Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Marine biofilms: diversity, interactions and biofouling

Abstract

Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Marine biofilms on different substrates in the ocean.
Fig. 2: Composition of natural marine biofilms.
Fig. 3: The temporal succession of marine biofilms.
Fig. 4: Influence of substrate and location on microbial biofilm diversity.
Fig. 5: Microbial interactions in marine biofilms.
Fig. 6: Interactions of marine biofilm with the benthic ecosystem and marine environment.

Similar content being viewed by others

References

  1. Zobell, C. & Allen, E. C. Attachment of marine bacteria to submerged slides. Proc. Soc. Exp. Biol. Med. 30, 1409–1411 (1933).

    Article  Google Scholar 

  2. Zobell, C. & Allen, E. C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239–251 (1935).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019). This study estimates the number of bacteria and archaea in biofilms in different environments on Earth.

    Article  PubMed  CAS  Google Scholar 

  4. de Carvalho, C. C. Marine biofilms: a successful microbial strategy with economic implications. Front. Mar. Sci. 5, 126 (2018).

    Article  Google Scholar 

  5. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Koch, G. H., Brongers, M. P., Thompson, N. G., Virmani, Y. P. & Payer, J. H. In Handbook of Environmental Degradation of Materials (ed. Kutz, M.) 3–24 (William Andrew Publishing, 2005).

  7. Schultz, M. P. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23, 331–341 (2007).

    Article  PubMed  Google Scholar 

  8. Oberbeckmann, S. & Labrenz, M. Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Annu. Rev. Mar. Sci. 12, 209–232 (2020). This is an excellent overview of microplastic as a unique habitat for marine microbial biofilms.

    Article  Google Scholar 

  9. Wright, R. J., Erni-Cassola, G., Zadjelovic, V., Latva, M. & Christie-Oleza, J. A. Marine plastic debris: a new surface for microbial colonization. Environ. Sci. Tech. 54, 11657–11672 (2020).

    Article  CAS  Google Scholar 

  10. Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Tech. Let. 4, 258–267 (2017).

    Article  CAS  Google Scholar 

  11. Zhao, S., Zettler, E. R., Amaral-Zettler, L. A. & Mincer, T. J. Microbial carrying capacity and carbon biomass of plastic marine debris. ISME J. 15, 67–77 (2021).

    Article  PubMed  CAS  Google Scholar 

  12. Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3, 292 (2012). This paper highlights the importance of epibiotic biofilms in modulating the abiotic and biotic interactions of marine organisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wahl, M. et al. Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: patterns of microfouling and antimicrobial protection. Mar. Ecol. Prog. Ser. 411, 33–48 (2010).

    Article  Google Scholar 

  14. Simon, H. M., Smith, M. W. & Herfort, L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Front. Microbiol. 5, 466 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grossart, H. P. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Env. Microbiol. Rep. 2, 706–714 (2010).

    Article  Google Scholar 

  16. Azam, F. & Long, R. A. Sea snow microcosms. Nature 414, 495–498 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).

    Article  CAS  Google Scholar 

  18. Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dang, H. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Flemming, H. C. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyong. NPJ Biofilms Microbiomes 7, 10 (2021). This paper provides a good brief history of the definition of the term ‘biofilm’ and recommends understanding biofilms in the broader sense of microbial aggregates.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Charette, M. A. & Smith, W. H. The volume of Earth’s ocean. Oceanography 23, 112–114 (2010).

    Article  Google Scholar 

  22. Franklin, M. P. et al. Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass. Environ. Microbiol. 7, 723–736 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Berne, C., Ellison, C. K., Ducret, A. & Brun, Y. V. Bacterial adhesion at single-cell level. Nat. Rev. Microbiol. 16, 616–627 (2018).

    Article  PubMed  CAS  Google Scholar 

  24. Zijnge, V. et al. Oral biofilm architecture on natural teeth. PLoS One 5, e9321 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Salta, M., Wharton, J. A., Blache, Y., Stokes, K. & Briand, J. F. Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 15, 2879–2893 (2013).

    PubMed  Google Scholar 

  26. Freckelton, M. L., Nedved, B. T. & Hadfield, M. G. Induction of invertebrate larval settlement; different bacteria, different mechanisms? Sci. Rep. 7, 42557 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hansen, M. F., Svenningsen, S. L., Røder, H. L., Middelboe, M. & Burmølle, M. Big impact of the tiny: bacteriophage-bacteria interactions in biofilms. Trends Microbiol. 27, 739–752 (2019).

    Article  PubMed  CAS  Google Scholar 

  28. Pires, D. P., Melo, L. D. & Azeredo, J. Understanding the complex phage-host interactions in biofilm communities. Annu. Rev. Virol. 8, 73–94 (2021).

    Article  PubMed  CAS  Google Scholar 

  29. Lau, S. C. K., Mak, K. K. W., Chen, F. & Qian, P. Y. Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 226, 301–310 (2002).

    Article  Google Scholar 

  30. Chung, H. C. et al. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J. 4, 817–828 (2010). This study is the first to report variations in the chemical compositions of marine biofilms over time.

    Article  PubMed  CAS  Google Scholar 

  31. Qian, P. Y., Thiyagarajan, V., Lau, S. C. K. & Cheung, S. C. K. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat. Microb. Ecol. 33, 225–237 (2003).

    Article  Google Scholar 

  32. Zhang, W. P. et al. Biofilms constitute a bank of hidden microbial diversity and functional potential in the oceans. Nat. Commun. 10, 517 (2019). This study provides the largest global survey of microbial diversity of marine biofilms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grzegorczyk, M., Pogorzelski, S. J., Pospiech, A. & Boniewicz-Szmyt, K. Monitoring of marine biofilm formation dynamics at submerged solid surfaces with multitechnique sensors. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00363 (2018).

    Article  Google Scholar 

  34. Whalan, S. & Webster, N. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci. Rep. 4, 4072 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Doghri, I. et al. Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures. BMC Microbiol. 15, 231 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microb. 14, 251–263 (2016).

    Article  CAS  Google Scholar 

  37. Harrison, J. P. et al. In Freshwater Microplastics (eds. Wagner, M. & Lambert, S.) 181–201 (Springer Nature, 2018).

  38. Dussud, C. et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 236, 807–816 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Catão C P, E. et al. Temperate and tropical coastal waters share relatively similar microbial biofilm communities while free-living or particle-attached communities are distinct. Mol. Ecol. 30, 2891–2904 (2021).

    Article  PubMed  CAS  Google Scholar 

  40. Antunes, J., Leão, P. & Vasconcelos, V. Marine biofilms: diversity of communities and of chemical cues. Env. Microbiol. Rep. 11, 287–305 (2019). This is one of the reviews summarizing the high biological and chemical diversity of marine biofilms.

    Article  Google Scholar 

  41. Patil, J. S. & Anil, A. C. Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling 21, 189–206 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Kettner, M. T., Rojas-Jimenez, K., Oberbeckmann, S., Labrenz, M. & Grossart, H. P. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19, 4447–4459 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. von Ammon, U. et al. The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages: a high-throughput sequencing analysis. Mar. Environ. Res. 133, 57–66 (2018).

    Article  CAS  Google Scholar 

  44. Briand, J. F. et al. Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts. Biofouling 34, 657–672 (2018).

    Article  PubMed  Google Scholar 

  45. Debroas, D., Mone, A. & Ter Halle, A. Plastics in the north Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 599, 1222–1232 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Kettner, M. T., Oberbeckmann, S., Labrenz, M. & Grossart, H. P. The eukaryotic life on microplastics in brackish ecosystems. Front. Microbiol. 10, 538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ding, W. et al. Expanding our understanding of marine viral diversity through metagenomic analyses of biofilms. Mar. Life Sci. Technol. 3, 395–404 (2021).

    Article  CAS  Google Scholar 

  48. Hung, O. S., Thiyagarajan, V. & Qian, P. Y. Preferential attachment of barnacle larvae to natural multi-species biofilms: does surface wettability matter? J. Exp. Mar. Biol. Ecol. 361, 36–41 (2008).

    Article  Google Scholar 

  49. Pedersen, K. Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res. 24, 239–243 (1990).

    Article  CAS  Google Scholar 

  50. Lee, O. O. et al. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system. Sci. Rep. 4, 3587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, W. P. et al. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci. Rep. 4, 6647 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chiu, W. Y., Thiyagarajan, V., Tsoi, M. & Qian, P. Y. Qualitative and quantitative changes in marine microbial films as a function of temperature and salinity in summer and winter. Biofilms 2, 183–195 (2005).

    Article  Google Scholar 

  53. Chiu, W. Y., Zhang, R., Thiyagarajan, V. & Qian, P. Y. Nutrient effects on intertidal community: from bacteria to invertebrates. Mar. Ecol. Prog. Ser. 358, 41–50 (2008).

    Article  CAS  Google Scholar 

  54. Hung, O. S., Gosselin, L. A., Thiyagarajan, V., Wu, R. S. S. & Qian, P. Y. Do effects of ultraviolet radiation on microbial films have indirect effects on larval attachment of the barnacle Balanus amphitrite. J. Exp. Mar. Biol. Ecol. 323, 16–26 (2005).

    Article  Google Scholar 

  55. Hung, O. S., Thiyagarajan, V., Wu, R. S. S. & Qian, P. Y. Effects of ultraviolet radiation on films and subsequent settlement of Hydroides elegans. Mar. Ecol. Prog. Ser. 304, 155–166 (2005).

    Article  Google Scholar 

  56. Qian, P. Y., Rittschof, D. & Sreedhar, B. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar. Ecol. Prog. Ser. 207, 109–121 (2000).

    Article  Google Scholar 

  57. Wahl, M. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58, 175–189 (1989).

    Article  Google Scholar 

  58. Dang, H. & Lovell, C. R. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microb. 66, 467–475 (2000).

    Article  CAS  Google Scholar 

  59. Dang, H. & Lovell, C. R. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl. Environ. Microbiol. 68, 496–504 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Flemming, H. C. Biofouling in water systems-cases, causes and countermeasures. Appl. Microbiol. Biotech. 59, 629–640 (2002).

    Article  CAS  Google Scholar 

  61. Lawes, J. C., Neilan, B. A., Brown, M. V., Clark, G. F. & Johnston, E. L. Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling 32, 57–69 (2016).

    Article  PubMed  CAS  Google Scholar 

  62. Antunes, J. T. et al. Distinct temporal succession of bacterial communities in early marine biofilms in a Portuguese Atlantic Port. Front. Microbiol. 11, 1938 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. W., Nam, J. H., Kim, Y. H., Lee, K. H. & Lee, D. H. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol. 46, 174–182 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Pollet, T. et al. Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteria. FEMS Microbiol. Ecol. 94, fiy083 (2018).

    Google Scholar 

  65. Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016). This is one of the few studies about marine biofilm community succession with high temporal resolution.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sushmitha, T. J. et al. Bacterial community structure of early-stage biofilms is dictated by temporal succession rather than substrate types in the southern coastal seawater of India. PLoS One 16, e0257961 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bellou, N., Garcia, J. A. L., Colijn, F. & Herndl, G. J. Seasonality combined with the orientation of surfaces influences the microbial community structure of biofilms in the deep Mediterranean Sea. Deep Sea Res. II Top. Stud. Oceanogr. 171, 104703 (2020).

    Article  CAS  Google Scholar 

  68. Jones, P. R., Cottrell, M. T., Kirchman, D. L. & Dexter, S. C. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb. Ecol. 53, 153–162 (2007).

    Article  PubMed  Google Scholar 

  69. Huggett, M., Nedved, B. & Hadfield, M. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. Biofouling 25, 387–399 (2009).

    Article  PubMed  CAS  Google Scholar 

  70. Caruso, G. Microbial colonization in marine environments: overview of current knowledge and emerging research topics. J. Mar. Sci. Eng. 8, 78 (2020).

    Article  Google Scholar 

  71. Bellou, N., Papathanassiou, E., Dobretsov, S., Lykousis, V. & Colijn, F. The effect of substratum type, orientation and depth on the development of bacterial deep-sea biofilm communities grown on artificial substrata deployed in the Eastern Mediterranean. Biofouling 28, 199–213 (2012).

    Article  PubMed  Google Scholar 

  72. Oberbeckmann, S., Loeder, M. G., Gerdts, G. & Osborn, A. M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 90, 478–492 (2014).

    Article  PubMed  CAS  Google Scholar 

  73. Oberbeckmann, S., Osborn, A. M. & Duhaime, M. B. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11, e0159289 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Underwood, A. J. The vertical distribution and seasonal abundance of intertidal microalgae on a rocky shore in New South Wales. J. Exp. Mar. Biol. Ecol. 78, 199–220 (1984).

    Article  Google Scholar 

  75. Bengtsson, M. M., Sjøtun, K. & Øvreås, L. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquat. Microbiol. Ecol. 60, 71–83 (2010).

    Article  Google Scholar 

  76. Sawall, Y., Richter, C. & Ramette, A. Effects of eutrophication, seasonality and macrofouling on the diversity of bacterial biofilms in equatorial coral reefs. PLoS One 7, e39951 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mancuso, F. P., D’hondt, S., Willems, A., Airoldi, L. & De Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gulmann, L. K. et al. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents. Front. Microbiol. 6, 901 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. O’Brien, C. E. et al. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents. Deep Sea Res. II Top. Stud. Oceanogr. 121, 31–40 (2015).

    Article  Google Scholar 

  80. Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Woodall, L. C. et al. Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLoS One 13, e0206220 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Mugge, R. L. et al. Deep-sea biofilms, historic shipwreck preservation and the Deepwater Horizon spill. Front. Mar. Sci. 6, 48 (2019).

    Article  Google Scholar 

  83. Clark, M. S. et al. Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming. Nat. Commun. 10, 3383 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983–992 (2020).

    Article  Google Scholar 

  85. Webster, N. S. & Negria, A. P. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Env. Microbiol. 8, 1177–1190 (2006).

    Article  CAS  Google Scholar 

  86. Lee, Y. M. et al. Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment. Korean J. Microbiol. 52, 49–58 (2015).

    Article  Google Scholar 

  87. Thomas, D. N. & Dieckmann, G. S. Antarctic sea ice-a habitat for extremophiles. Science 295, 641–644 (2002).

    Article  PubMed  CAS  Google Scholar 

  88. Roukaerts, A. et al. The biogeochemical role of a microbial biofilm in sea ice: Antarctic landfast sea ice as a case study. The biogeochemical role of a microbial biofilm in sea ice: Antarctic landfast sea ice as a case study. Elementa 9, 00134 (2021).

    Google Scholar 

  89. Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci. 6, 439–467 (2014).

    Article  Google Scholar 

  91. Ewert, M. & Deming, J. W. Sea ice microorganisms: environmental constraints and extracellular responses. Biology 2, 603–628 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brown, M. V. & Bowman, J. P. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35, 267–275 (2001).

    Article  PubMed  CAS  Google Scholar 

  93. Wang, R. et al. Profiling signal transduction in global marine biofilms. Front. Microbiol. 12, 768926 (2021).

    Article  PubMed  Google Scholar 

  94. Brazelton, W. J. & Baross, J. A. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424 (2009).

    Article  PubMed  CAS  Google Scholar 

  95. Ding, W. et al. Metagenomic analysis of zinc surface–associated marine biofilms. Microb. Ecol. 77, 406–416 (2019).

    Article  PubMed  CAS  Google Scholar 

  96. Zhang, Y. et al. Metagenomic resolution of functional diversity in copper surface-associated marine biofilms. Front. Microbiol. 10, 2863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang, Y. et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ. Int. 123, 79–86 (2019).

    Article  PubMed  CAS  Google Scholar 

  98. Liu, Y. et al. Microplastics are a hotspot for antibiotic resistance genes: progress and perspective. Sci. Total. Environ. 773, 145643 (2021).

    Article  PubMed  CAS  Google Scholar 

  99. Tait, K. et al. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7, 229–240 (2005).

    Article  PubMed  CAS  Google Scholar 

  100. Kjelleberg, S. & Molin, S. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol. 5, 254–258 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. Huang, Y. L., Ki, J. S., Lee, O. O. & Qian, P. Y. Evidence for the dynamics of Acyl homoserine lactone and AHL-producing bacteria during subtidal biofilm formation. ISME J. 3, 296–304 (2008). This study is one of the first attempts to investigate QS signals in natural marine biofilms.

    Article  PubMed  CAS  Google Scholar 

  102. Jones, S. E. & McMahon, K. D. Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environ. Microbiol. 11, 905–913 (2009).

    Article  PubMed  Google Scholar 

  103. Feng, K. et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol. Ecol. 26, 6170–6182 (2017).

    Article  PubMed  Google Scholar 

  104. Misic, C. & Harriague, A. C. Development of marine biofilm on plastic: ecological features in different seasons, temperatures, and light regimes. Hydrobiologia 835, 129–145 (2019).

    Article  Google Scholar 

  105. Elias, S. & Banin, E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Rendueles, O. & Ghigo, J.-M. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol. Rev. 36, 972–989 (2012).

    Article  PubMed  CAS  Google Scholar 

  107. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  PubMed  CAS  Google Scholar 

  108. Dou, W., Xu, D. & Gu, T. Biocorrosion caused by microbial biofilms is ubiquitous around us. Microb. Biotech. 14, 803–805 (2021).

    Article  Google Scholar 

  109. Smith, P. & Schuster, M. Public goods and cheating in microbes. Cur. Biol. 29, 442–447 (2019).

    Article  CAS  Google Scholar 

  110. Nadell, C. D. et al. Cutting through the complexity of cell collectives. Proc. Biol. Sci. 280, 20122770 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    Article  PubMed  CAS  Google Scholar 

  112. Balcázar, J. L., Subirats, J. & Borrego, C. M. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 6, 1216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Guo, X. P. et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Res. 129, 277–286 (2018).

    Article  PubMed  CAS  Google Scholar 

  114. Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122 (2003).

    Article  PubMed  CAS  Google Scholar 

  115. Nyholm, S. V. & McFall-Ngai, M. J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69, 3932–3937 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).

    Article  PubMed  CAS  Google Scholar 

  117. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Han, Q. F. et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 138, 105551 (2020).

    Article  PubMed  CAS  Google Scholar 

  119. Goel, N., Fatima, S. W., Kumar, S., Sinha, R. & Khare, S. K. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotech. Rep. 30, e00613 (2021).

    Article  CAS  Google Scholar 

  120. Yan, L., Boyd, K. G., Adams, D. R. & Burgess, J. G. Biofilm-specific cross-species induction of antimicrobial compounds in bacilli. Appl. Environ. Microb. 69, 3719–3727 (2003).

    Article  CAS  Google Scholar 

  121. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).

    Article  PubMed  CAS  Google Scholar 

  123. Bourret, R. B. & Silversmith, R. E. Two-component signal transduction. Curr. Opin. Microbiol. 13, 113 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  PubMed  CAS  Google Scholar 

  125. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    Article  PubMed  CAS  Google Scholar 

  126. Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).

    Article  PubMed  CAS  Google Scholar 

  127. Gotoh, Y. et al. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr. Opin. Microbiol. 13, 232–239 (2010).

    Article  PubMed  CAS  Google Scholar 

  128. Ono, K. et al. cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microb. Environ. 29, 104–106 (2014).

    Article  Google Scholar 

  129. Fong, J. C. & Yildiz, F. H. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 190, 6646–6659 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Jenal, U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr. Opin. Microbiol. 7, 185–191 (2004).

    Article  PubMed  CAS  Google Scholar 

  131. Cotter, P. A. & Stibitz, S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10, 17–23 (2007).

    Article  PubMed  CAS  Google Scholar 

  132. Liang, X. et al. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement. Int. Biodeterior. Biodegrad 165, 105330 (2021).

    Article  CAS  Google Scholar 

  133. Huang, Y. L., Dobretsov, S., Xiong, H. & Qian, P. Y. Effect of biofilm formation by Pseudoalteromonas spongiae on induction of larval settlement of the polychaete Hydroides elegans. Appl. Environ. Microbiol. 73, 6284–6288 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wang, R. et al. Exploring the influence of signal molecules on marine biofilms development. Front. Microbiol. 11, 571400 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wahl, M. & Lafargue, F. Marine epibiosis. Oecologia 82, 275–282 (1990).

    Article  PubMed  Google Scholar 

  136. Koren, O. & Rosenberg, E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72, 5254–5259 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Trias, R. et al. Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae. Appl. Environ. Microbiol. 78, 318–325 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lee, O. O. et al. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 5, 650–664 (2011). This is one of the first studies that applied pyrosequencing techniques to study the species diversity of epibiotic bacterial communities in different species of sponges.

    Article  PubMed  CAS  Google Scholar 

  139. Lachnit, T., Wahl, M. & Harder, T. Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga. Biofouling 26, 247–255 (2009).

    Article  CAS  Google Scholar 

  140. Sapp, M., Wichels, A., Wiltshire, K. H. & Gerdts, G. Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol. Ecol. 59, 622–637 (2007).

    Article  PubMed  CAS  Google Scholar 

  141. Liu, Y. et al. A deep dive into the epibiotic communities on aquacultured sugar kelp Saccharina latissima in southern New England. Algal Res. 63, 102654 (2022).

    Article  Google Scholar 

  142. Berggren, H. et al. Fish skin microbiomes are highly variable among individuals and populations but not within individuals. Front. Microbiol. 12, 12767770 (2022).

    Article  Google Scholar 

  143. Leinberger, J. et al. Microbial epibitic community of the deep-sea galatheid sqaat lobster Munidopsis alvisca. Sci. Rep. 12, 2675 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Bermont-Bouis, D., Janvier, M., Grimont, P., Dupont, I. & Vallaeys, T. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J. Appl. Microbiol. 102, 161–168 (2007).

    Article  PubMed  CAS  Google Scholar 

  145. Zhang, Y. et al. Analysis of marine microbial communities colonizing various metallic materials and rust layers. Biofouling 35, 429–442 (2019).

    Article  PubMed  CAS  Google Scholar 

  146. Li, X. et al. Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of Illumina MiSeq sequencing. Front. Microbiol. 8, 1737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Garrison, C. E. & Field, E. K. Introducing a “core steel microbiome” and community functional analysis associated with microbially influenced corrosion. FEMS Microbiol. Ecol. 97, fiaa237 (2021).

    Article  CAS  Google Scholar 

  148. McCully, A. L. & Spormann, A. M. Direct cathodic electron uptake coupled to sulfate reduction by Desulfovibrio ferrophilus IS5 biofilms. Environ. Microbiol. 22, 4794–4807 (2020).

    Article  PubMed  CAS  Google Scholar 

  149. Procópio, L. The era of ‘omics’ technologies in the study of microbiologically influenced corrosion. Biotech. Lett. 42, 341–356 (2020).

    Article  CAS  Google Scholar 

  150. Dou, W. W. et al. Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Bioelectrochemistry 133, 107478 (2020).

    Article  PubMed  CAS  Google Scholar 

  151. Loto, C. A. Microbiological corrosion: mechanism, control and impact-a review. Int. J. Adv. Manuf. Technol. 92, 4241–4252 (2017).

    Article  Google Scholar 

  152. Procópio, L. The role of biofilms in the corrosion of steel in marine environments. World J. Microbiol. Biotechnol. 35, 73 (2019).

    Article  PubMed  CAS  Google Scholar 

  153. Dinh, H. T. et al. Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832 (2004).

    Article  PubMed  CAS  Google Scholar 

  154. Enning, D. et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 14, 1772–1787 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Tang, H. Y. et al. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. ISME J. 15, 3084–3093 (2021). This study proves that direct iron-to-microorganism electron transfer exists in stainless steel corrosion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Flemming, H. C. In Biofilm highlights (eds Flemming, H. C., Wingender, J. & Szewzyk, U.) 81–109 (Springer Berlin Heidelberg, 2011).

  157. Ma, Y. et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view. Appl. Microbiol. Biotech. 104, 515–525 (2020).

    Article  CAS  Google Scholar 

  158. Zuo, R. J. Biofilms: strategies for metal corrosion inhibition employing microorgansims. Appl. Microbiol. Biotech. 76, 1245–1253 (2007).

    Article  CAS  Google Scholar 

  159. Kip, N. & van Veen, J. A. The dual role of microbes in corrosion. ISME J. 9, 542–551 (2014). This is one of the good summaries of microbially influenced corrosion on different materials.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Videla, H. A. & Herrera, L. K. Understanding microbial inhibition of corrosion. A comprehensive overview. Int. Biodeterior. Biodegrad. 62, 896–900 (2009).

    Article  CAS  Google Scholar 

  161. Beech, I. B. & Campbell, S. A. Accelerated low water corrosion of carbon steel in the presence of biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediments. Electrochim. Acta 54, 14–21 (2008).

    Article  CAS  Google Scholar 

  162. Cavalcanti, G. S., Alker, A. T., Delherbe, N., Malter, K. E. & Shikuma, N. J. The influence of bacteria on animal metamorphosis. Annu. Rev. Microbiol. 76, 137–158 (2020).

    Article  CAS  Google Scholar 

  163. Duan, J. et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim. Acta 54, 22–28 (2008).

    Article  CAS  Google Scholar 

  164. Chongdar, S., Gunasekaran, G. & Kumar, P. Corrosion inhibition of mild steel by aerobic biofilm. Electrochim. Acta 50, 4655–4665 (2005).

    Article  CAS  Google Scholar 

  165. Wieczorek, S. K., Clare, A. S. & Todd, C. D. Inhibitory and facilitatory effects of microbial films on settlement of Balanus amphitrite larvae. Mar. Ecol. Prog. Ser. 119, 221–228 (1995).

    Article  Google Scholar 

  166. Hadfield, M. G. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3, 453–470 (2011). This review highlights that biofilm bacteria are a source of settlement cues and larvae are bearers of receptors for bacterial cues.

    Article  Google Scholar 

  167. Holmstrom, C., Rittschof, D. & Kjelleberg, S. Inhibition of settlement of larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 58, 2111–2115 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. O’Connor, N. J. & Richarson, D. L. Attachment of barnacle (Balanus amphitrite Darwin) larvae: responses to bacterial films and extracellular materials. J. Exp. Mar. Biol. Ecol. 226, 115–129 (1998).

    Article  Google Scholar 

  169. Harder, T., Lam, C. K. S. & Qian, P. Y. Induction of larval settlement of the polychaete Hydroides elegans (Haswell) by marine biofilms: an investigation of monospecific fouling diatoms as settlement cues. Mar. Ecol. Prog. Ser. 229, 105–112 (2002).

    Article  Google Scholar 

  170. Unabia, C. R. C. & Hadfield, M. G. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Mar. Biol. 133, 55–64 (1999).

    Article  Google Scholar 

  171. Huang, S. Y. & Hadfield, M. G. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 260, 161–172 (2003).

    Article  CAS  Google Scholar 

  172. Maki, J. S., Rittschof, D., Costlow, J. D. & Mitchell, R. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97, 199–206 (1988).

    Article  Google Scholar 

  173. Olivier, F., Tremblay, R., Bourget, E. & Ritschoff, D. Barnacle settlement: field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus Amphitrite cyprids. Mar. Ecol. Prog. Ser. 199, 185–204 (2000).

    Article  Google Scholar 

  174. Lau, S. C. K., Thiyagarajan, V., Cheung, S. C. K. & Qian, P. Y. Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates. Aquat. Microb. Ecol. 38, 41–51 (2005).

    Article  Google Scholar 

  175. Hung, O. S., Thiyagarajan, V., Zhang, R., Wu, R. S. S. & Qian, P. Y. Attachment of Balanus amphitrite larvae to biofilms originated from contrasting environments. Mar. Ecol. Prog. Ser. 333, 229–242 (2007).

    Article  CAS  Google Scholar 

  176. Norton, T. A. et al. Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat. Microb. Ecol. 16, 199–204 (1998).

    Article  Google Scholar 

  177. Joint, I., Tait, K. & Wheeler, G. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos. Trans. R. Soc. Lond. B 362, 1223–1233 (2007).

    Article  CAS  Google Scholar 

  178. Wheeler, G. L., Tait, K., Taylor, A., Brownlee, C. & Joint, I. Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ. 29, 608–618 (2006).

    Article  PubMed  CAS  Google Scholar 

  179. Tait, K. et al. Turnover of quorum sensing signal molecules modulates cross-kingdom signalling. Environ. Microbiol. 11, 1792–1802 (2009).

    Article  PubMed  CAS  Google Scholar 

  180. Shikuma, N. & Hadfield, M. G. Temporal variation of an initial marine biofilm community and its effects on larval settlement and metamorphosis of the tubeworm Hydroides elegans. Biofilms 2, 231–238 (2005).

    Article  Google Scholar 

  181. Shikuma, N. J. et al. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343, 529–533 (2014). This study shows a novel form of interaction between biofouling animals and biofilm bacteria.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ding, W. et al. Distribution, diversity and functional dissociation of the mac genes in marine biofilms. Biofouling 35, 230–243 (2019).

    Article  PubMed  CAS  Google Scholar 

  183. Qian, P. Y., Lau, S. C. K., Dahms, H. U., Harder, T. & Dobretsov, S. Marine biofilms as mediators of colonization by marine macroorganisms implications for antifouling and aquaculture. Mar. Biotech. 9, 399–410 (2007).

    Article  CAS  Google Scholar 

  184. Intergovernmental Maritime Organisation. International convention on the control of harmful anti-fouling systems on ships https://www.imo.org/en/About/Conventions/Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).aspx (2008).

  185. Schultz, M. P., Bendick, J. A., Holm, E. R. & Hertel, W. M. Economic impact of biofouling on a naval surface ship. Biofouling 27, 87–98 (2011).

    Article  PubMed  CAS  Google Scholar 

  186. Bannister, J., Sievers, M., Bush, F. & Bloecher, N. Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35, 631–648 (2019).

    Article  PubMed  CAS  Google Scholar 

  187. Lane, A. & Willemsen, P. Collaborative effort looks into biofouling. Fish. Farming Int. 44, 34–35 (2004).

    Google Scholar 

  188. Fitridge, I., Dempster, T., Guenther, J. & de Nys, R. The impact and control of biofouling in marine aquaculture: a review. Biofouling 28, 649–669 (2012).

    Article  PubMed  Google Scholar 

  189. Seneviratne, C. J. et al. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit. Rev. Microbiol. 46, 759–778 (2020).

    Article  PubMed  CAS  Google Scholar 

  190. Blattman, S. B., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192–1201 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Kreth, J., Abdelrahman, Y. M. & Merritt, J. Multiplex imaging of polymicrobial communities-murine models to study oral microbiome interactions. Methods Mol. Biol. 2081, 107–126 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bellin, D. L. et al. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat. Commun. 7, 10535 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Boldelon, G. et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater. 15, 1203–1211 (2016).

    Article  CAS  Google Scholar 

  194. Geier, B. et al. Spatial metabolomics of in situ host-microbe interactions at the micrometer scale. Nat. Microbiol. 5, 498–510 (2020).

    Article  PubMed  CAS  Google Scholar 

  195. Dobretsov, S. et al. The oceans are changing: impact of ocean warming and acidification on biofouling communities. Biofouling 35, 585–595 (2019).

    Article  PubMed  Google Scholar 

  196. Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).

    Article  Google Scholar 

  197. Beech, I. B. & Sunner, J. Biocorrosion: towards understanding interactions between biofilms and metals. Cur. Opin. Biotech. 15, 181–186 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for financial support from the Major Project of Basic and Applied Basic Research of Guangdong Province (2019B030302004), Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD409), the Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20SC01), and Hong Kong Special Administrative Region (16101269, C6026-19G-A).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of the content and reviewed or edited the manuscript before submission. A.C., P.Y.Q. and R.W. researched data for the article and A.C., P.Y.Q. and R.Z. wrote the article.

Corresponding author

Correspondence to Pei-Yuan Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Vayalam Venugopalan and the other, anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Biofouling

Biofouling is the colonization of submerged surfaces by microorganisms, plants, algae or small animals; it has destructive effects on the substrate.

Biocorrosion

Biocorrosion refers to the deterioration of metal surfaces owing to the presence of biofilms.

Aquaculture

Aquaculture refers to the rearing of aquatic animals or the cultivation of aquatic plants, including breeding, raising and harvesting, for the production of food and commercial products, restoring and creating healthier habitats as well as rebuilding threatened or endangered species populations.

Marine snow

Small organic detritus and inorganic particles drifting towards the seafloor from the upper layers of the water column. Marine snow is formed by dead organisms, faecal matter, sand, soot and other dust.

Metamorphosis

Metamorphosis refers to a biological process of evident and sudden change in animal body structure through cell growth and differentiation after birth or hatching.

Surface wettability

Surface wettability is the tendency of a liquid to spread on or adhere to a solid surface. It is controlled by a balance between adhesive (liquid–surface) and cohesive (liquid–liquid) forces.

Marine benthos

Organisms that are living in or on the surface of the continental shelf and seafloor (sediments and rocks).

Macrofouling

The formation of complex benthic community on man-made marine surfaces after biofilm formation, leading to the substantial build-up of biological and abiotic materials that affects the performance and function of marine surfaces.

Microfouling

Biofilm development on man-made marine surfaces, leading to changes in the physical and chemical properties of the surfaces.

Phage tail-like structures

Protein structures produced by Pseudoalteromonas luteoviolacea that can stimulate larval metamorphosis of the tube-building polychaete Hydroides elegans.

Microbial fuel cells

In a fuel cell system, the microbes on the anode oxidize reduced compounds (known as fuel or electron donors) and divert electrons to high-energy oxidized compounds (also known as oxidizing agents or electron acceptors) on the cathode to generate an electric current through an external electrical circuit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, PY., Cheng, A., Wang, R. et al. Marine biofilms: diversity, interactions and biofouling. Nat Rev Microbiol 20, 671–684 (2022). https://doi.org/10.1038/s41579-022-00744-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00744-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology