Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Giant virus biology and diversity in the era of genome-resolved metagenomics

Abstract

The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet’s biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of important cultivation-dependent and cultivation-independent discoveries in the Nucleocytoviricota.
Fig. 2: Giant virus infection mechanisms and virion structures.
Fig. 3: Expansion of the Nucleocytoviricota phylogenetic diversity through metagenomics.
Fig. 4: Experimentally verified and computationally predicted host ranges of the Nucleocytoviricota.
Fig. 5: Predicted metabolic reprogramming of a giant virus-derived virocell and consequences of giant virus infection for host populations.

Similar content being viewed by others

References

  1. Fischer, M. G. Giant viruses come of age. Curr. Opin. Microbiol. 31, 50–57 (2016).

    Article  PubMed  Google Scholar 

  2. Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117, 156–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun, T.-W. et al. Host range and coding potential of eukaryotic giant viruses. Viruses 12, 1337 (2020).

    Article  PubMed Central  Google Scholar 

  5. Abergel, C., Legendre, M. & Claverie, J.-M. The rapidly expanding universe of giant viruses: mimivirus, pandoravirus, pithovirus and mollivirus. FEMS Microbiol. Rev. 39, 779–796 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Iyer, L. M., Aravind, L. & Koonin, E. V. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75, 11720–11734 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018). Isolation of tupanviruses (a novel sublineage in the Megamimivirinae) and analysis of their infection mechanisms and host range and genomes that encoded for a complete set of 20 aminoacyl tRNA synthetases.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Etten, J. L. & Meints, R. H. Giant viruses infecting algae. Annu. Rev. Microbiol. 53, 447–494 (1999).

    Article  PubMed  Google Scholar 

  9. Colson, P., La Scola, B., Levasseur, A., Caetano-Anollés, G. & Raoult, D. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat. Rev. Microbiol. 15, 243–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. La Scola, B. et al. A giant virus in amoebae. Science 299, 2033 (2003).

    Article  PubMed  Google Scholar 

  11. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Legendre, M., Arslan, D., Abergel, C. & Claverie, J.-M. Genomics of Megavirus and the elusive fourth domain of Life. Commun. Integr. Biol. 5, 102–106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colson, P., de Lamballerie, X., Fournous, G. & Raoult, D. Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology 55, 321–332 (2012).

    Article  PubMed  Google Scholar 

  14. La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008).

    Article  PubMed  Google Scholar 

  15. Jeudy, S. et al. Exploration of the propagation of transpovirons within Mimiviridae reveals a unique example of commensalism in the viral world. ISME J. 14, 727–739 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Desnues, C. et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc. Natl Acad. Sci. USA 109, 18078–18083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fenner, F. Adventures with poxviruses of vertebrates. FEMS Microbiol. Rev. 24, 123–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Goebel, S. J. et al. The complete DNA sequence of vaccinia virus. Virology 179, 247–266 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Oliveira, G. P., Rodrigues, R. A. L., Lima, M. T., Drumond, B. P. & Abrahão, J. S. Poxvirus host range genes and virus–host spectrum: a critical review. Viruses 9, 331 (2017).

    Article  PubMed Central  Google Scholar 

  20. İnce, İ. A., Özcan, O., Ilter-Akulke, A. Z., Scully, E. D. & Özgen, A. Invertebrate Iridoviruses: a glance over the last decade. Viruses 10, 161 (2018).

    Article  PubMed Central  Google Scholar 

  21. Piégu, B., Asgari, S., Bideshi, D., Federici, B. A. & Bigot, Y. Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol. Phylogenet. Evol. 84, 44–52 (2015).

    Article  PubMed  Google Scholar 

  22. Dixon, L. K., Chapman, D. A. G., Netherton, C. L. & Upton, C. African swine fever virus replication and genomics. Virus Res. 173, 3–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Subramaniam, K. et al. A new family of DNA viruses causing disease in crustaceans from diverse aquatic biomes. mBio 11, e02938-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilson, W. H., Van Etten, J. L. & Allen, M. J. The Phycodnaviridae: the story of how tiny giants rule the world. Curr. Top. Microbiol. Immunol. 328, 1–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallot-Lavallée, L., Blanc, G. & Claverie, J.-M. Comparative genomics of Chrysochromulina Ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aylward, F. O., Moniruzzaman, M., Ha, A. D. & Koonin, E. V. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol. 19, e3001430 (2021). Data-driven study in which all available Nucleocytoviricota isolate genomes and GVMAGs were used to establish a set of giant virus conserved genes and create a taxonomic framework of the phylum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Claverie, J.-M. & Abergel, C. Mimiviridae: an expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses 10, 506 (2018).

    Article  PubMed Central  Google Scholar 

  28. Schvarcz, C. R. & Steward, G. F. A giant virus infecting green algae encodes key fermentation genes. Virology 518, 423–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Blanc-Mathieu, R. et al. A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J. Virol. https://doi.org/10.1128/JVI.02446-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koonin, E. V. & Yutin, N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res. 103, 167–202 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Pagnier, I. et al. A decade of improvements in Mimiviridae and Marseilleviridae isolation from amoeba. Intervirology 56, 354–363 (2013).

    Article  PubMed  Google Scholar 

  32. Takahashi, H., Fukaya, S., Song, C., Murata, K. & Takemura, M. Morphological and taxonomic properties of the newly isolated cotonvirus japonicus, a new lineage of the subfamily Megavirinae. J. Virol. 95, 00919-21 (2021).

    Article  Google Scholar 

  33. Yoshikawa, G. et al. Medusavirus, a novel large DNA virus discovered from hot spring water. J. Virol. 93, e02130-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reteno, D. G. et al. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J. Virol. 89, 6585–6594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreani, J. et al. Orpheovirus IHUMI-LCC2: a new virus among the giant viruses. Front. Microbiol. 8, 2643 (2017).

    Article  PubMed  Google Scholar 

  36. Andreani, J. et al. Pacmanvirus, a new giant Icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J. Virol. 91, e00212-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bajrai, L. H. et al. Kaumoebavirus, a new virus that clusters with faustoviruses and Asfarviridae. Viruses 8, 278 (2016).

    Article  PubMed Central  Google Scholar 

  38. Francis, R., Ominami, Y., Bou Khalil, J. Y. & La Scola, B. High-throughput isolation of giant viruses using high-content screening. Commun. Biol. 2, 216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dornas, F. P. et al. Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa. Front. Microbiol. 6, 1086 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).

    Article  PubMed  Google Scholar 

  41. Fang, Q. et al. Near-atomic structure of a giant virus. Nat. Commun. 10, 388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Etten, J. L., Agarkova, I. V. & Dunigan, D. D. Chloroviruses. Viruses 12, 20 (2019).

    Article  PubMed Central  Google Scholar 

  43. Cherrier, M. V. et al. An icosahedral algal virus has a complex unique vertex decorated by a spike. Proc. Natl Acad. Sci. USA 106, 11085–11089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA 99, 14758–14763 (2002). Detailed structural analysis of PBCV1 capsid using cryo-EM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Castro, C. et al. Structure of the chlorovirus PBCV-1 major capsid glycoprotein determined by combining crystallographic and carbohydrate molecular modeling approaches. Proc. Natl Acad. Sci. USA 115, E44–E52 (2018).

    Article  PubMed  Google Scholar 

  46. Van Etten, J. L. et al. in Encyclopedia of Virology 4th edn (eds Bamford, D. H. & Zuckerman, M.) 687–695 (Academic Press, 2021).

  47. Bellec, L., Grimsley, N., Moreau, H. & Desdevises, Y. Phylogenetic analysis of new Prasinoviruses (Phycodnaviridae) that infect the green unicellular algae Ostreococcus, Bathycoccus and Micromonas. Environ. Microbiol. Rep. 1, 114–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Philippe, N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb Reaching That of Parasitic Eukaryotes. Science https://doi.org/10.1126/science.1239181 (2013). Isolation of pandoravirus that represented a novel family of giant viruses with non-icosahedral virions, a nuclear infectious cycle and the largest viral genome known to date.

    Article  PubMed  Google Scholar 

  49. Legendre, M. et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc. Natl Acad. Sci. USA 112, E5327–E5335 (2015). Recovery of a novel giant virus, pithovirus, from a 30,000-year-old permafrost sample through co-cultivation with amoeba.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scheid, P., Balczun, C. & Schaub, G. A. Some secrets are revealed: parasitic keratitis amoebae as vectors of the scarcely described pandoraviruses to humans. Parasitol. Res. 113, 3759–3764 (2014).

    Article  PubMed  Google Scholar 

  51. Akashi, M. & Takemura, M. Co-isolation and characterization of two pandoraviruses and a Mimivirus from a riverbank in Japan. Viruses 11, 1123 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  52. Christo-Foroux, E. et al. Characterization of Mollivirus kamchatka, the first modern representative of the proposed molliviridae family of giant viruses. J. Virol. 94, e01997-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Quemin, E. R. et al. Complex membrane remodeling during virion assembly of the 30,000-year-old Mollivirus sibericum. J. Virol. 93, e00388-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yoshida, K. et al. Draft genome sequence of Medusavirus Stheno, isolated from the Tatakai River of Uji, Japan. Microbiol. Resour. Announc. 10, e01323–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Notaro, A. et al. Expanding the occurrence of polysaccharides to the viral world: the case of Mimivirus. Angew. Chem. Int. Ed. Engl. 60, 19897–19904 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Klose, T. et al. The three-dimensional structure of Mimivirus. Intervirology 53, 268–273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kuznetsov, Y. G. et al. Atomic force microscopy investigation of the giant mimivirus. Virology 404, 127–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Fischer, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl Acad. Sci. USA 107, 19508–19513 (2010). Isolation and characterization of a novel giant virus related to mimivirus together with its native host, the marine predatory flagellate Cafeteria roenbergensis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Villalta, A. et al. The giant Mimivirus 1.2 Mb genome is elegantly organized into a 30 nm helical protein shield. Preprint at bioRxiv https://doi.org/10.1101/2022.02.17.480895 (2022).

    Article  Google Scholar 

  60. Zauberman, N. et al. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus. PLoS Biol. 6, e114 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fischer, M. G., Kelly, I., Foster, L. J. & Suttle, C. A. The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair. Virology 466-467, 82–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Arslan, D., Legendre, M., Seltzer, V., Abergel, C. & Claverie, J.-M. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc. Natl Acad. Sci. USA 108, 17486–17491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Renesto, P. et al. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J. Virol. 80, 11678–11685 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deeg, C. M., Chow, C.-E. T. & Suttle, C. A. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. Elife 7, e33014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mutsafi, Y., Zauberman, N., Sabanay, I. & Minsky, A. Vaccinia-like cytoplasmic replication of the giant Mimivirus. Proc. Natl Acad. Sci. USA 107, 5978–5982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuznetsov, Y. G., Klose, T., Rossmann, M. & McPherson, A. Morphogenesis of Mimivirus and its viral factories: an atomic force microscopy study of infected cells. J. Virol. 88, 3055–3055 (2014).

    Article  PubMed Central  Google Scholar 

  67. Xiao, C. et al. Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses. Sci. Rep. 7, 5484 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Levasseur, A. et al. Comparison of a modern and fossil pithovirus reveals its genetic conservation and evolution. Genome Biol. Evol. 8, 2333–2339 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Andreani, J. et al. Cedratvirus, a double-cork structured giant virus, is a distant relative of Pithoviruses. Viruses 8, 300 (2016).

    Article  PubMed Central  Google Scholar 

  70. Bertelli, C. et al. Cedratvirus lausannensis - digging into Pithoviridae diversity. Environ. Microbiol. 19, 4022–4034 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Burton-Smith, R. N. et al. The 4.4 Å structure of the giant Melbournevirus virion belonging to the Marseilleviridae family. Preprint at bioRxiv https://doi.org/10.1101/2021.07.14.452405 (2021).

    Article  Google Scholar 

  72. Chihara, A. et al. A novel capsid protein network allows the characteristic inner membrane structure of Marseilleviridae giant viruses. Preprint at bioRxiv https://doi.org/10.1101/2021.02.03.428533 (2021).

    Article  Google Scholar 

  73. Rodrigues, R. A. L. et al. Analysis of a Marseillevirus transcriptome reveals temporal gene expression profile and host transcriptional shift. Front. Microbiol. 11, 651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Oliveira, G. P. et al. The investigation of promoter sequences of Marseilleviruses highlights a remarkable abundance of the AAATATTT motif in intergenic regions. J. Virol. 91, e01088-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu, Y. et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184, 4237–4250.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Valencia-Sánchez, M. I. et al. The structure of a virus-encoded nucleosome. Nat. Struct. Mol. Biol. 28, 413–417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bryson, T. D. et al. A giant virus genome is densely packaged by stable nucleosomes within virions. Preprint at bioRxiv https://doi.org/10.1101/2022.01.15.476465 (2022).

    Article  Google Scholar 

  78. Okamoto, K. et al. Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology 516, 239–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Ghedin, E. & Claverie, J.-M. Mimivirus relatives in the Sargasso sea. Virol. J. 2, 62 (2005). First report on the presence of genes related to mimivirus in environmental sequence data, a finding that led to follow-up work in which Mimivirus chilensis was isolated from a marine sample.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013). First study in which co-occurrence analysis was performed on metagenomic data to connect giant viruses to potential eukaryotic hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mihara, T. et al. Taxon Richness of ‘Megaviridae’ exceeds those of bacteria and Archaea in the ocean. Microbes Env. 33, 162–171 (2018).

    Article  Google Scholar 

  82. Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020). Recovery of more than 2,000 giant virus metagenome-assembled genomes from global metagenomic datasets, greatly expanding phylogenetic diversity, the repertoire of predicted metabolic traits for host reprogramming, and predicting connections between giant viruses and hosts in all major eukaryotic groups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martínez Martínez, J., Swan, B. K. & Wilson, W. H. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 8, 1079–1088 (2014).

    Article  PubMed  Google Scholar 

  84. Wilson, W. H. et al. Genomic exploration of individual giant ocean viruses. ISME J. 11, 1736–1745 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019). Discovery of a novel giant virus that groups with the Mesomimiviridae through co-sorting with its choanoflagellate host and experimental characterization that provided evidence for the function of the virus-encoded rhodopsin genes as a light-driven proton pump.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190086 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun, T.-W. & Ku, C. Unraveling gene content variation across eukaryotic giant viruses based on network analyses and host associations. Virus Evol. 7, veab081 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 4881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Allen, E. E. & Banfield, J. F. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 3, 489–498 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Yau, S. et al. Virophage control of antarctic algal host–virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, W. et al. Four novel algal virus genomes discovered from Yellowstone lake metagenomes. Sci. Rep. 5, 15131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schulz, F. et al. Giant viruses with an expanded complement of translation system components. Science 356, 82–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen, H. et al. The genome of a prasinoviruses-related freshwater virus reveals unusual diversity of phycodnaviruses. BMC Genomics 19, 49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Xu, S. et al. Novel cell-virus-virophage tripartite infection systems discovered in the freshwater lake Dishui lake in Shanghai, China. J. Virol. 94, e00149-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Da Cunha, V., Gaia, M., Ogata, H., Jaillon, O. & Delmont, T. O. Giant viruses encode novel types of actins possibly related to the origin of eukaryotic actin: the viractins. Preprint at bioRxiv https://doi.org/10.1101/2020.06.16.150565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lamb, D. C. et al. On the occurrence of cytochrome P450 in viruses. Proc. Natl Acad. Sci. USA 116, 12343–12352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Filée, J. & Chandler, M. Gene exchange and the origin of giant viruses. Intervirology 53, 354–361 (2010).

    Article  PubMed  Google Scholar 

  101. Filée, J., Siguier, P. & Chandler, M. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23, 10–15 (2007).

    Article  PubMed  Google Scholar 

  102. Irwin, N. A. T., Pittis, A. A., Richards, T. A. & Keeling, P. J. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat. Microbiol. 7, 327–336 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Moniruzzaman, M. et al. Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meng, L. et al. Quantitative assessment of nucleocytoplasmic large DNA virus and host interactions predicted by co-occurrence analyses. mSphere 6, e01298-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Endo, H. et al. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat. Ecol. Evol. 4, 1639–1649 (2020). Study on distribution of giant viruses across size fractions, depths and biomes in marine samples and predictions of their associations with eukaryotic communities.

    Article  PubMed  Google Scholar 

  106. Andreani, J., Verneau, J., Raoult, D., Levasseur, A. & La Scola, B. Deciphering viral presences: two novel partial giant viruses detected in marine metagenome and in a mine drainage metagenome. Virol. J. 15, 66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Chiba, S. et al. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog. 7, e1002146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maumus, F., Epert, A., Nogué, F. & Blanc, G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5, 4268 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, L. et al. Endogenous viral elements in algal genomes. Acta Oceanol. Sin. 33, 102–107 (2014).

    CAS  Google Scholar 

  111. Delaroque, N., Maier, I., Knippers, R. & Müller, D. G. Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). J. Gen. Virol. 80, 1367–1370 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Maumus, F. & Blanc, G. Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biol. Evol. 8, 3351–3363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clarke, M. et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol. 14, R11 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chelkha, N. et al. Vermamoeba vermiformis CDC-19 draft genome sequence reveals considerable gene trafficking including with candidate phyla radiation and giant viruses. Sci. Rep. 10, 5928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gallot-Lavallée, L. & Blanc, G. A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. Viruses 9, 17 (2017). First comprehensive survey of giant virus DNA integration into genomes of algae and protists revealing that such genomic insertions are commonly found in eukaryotic genomes and may have functional implications.

    Article  PubMed Central  Google Scholar 

  116. Delaroque, N. & Boland, W. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses. BMC Evol. Biol. 8, 110 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Stevens, K. et al. A novel evolutionary strategy revealed in the phaeoviruses. PLoS ONE 9, e86040 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cock, J. M. et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465, 617–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Moniruzzaman, M., Weinheimer, A. R., Martinez-Gutierrez, C. A. & Aylward, F. O. Widespread endogenization of giant viruses shapes genomes of green algae. Nature 588, 141–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Claverie, J.-M. Viruses take center stage in cellular evolution. Genome Biol. 7, 110 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yuan, Y. & Gao, M. Jumbo bacteriophages: an overview. Front. Microbiol. 8, 403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. DeAngelis, P. L., Jing, W., Graves, M. V., Burbank, D. E. & Van Etten, J. L. Hyaluronan synthase of chlorella virus PBCV-1. Science 278, 1800–1803 (1997). First experimental characterization of a giant virus-encoded gene that plays a role in metabolic host reprogramming.

    Article  CAS  PubMed  Google Scholar 

  126. Plugge, B. et al. A potassium channel protein encoded by chlorella virus PBCV-1. Science 287, 1641–1644 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Monier, A. et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc. Natl Acad. Sci. USA 114, E7489–E7498 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kijima, S. et al. Discovery of viral myosin genes with complex evolutionary history within plankton. Front. Microbiol. 12, 683294 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ha, A. D., Moniruzzaman, M. & Aylward, F. O. High transcriptional activity and diverse functional repertoires of hundreds of giant viruses in a coastal marine system. mSystems 6, e0029321 (2021).

    Article  PubMed  Google Scholar 

  130. Bratanov, D. et al. Unique structure and function of viral rhodopsins. Nat. Commun. 10, 4939 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40, 503–529 (2001).

    Article  Google Scholar 

  132. Kuhlisch, C. et al. Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Sci. Adv. 7, eabf4680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Breitbart, M. Marine viruses: truth or dare. Ann. Rev. Mar. Sci. 4, 425–448 (2012).

    Article  PubMed  Google Scholar 

  134. Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).

    Article  Google Scholar 

  135. Malitsky, S. et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. N. Phytol. 210, 88–96 (2016).

    Article  CAS  Google Scholar 

  136. Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rosenwasser, S. et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant. Cell 26, 2689–2707 (2014). Experimental validation of metabolic host reprogramming by E. huxleyi virus in its coccolithophore host.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Van Etten, J. L., Lane, L. C. & Dunigan, D. D. DNA viruses: the really big ones (Giruses). Annu. Rev. Microbiol. 64, 83–99 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Williams, T. A., Embley, T. M. & Heinz, E. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS ONE 6, e21080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yutin, N., Wolf, Y. I. & Koonin, E. V. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–467, 38–52 (2014).

    Article  PubMed  Google Scholar 

  141. Moreira, D. & Brochier-Armanet, C. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol. Biol. 8, 12 (2008). Study on the acquisition of genes by giant viruses from different eukaryotic hosts refuting earlier hypotheses on the common origin of giant viruses from a cellular ancestor or a fourth domain of life.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Guglielmini, J., Woo, A. C., Krupovic, M., Forterre, P. & Gaia, M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1912006116 (2019). Phylogenetic analysis that provides evidence for the repeated transfer of DNA-dependent RNA polymerase between giant viruses and a proto-eukaryote, suggesting a major role of viruses in the evolution of cellular domains.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bell, P. J. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J. Mol. Evol. 53, 251–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Cheng, S., Wong, G. K.-S. & Melkonian, M. Giant DNA viruses make big strides in eukaryote evolution. Cell Host Microbe 29, 152–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Hussein Bajrai, L. et al. Isolation of Yasminevirus, the first member of Klosneuvirinae isolated in coculture with Vermamoeba vermiformis, demonstrates an extended arsenal of translational apparatus components. J. Virol. https://doi.org/10.1128/JVI.01534-19 (2019).

    Article  Google Scholar 

  146. Abergel, C., Rudinger-Thirion, J., Giegé, R. & Claverie, J.-M. Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J. Virol. 81, 12406–12417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Silva, L. C. F. et al. Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection. Front. Microbiol. 6, 539 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rolland, C. et al. Clandestinovirus: a giant virus with chromatin proteins and a potential to manipulate the cell cycle of its host Vermamoeba vermiformis. Front. Microbiol. 12, 715608 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Boyer, M. et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc. Natl Acad. Sci. USA 106, 21848–21853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aherfi, S. et al. Incomplete tricarboxylic acid cycle and proton gradient in Pandoravirus massiliensis: is it still a virus? ISME J. https://doi.org/10.1038/s41396-021-01117-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schulz, F. et al. Advantages and limits of metagenomic assembly and binning of a giant virus. mSystems 5, e00048-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Aylward, F. O. & Moniruzzaman, M. ViralRecall: a flexible command-line tool for the detection of giant virus signatures in Omic data. Viruses 13, 150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-00774-7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Boratto, P. V. M. et al. Yaravirus: a novel 80-nm virus infecting Acanthamoeba castellanii. Proc. Natl Acad. Sci. USA 117, 16579–16586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gaïa, M. et al. Discovery of a class of giant virus relatives displaying unusual functional traits and prevalent within plankton: the Mirusviricetes. Preprint at bioRxiv https://doi.org/10.1101/2021.12.27.474232 (2021).

    Article  Google Scholar 

  156. Meints, R. H., Van Etten, J. L., Kuczmarski, D., Lee, K. & Ang, B. Viral infection of the symbiotic chlorella-like alga present in Hydra viridis. Virology 113, 698–703 (1981).

    Article  CAS  PubMed  Google Scholar 

  157. Nagasaki, K. & Yamaguchi, M. Isolation of a virus infectious to the harmful bloom causing microalga Heterosigma akashiwo (Raphidophyceae). Aquat. Microb. Ecol. 13, 135–140 (1997).

    Article  Google Scholar 

  158. Cottrell, M. T. & Suttle, C. A. Dynamics of lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla. Limnol. Oceanogr. 40, 730–739 (1995).

    Article  Google Scholar 

  159. Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    Article  Google Scholar 

  160. Watanabe, R., Song, C., Kayama, Y., Takemura, M. & Murata, K. Particle morphology of medusavirus inside and outside the cells reveals a new maturation process of giant viruses. J. Virol. 96, e0185321 (2022).

    Article  PubMed  Google Scholar 

  161. Legendre, M. et al. Diversity and evolution of the emerging Pandoraviridae family. Nat. Commun. 9, 2285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yoosuf, N. et al. Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the megavirus lineage. Genome Biol. Evol. 4, 1324–1330 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rodrigues, R. A. L., Mougari, S., Colson, P., La Scola, B. & Abrahão, J. S. ‘Tupanvirus’, a new genus in the family Mimiviridae. Arch. Virol. https://doi.org/10.1007/s00705-018-4067-4 (2018).

    Article  PubMed  Google Scholar 

  164. Andreani, J. et al. Morphological and genomic features of the new klosneuvirinae isolate fadolivirus IHUMI-VV54. Front. Microbiol. 12, 719703 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Brussaard, C. P. D., Short, S. M., Frederickson, C. M. & Suttle, C. A. Isolation and phylogenetic analysis of novel viruses infecting the phytoplankton Phaeocystis globosa (Prymnesiophyceae). Appl. Environ. Microbiol. 70, 3700–3705 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Santini, S. et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl Acad. Sci. USA 110, 10800–10805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sandaa, R. A., Heldal, M., Castberg, T., Thyrhaug, R. & Bratbak, G. Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 290, 272–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Stough, J. M. A. et al. Genome and environmental activity of a Chrysochromulina parva virus and its virophages. Front. Microbiol. 10, 703 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gastrich, M. D., Anderson, O. R., Benmayor, S. S. & Cosper, E. M. Ultrastructural analysis of viral infection in the brown-tide alga, Aureococcus anophagefferens (Pelagophyceae). Phycologia 37, 300–306 (1998).

    Article  Google Scholar 

  170. Thomas, V. et al. Lausannevirus, a giant amoebal virus encoding histone doublets. Environ. Microbiol. 13, 1454–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Boughalmi, M. et al. First isolation of a Marseillevirus in the Diptera Syrphidae Eristalis tenax. Intervirology 56, 386–394 (2013).

    Article  PubMed  Google Scholar 

  172. Dornas, F. P. et al. A Brazilian Marseillevirus is the founding member of a lineage in family Marseilleviridae. Viruses 8, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. dos Santos, R. et al. A new marseillevirus isolated in southern Brazil from Limnoperna fortunei. Sci. Rep. 6, 35237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Klose, T. et al. Structure of faustovirus, a large dsDNA virus. Proc. Natl Acad. Sci. USA 113, 6206–6211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gann, E. R. et al. Structural and proteomic studies of the Aureococcus anophagefferens virus demonstrate a global distribution of virus-encoded carbohydrate processing. Front. Microbiol. 11, 2047 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Xiao, C. et al. Structural studies of the giant mimivirus. PLoS Biol. 7, e92 (2009).

    Article  PubMed  Google Scholar 

  178. Kerepesi, C. & Grolmusz, V. The ‘Giant Virus Finder’ discovers an abundance of giant viruses in the Antarctic dry valleys. Arch. Virol. 162, 1671–1676 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Chatterjee, A. & Kondabagil, K. Giant viral genomic signatures in the previously reported gut metagenomes of pre-school children in rural India. Arch. Virol. 164, 2819–2822 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Pires de Souza, G. A., Rolland, C., Nafeh, B., La Scola, B. & Colson, P. Giant virus-related sequences in the 5300-year-old Ötzi mummy metagenome. Virus Genes. 57, 222–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Verneau, J., Levasseur, A., Raoult, D., La Scola, B. & Colson, P. MG-Digger: an automated pipeline to search for giant virus-related sequences in metagenomes. Front. Microbiol. 7, 428 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Martínez, J. M., Martinez-Hernandez, F. & Martinez-Garcia, M. Single-virus genomics and beyond. Nat. Rev. Microbiol. 18, 705–716 (2020). First targeted viromics study in which fluorescence-activated sorting and whole-genome amplification was used to recover giant virus genomes from environmental samples.

    Article  Google Scholar 

  186. Khalil, J. Y. B. et al. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining. Front. Microbiol. 7, 26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yu, F. B. et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. Elife 6, e26580 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, under contract no. DE-AC02–05CH11231. C.A. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 832601). The authors thank X. R. Chuan from the Department of Chemistry and Biochemistry, University of Texas, El Paso, USA, for providing 3D reconstruction images for AaV, mimivirus and CroV. The authors acknowledge R. Watanabe and K. Murata, ExCELLS, NINS, Japan, who provided 3D reconstruction image for medusavirus, R. N. Burton-Smith and K. Murata, ExCELLS, NINS, Japan, for cryo-electron micrographs of melbournevirus, and T. Klose, Department of Biological Sciences, Purdue University, USA, for the 3D reconstruction image for faustovirus.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to discussion of content, and wrote and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Frederik Schulz or Tanja Woyke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Frank Aylward, James Van Etten and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Choanoflagellates

Small flagellated microeukaryotes that represent the closest known unicellular relatives of animals grouped together in a clade called Opisthokonta.

Viral factories

Transitory organelles developed by the virus in the cytoplasm of an infected host cell in which replication and assembly of giant viruses takes place.

Episome

A linear genetic element that can replicate independently of the host, and without integration into the host chromosome.

T number

The triangulation (T) number describes the number of structural units per face of the icosahedron and is calculated as the square of the distance between two adjacent fivefold vertices.

ORFans

Predicted genes without detectable homologues in public databases.

Corks

The distinctive structures of some virions; in the case of pithovirus, the cork is located at the apex of the viral particle and made of 15 nm-spaced stripes organized in a hexagonal honeycomb-like array.

Nucleosomes

Compact structural forms of DNA packed through binding at positively charged proteins.

Mini-metagenomics

Low complexity metagenomes generated from generally tens to hundreds of cell-sized particles.

Metacaspase

A multifunctional cysteine-dependent protease that, for example, plays a role in programmed cell death in eukaryotes.

Pan-genome

The combined set of genes within a defined selection of genomes.

Pseudogenization

A mechanism that leads to gene loss (functional genes become non-functional), most often through accumulation of mutations.

Hyaluronan synthase

An enzyme that facilitates the synthesis of cellular hyaluronan.

Rhodopsins

Pigment-containing proton pumps that convert light into a transmembrane electrochemical proton gradient.

Proto-eukaryote

A cell without membrane-bound organelles that is considered the ancestor of the eukaryotic cell.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 20, 721–736 (2022). https://doi.org/10.1038/s41579-022-00754-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00754-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing