/resources/rsv-vaccine-and-mab-snapshot (2022).

  161. Murphy, B. R. et al. Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J. Clin. Microbiol. 24, 197–202 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Taylor, N. P. GSK culls phase 2 RSV vaccine in kids, as feladilimab flops again in lung cancer. Fierce Biotech https://www.fiercebiotech.com/biotech/gsk-drops-phase-2-viral-vector-rsv-vaccine-pediatric-ages (2021).

  163. Madhi, S. A. et al. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N. Engl. J. Med. 383, 426–439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Novavax. Novavax announces topline results from phase 3 PrepareTM trial of ResVaxTM for prevention of RSV disease in infants via maternal immunization. Novavax https://ir.novavax.com/2019-02-28-Novavax-Announces-Topline-Results-from-Phase-3-PrepareTM-Trial-of-ResVax-TM-for-Prevention-of-RSV-Disease-in-Infants-via-Maternal-Immunization (2019).

  165. GSK. GSK provides further update on phase III RSV maternal vaccine candidate programme. GSK https://www.gsk.com/en-gb/media/press-releases/gsk-provides-further-update-on-phase-iii-rsv-maternal-vaccine-candidate-programme/ (2022).

  166. GSK. GSK announces positive pivotal phase III data for its respiratory syncytial virus (RSV) vaccine candidate for older adults. GSK https://www.gsk.com/en-gb/media/press-releases/gsk-announces-positive-pivotal-phase-iii-data-for-its-respiratory-syncytial-virus-rsv-vaccine-candidate-for-older-adults/ (2022).

  167. Papi, A. et al. Respiratory syncytial virus prefusion F protein vaccine in older adults. N. Engl. J. Med. 388, 595–608 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Sadoff, J. et al. Prevention of respiratory syncytial virus infection in healthy adults by a single immunization of Ad26.RSV.preF in a human challenge study. J. Infect. Dis. 226, 396–406 (2021).

    Article  PubMed Central  Google Scholar 

  169. Sadoff, J. et al. Safety and immunogenicity of the Ad26.RSV.preF investigational vaccine coadministered with an influenza vaccine in older adults. J. Infect. Dis. 223, 699–708 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Falsey, A. R. et al. Efficacy of Ad26.RSV.preF/RSV preF protein vaccine against RSV in a phase 2b study of adults aged ≥65 years over 3 seasons. ReSViNET https://resvinet.org/wp-content/uploads/2023/02/RSVVW23-Abstract-Booklet.pdf (2023).

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03982199 (2019).

  172. Bastian, A. R. et al. Ad26.RSV.preF/RSV preF protein vaccine induces a broad range of RSV-specific humoral and cellular immune responses in older adults. ReSViNET https://resvinet.org/wp-content/uploads/2023/02/RSVVW23-Abstract-Booklet.pdf (2023).

  173. Samy, N. et al. Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: a randomized phase I clinical trial. Vaccine 38, 2608–2619 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Jordan, E. et al. Broad antibody and cellular immune response from a phase 2 clinical trial with a novel multivalent poxvirus-based respiratory syncytial virus vaccine. J. Infect. Dis. 223, 1062–1072 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Bavarian Nordic. RSV: MVA-BN® RSV. Bavarian Nordic https://www.bavarian-nordic.com/what-we-do/pipeline/rsv.aspx (2023).

  176. Moderna. Moderna initiates phase 3 portion of pivotal trial for MRNA respiratory syncytial virus (RSV) vaccine candidate, following independent safety review of interim data. Moderna https://investors.modernatx.com/news/news-details/2022/Moderna-Initiates-Phase-3-Portion-of-Pivotal-Trial-for-mRNA-Respiratory-Syncytial-Virus-RSV-Vaccine-Candidate-Following-Independent-Safety-Review-of-Interim-Data/default.aspx (2022).

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05330975 (2022).

  178. Karron, R. A. et al. Live-attenuated vaccines prevent respiratory syncytial virus-associated illness in young children. Am. J. Respir. Crit. Care Med. 203, 594–603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Billard, M.-N. & Bont, L. J. Live-attenuated respiratory syncytial virus vaccines: time for the next step. Am. J. Respir. Crit. Care Med. 203, 538–539 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kinyanjui, T. M. et al. Vaccine induced herd immunity for control of respiratory syncytial virus disease in a low-income country setting. PLoS ONE 10, e0138018 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li, Y. et al. Respiratory syncytial virus seasonality and prevention strategy planning for passive immunisation of infants in low-income and middle-income countries: a modelling study. Lancet Infect. Dis. 21, 1303–1312 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chadha, M. et al. Human respiratory syncytial virus and influenza seasonality patterns-Early findings from the WHO global respiratory syncytial virus surveillance. Influenza Other Respir. Viruses 14, 638–646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ananworanich, J. & Heaton, P. M. Bringing preventive RSV monoclonal antibodies to infants in low-and middle-income countries: challenges and opportunities. Vaccines 9, 961 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Baral, R. et al. The impact of maternal RSV vaccine to protect infants in Gavi-supported countries: estimates from two models. Vaccine 38, 5139–5147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Korsten, K. & Bont, L. Seasonal immunisation against respiratory syncytial virus disease. Lancet Public Health 2, e344–e345 (2017).

    Article  PubMed  Google Scholar 

  186. Billard, M.-N. & Bont, L. RSV immunisation: lessons from the COVID-19 pandemic. Lancet Child Adolesc. Health https://doi.org/10.1016/S2352-4642(22)00377-7 (2023).

    Article  PubMed  Google Scholar 

  187. Pfizer. Respiratory syncytial virus bivalent stabilized prefusion F subunit vaccine (RSVpreF / Abrysvo). FDA https://www.fda.gov/media/165625/download (2023).

  188. Satav, A. et al. The burden of respiratory syncytial virus in children under 2 years of age in a rural community in Maharashtra, India. Clin. Infect. Dis. 73, S238–S247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kazi, A. M. et al. Respiratory syncytial virus-associated mortality among young infants in Karachi, Pakistan: a prospective postmortem surveillance study. Clin. Infect. Dis. 73, S203–S209 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Murphy, C. et al. Risk factors for respiratory syncytial virus-associated community deaths in Zambian infants. Clin. Infect. Dis. 73, S187–S192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Li, X. et al. Health and economic burden of respiratory syncytial virus (RSV) disease and the cost-effectiveness of potential interventions against RSV among children under 5 years in 72 Gavi-eligible countries. BMC Med. 18, 82 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Falsey, A. R., Hennessey, P. A., A Formica, M., Cox, C. & Walsh, E. E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 352, 1749–1759 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Colosia, A. D. et al. The epidemiology of medically attended respiratory syncytial virus in older adults in the United States: a systematic review. PLoS ONE 12, e0182321 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Blau, D. M. et al. Deaths attributed to respiratory syncytial virus in young children in high-mortality rate settings: report from child health and mortality prevention surveillance (CHAMPS). Clin. Infect. Dis. 73, S218–S228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Caballero, M. T. et al. Community mortality due to respiratory syncytial virus in Argentina: population-based surveillance study. Clin. Infect. Dis. 73, S210–S217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Anderson, L. J., Jadhao, S. J., Paden, C. R. & Tong, S. Functional features of the respiratory syncytial virus G protein. Viruses 13, 1214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gilman, M. S. A. et al. Transient opening of trimeric prefusion RSV F proteins. Nat. Commun. 10, 2105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Fuentes, S., Tran, K. C., Luthra, P., Teng, M. N. & He, B. Function of the respiratory syncytial virus small hydrophobic protein. J. Virol. 81, 8361–8366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Liang, W. et al. Cyclophilin A inhibits human respiratory syncytial virus (RSV) replication by binding to RSV-N through Its PPIase activity. J. Virol. 95, e0056321 (2021).

    Article  PubMed  Google Scholar 

  200. Bailly, B. et al. Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication. Sci. Rep. 6, 25806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Selvaraj, M. et al. The structure of the human respiratory syncytial virus M2-1 protein bound to the interaction domain of the phosphoprotein P defines the orientation of the complex. mBio 9, e01554-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Shahriari, S., Wei, K.-J. & Ghildyal, R. Respiratory syncytial virus matrix (M) protein interacts with actin in vitro and in cell culture. Viruses 10, 535 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Braun, M. R. et al. Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathog. 17, e1009589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ruckwardt, T. J., Morabito, K. M. & Graham, B. S. Immunological lessons from respiratory syncytial virus vaccine development. Immunity 51, 429–442 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Sande, C. J. Development of a controlled human infection model to study respiratory syncytial virus infection in older adults. Lancet Healthy Longev. 3, e370–e371 (2022).

    Article  PubMed  Google Scholar 

  206. Ascough, S. et al. Divergent age-related humoral correlates of protection against respiratory syncytial virus infection in older and young adults: a pilot, controlled, human infection challenge model. Lancet Healthy Longev. 3, e405–e416 (2022).

    Article  PubMed  Google Scholar 

  207. Balasingam, S., Horby, P. & Wilder-Smith, A. The potential for a controlled human infection platform in Singapore. Singap. Med. J. 55, 456–461 (2014).

    Article  Google Scholar 

  208. Roestenberg, M., Mo, A., Kremsner, P. G. & Yazdanbakhsh, M. Controlled human infections: a report from the controlled human infection models workshop, Leiden University Medical Centre 4–6 May 2016. Vaccine 35, 7070–7076 (2017).

    Article  PubMed  Google Scholar 

  209. DeVincenzo, J. P. et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N. Engl. J. Med. 371, 711–722 (2014).

    Article  PubMed  Google Scholar 

  210. DeVincenzo, J. P. et al. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N. Engl. J. Med. 373, 2048–2058 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Schmoele-Thoma, B. et al. Vaccine efficacy in adults in a respiratory syncytial virus challenge study. N. Engl. J. Med. 386, 2377–2386 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04908683 (2022).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04690335 (2022).

  214. Bavarian Nordic. MVA-BN RSV: human challenge trial results. Bavarian Nordic https://www.bavarian-nordic.com/media/309881/210901-mva-bn-hct-results-en.pdf (2021).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04086472 (2019).

  216. Utrecht University. Palivizumab. Utrecht University https://www.uu.nl/en/organisation/utrecht-centre-for-affordable-biotherapeutics/projects/biosimilar-palivizumab (2023).

  217. Duynstee, R. Faster and smarter with CHIM studies. ZonMw https://www.zonmw.nl/nl/actueel/nieuws/detail/item/faster-and-smarter-with-chim-studies/ (2022).

  218. Roestenberg, M., Hoogerwerf, M.-A., Ferreira, D. M., Mordmüller, B. & Yazdanbakhsh, M. Experimental infection of human volunteers. Lancet Infect. Dis. 18, e312–e322 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Gill for his extensive feedback on the manuscript and M. van Wijk for her excellent assistance in data collection. The authors thank J. Terstappen, K. Chappin and J. Willemsen for their creative input in figure design.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Louis J. Bont.

Ethics declarations

Competing interests

L.J.B. has regular interaction with pharmaceutical and other industrial partners. He has not received personal fees or other personal benefits. University Medical Centre Utrecht (UMCU) has received major funding (>€100,000 per industrial partner) for investigator-initiated studies from AbbVie, MedImmune, AstraZeneca, Sanofi, Janssen, Pfizer, MSD and MeMed Diagnostics. UMCU has received major funding for the RSV GOLD study from the Bill and Melinda Gates Foundation. UMCU has received major funding as part of the public–private partnership Innovative Medicines Initiative (IMI)-funded RESCEU and PROMISE projects with partners GSK, Novavax, Janssen, AstraZeneca, Pfizer and Sanofi. UMCU has received major funding from Julius Clinical for participating in clinical studies sponsored by MedImmune and Pfizer. UMCU received minor funding (€1,000–25,000 per industrial partner) for consultation and invited lectures by AbbVie, MedImmune, Ablynx, Bavaria Nordic, MabXience, GSK, Novavax, Pfizer, Moderna, AstraZeneca, MSD, Sanofi and Janssen. L.J.B. is the founding chairman of the ReSViNET Foundation. Since April 1, 2021, L.J.B. has been given a new position as medical scientific division manager of the Children’s Division of the Wilhelmina Children’s Hospital in Utrecht. A.C.L. has no conflict of interest to disclose.

Peer review

Peer review information

Nature Reviews Microbiology thanks Richard Hegele; David Marchant; and Ultan Power, who co-reviewed with Courtney Hawthorn; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langedijk, A.C., Bont, L.J. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 21, 734–749 (2023). https://doi.org/10.1038/s41579-023-00919-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00919-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing