Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

External-pressure–electrochemistry coupling in solid-state lithium metal batteries

Abstract

Solid-state lithium metal batteries (SSLBs) using inorganic solid-state electrolytes (SSEs) have attracted extensive scientific and commercial interest owing to their potential to provide higher energy density and safety than conventional Li-ion batteries. These batteries are subject to external pressure during both their manufacturing processes (fabrication pressure) and their operation (stack pressure). This pressure not only affects the intrinsic properties of both the electrolytes (such as ionic conductivity and electrochemical voltage window) and the electrodes (such as ion transport and structural variation) but also determines the cyclability and safety of the whole battery. Hence, understanding the effect of pressure is essential when designing high-performance SSLBs. This Review aims to elucidate the coupling between external pressure and electrochemistry in these batteries. We summarize the effects of external pressure on SSEs and electrodes, and on the interfaces between the components. We analyse the overall electrochemical performance and safety of the batteries under external pressure. Finally, we clarify the dominant challenges in achieving pressure-proof and low-pressure SSLBs, laying out a perspective for future breakthroughs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources of external pressure in solid-state lithium metal batteries.
Fig. 2: External-pressure-derived deformation and contact.
Fig. 3: Effect of external pressure on Li creep.
Fig. 4: Effects of external pressure on the deposition morphology and dendrite growth of Li metal anode.
Fig. 5: Structural changes under external pressure.
Fig. 6: Effects of external pressure on electrode–electrolyte interfacial reactions.
Fig. 7: Effects of external pressures on the performance of SSEs and SSLBs.

Similar content being viewed by others

References

  1. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  CAS  Google Scholar 

  2. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  Google Scholar 

  3. Fan, L. Z., He, H. & Nan, C. W. Tailoring inorganic−polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021).

    Article  CAS  Google Scholar 

  4. Lu, Z. et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery. Adv. Mater. 33, e2101745 (2021).

    Article  PubMed  Google Scholar 

  5. Li, S. et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel–rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. 5V–class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy 90, 106589 (2021).

    Article  CAS  Google Scholar 

  8. Nagao, M. et al. Reaction mechanism of all-solid-state lithium–sulfur battery with two-dimensional mesoporous carbon electrodes. J. Power Sources 243, 60–64 (2013).

    Article  CAS  Google Scholar 

  9. Chinnam, P. R. et al. Unlocking failure mechanisms and improvement of practical Li–S pouch cells through in operando pressure study. Adv. Energy Mater. 12, 2103048 (2021).

    Article  Google Scholar 

  10. Bi, X. et al. Understanding the role of lithium iodide in lithium−oxygen batteries. Adv. Mater. 34, 2106148 (2022).

    Article  CAS  Google Scholar 

  11. Liu, S. et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12, 2200660 (2022).

    Article  CAS  Google Scholar 

  12. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  13. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  14. Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, S. et al. Lithium argyrodite as solid electrolyte and cathode precursor for solid‐state batteries with long cycle life. Adv. Energy Mater. 11, 2101370 (2021).

    Article  CAS  Google Scholar 

  16. Doux, J. M. et al. Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 8, 5049–5055 (2020).

    Article  CAS  Google Scholar 

  17. Su, Y. et al. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 13, 908–916 (2020).

    Article  CAS  Google Scholar 

  18. Ye, L. et al. Toward higher voltage solid–state batteries by metastability and kinetic stability design. Adv. Energy Mater. 10, 2001569 (2020). This paper provides an insight on how mechanical constrictions can lead to mechanically induced metastability and how mechanical constrictions can control decomposition kinetics to reach unparalleled voltages and more stable interfaces.

    Article  CAS  Google Scholar 

  19. Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H. et al. Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv. Energy Mater. 11, 2102148 (2021).

    Article  CAS  Google Scholar 

  21. Liang, J. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Dixit, M. et al. The role of isostatic pressing in large-scale production of solid-state batteries. ACS Energy Lett. 7, 3936–3946 (2022).

    Article  CAS  Google Scholar 

  23. Tian, H. K. & Qi, Y. Simulation of the effect of contact area Loss in all-solid-state Li-ion batteries. J. Electrochem. Soc. 164, E3512–E3521 (2017). This study computes the contact area variation for all-solid-state Li-ion batteries during cycling and provides the optimal pressure value to recover the capacity drop due to contact area loss.

    Article  CAS  Google Scholar 

  24. Persson, B. N. J. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006).

    Article  CAS  Google Scholar 

  25. Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matsuda, S. & Nakamura, K. Effect of confining pressure on the Li/Li7La3Zr2O12 interface during Li dissolution/deposition cycles. ACS Appl. Energy Mater. 3, 11113–11118 (2020).

    Article  CAS  Google Scholar 

  27. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, W. et al. Electrochemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5, 9929–9936 (2017).

    Article  CAS  Google Scholar 

  29. Hao, F., Han, F., Liang, Y., Wang, C. & Yao, Y. Architectural design and fabrication approaches for solid-state batteries. MRS Bull. 43, 775–781 (2018).

    Article  CAS  Google Scholar 

  30. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  31. Liu, X. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 11, 2003583 (2021).

    Article  CAS  Google Scholar 

  32. Yan, H. et al. How does the creep stress regulate void formation at the lithium–solid electrolyte interface during stripping? Adv. Energy Mater. 12, 2102283 (2022). This paper develops a general electro-chemomechanical model to reveal the mechanisms of void formation during Li stripping and explores the competitive influences between stack pressure and current density on void formation.

    Article  CAS  Google Scholar 

  33. Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Cronau, M., Szabo, M., König, C., Wassermann, T. B. & Roling, B. How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes. ACS Energy Lett. 6, 3072–3077 (2021). This study reports the differences among different types of SSE materials (amorphous electrolytes, glass ceramic electrolytes and microcrystalline electrolytes) with regard to the influences of both fabrication pressure and stack pressure on the ionic conductivity.

    Article  CAS  Google Scholar 

  35. Il’ina, E. A., Andreev, O. L., Antonov, B. D. & Batalov, N. N. Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate–nitrate methods. J. Power Sources 201, 169–173 (2012).

    Article  Google Scholar 

  36. Raj, V. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Kang, H. et al. Geometric and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 electrode with different calendering conditions. Electrochim. Acta 232, 431–438 (2017).

    Article  CAS  Google Scholar 

  38. Ebner, M., Geldmacher, F., Marone, F., Stampanoni, M. & Wood, V. X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845–850 (2013).

    Article  CAS  Google Scholar 

  39. Gao, X. et al. Solid-state lithium battery cathodes operating at low pressures. Joule 6, 636–646 (2022).

    Article  CAS  Google Scholar 

  40. Li, W. J., Hirayama, M., Suzuki, K. & Kanno, R. Fabrication and all solid-state battery performance of TiS2/Li10GeP2S12 composite electrodes. Mater. Trans. 57, 549–552 (2016).

    Article  Google Scholar 

  41. Bae Song, Y. et al. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Curr. Opin. Solid. State Mater. Sci. 26, 100977 (2022).

    Article  CAS  Google Scholar 

  42. Kuppan, S., Xu, Y., Liu, Y. & Chen, G. Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy. Nat. Commun. 8, 14309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamamoto, M., Terauchi, Y., Sakuda, A., Kato, A. & Takahashi, M. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries. J. Power Sources 473, 228595 (2020).

    Article  CAS  Google Scholar 

  44. Lajtai, E. Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics 11, 129–156 (1971).

    Article  Google Scholar 

  45. Taghikhani, K., Weddle, P. J., Hoffman, R. M., Berger, J. R. & Kee, R. J. Electro-chemo-mechanical finite-element model of single-crystal and polycrystalline NMC cathode particles embedded in an argyrodite solid electrolyte. Electrochim. Acta 460, 142585 (2023).

    Article  CAS  Google Scholar 

  46. Kalnaus, S., Dudney, N. J., Westover, A. S., Herbert, E. & Hackney, S. Solid-state batteries: the critical role of mechanics. Science 381, 1300 (2023). This review focuses on the stress and strain that originates from normal and extended cycling of SSLBs and the associated mechanisms for stress relief.

    Article  Google Scholar 

  47. Wolfenstine, J. et al. A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ion conductors. Mater. Lett. 96, 117–120 (2013).

    Article  CAS  Google Scholar 

  48. Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2018).

    Article  Google Scholar 

  49. Robertson, W. M. & Montgomery, D. J. Elastic modulus of isotopically-concentrated lithium. Phys. Rev. 117, 440–442 (1960).

    Article  CAS  Google Scholar 

  50. Zhang, L. et al. Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y. & Cheng, Y. T. A nanoindentation study of the viscoplastic behavior of pure lithium. Scr. Mater. 130, 191–195 (2017).

    Article  CAS  Google Scholar 

  53. Herbert, E. G., Hackney, S. A., Thole, V., Dudney, N. J. & Phani, P. S. Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of the transition from diffusion to dislocation-mediated flow. J. Mater. Res. 33, 1361–1368 (2018).

    Article  CAS  Google Scholar 

  54. Herbert, E. G., Hackney, S. A., Dudney, N. J. & Phani, P. S. Nanoindentation of high-purity vapor deposited lithium films: the elastic modulus. J. Mater. Res. 33, 1335–1346 (2018).

    Article  CAS  Google Scholar 

  55. Wang, Z. et al. Creep–enabled 3D solid–state lithium-metal battery. Chem 6, 2878–2892 (2020).

    Article  CAS  Google Scholar 

  56. Singh, D. K. et al. Overcoming anode instability in solid-state batteries through control of the lithium metal microstructure. Adv. Funct. Mater. 33, 2211067 (2023).

    Article  CAS  Google Scholar 

  57. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Lu, Y. et al. The void formation behaviors in working solid-state Li metal batteries. Sci. Adv. 8, eadd0510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doux, J. M. et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    Article  CAS  Google Scholar 

  60. Ham, S. Y. et al. Assessing the critical current density of all-solid-state Li metal symmetric and full cells. Energy Storage Mater. 55, 455–462 (2023).

    Article  Google Scholar 

  61. Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    Article  CAS  Google Scholar 

  62. Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries — an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. McConohy, G. et al. Mechanical regulation of lithium intrusion probability in garnet solid electrolytes. Nat. Energy 8, 241–250 (2023).

    Article  CAS  Google Scholar 

  64. Hu, X. et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries. Adv. Mater. 36, 2308275 (2023).

    Article  Google Scholar 

  65. Ghazi, Z. A. et al. Key aspects of lithium metal anodes for lithium metal batteries. Small 15, 1900687 (2019).

    Article  Google Scholar 

  66. Fincher, C. D. et al. Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 6, 2794–2809 (2022).

    Article  CAS  Google Scholar 

  67. Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023). This paper shows that initiation and propagation of Li dendrites in SSLBs are separate processes, and investigates the effect of pressurizing Li anodes during charge on crack propagation.

    Article  CAS  PubMed  Google Scholar 

  68. Motoyama, M., Ejiri, M. & Iriyama, Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067–A7071 (2015).

    Article  CAS  Google Scholar 

  69. Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling ‘lithium-free’ manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials — on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article  CAS  Google Scholar 

  71. Kazyak, E. et al. Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy. Matter 5, 3912–3934 (2022).

    Article  CAS  Google Scholar 

  72. Lai, G. et al. The mechanism of external pressure suppressing dendrites growth in Li metal batteries. J. Energy Chem. 79, 489–494 (2023). This paper develops a machine learning potential model to study the mechanism of dendrite growth suppression by external pressure in Li metal batteries.

    Article  CAS  Google Scholar 

  73. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  CAS  Google Scholar 

  74. Monroe, C. & Newman, J. The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004).

    Article  CAS  Google Scholar 

  75. Deshpande, V. S. & McMeeking, R. M. Models for the interplay of mechanics, electrochemistry, thermodynamics, and kinetics in lithium-ion batteries. Appl. Mech. Rev. 75, 010801 (2023). This review focuses on the modelling of the interplay of mechanics, electrochemistry, thermodynamics and kinetics in SSLBs.

    Article  Google Scholar 

  76. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2004).

    Article  Google Scholar 

  77. Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid–solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).

    Article  PubMed  Google Scholar 

  78. Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022).

    Article  CAS  Google Scholar 

  80. Fu, J. et al. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ. Sci. 12, 1404–1412 (2019).

    Article  CAS  Google Scholar 

  81. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  82. Fu, X. et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv. Mater. 32, 2000575 (2020).

    Article  CAS  Google Scholar 

  83. Striebel, K. A., Sierra, A., Shim, J., Wang, C. W. & Sastry, A. M. The effect of compression on natural graphite anode performance and matrix conductivity. J. Power Sources 134, 241–251 (2004).

    Article  CAS  Google Scholar 

  84. Arroyo y de Dompablo, M. E. et al. Polymorphs of Li3PO4 and Li2MSiO4 (M = Mn, Co). J. Power Sources 189, 638–642 (2009).

    Article  CAS  Google Scholar 

  85. Yamaura, K. et al. Spinel-to-CaFe2O4-type structural transformation in LiMn2O4 under high pressure. J. Am. Chem. Soc. 128, 9448–9456 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Yu, J. et al. Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries. Energy Storage Mater. 46, 68–75 (2022).

    Article  Google Scholar 

  87. Huang, Y. et al. Li-ion battery material under high pressure: amorphization and enhanced conductivity of Li4Ti5O12. Natl Sci. Rev. 6, 239–246 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Amador, U. et al. High pressure polymorphs of LiCoPO4 and LiCoAsO4. Solid. State Sci. 11, 343–348 (2009).

    Article  CAS  Google Scholar 

  89. Tealdi, C., Heath, J. & Islam, M. S. Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects. J. Mater. Chem. A 4, 6998–7004 (2016).

    Article  CAS  Google Scholar 

  90. Wu, H., Wang, Z. & Fan, H. Stress–induced nanoparticle crystallization. J. Am. Chem. Soc. 136, 7634–7636 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kamali, K. & Ravindran, T. R. Temperature and pressure dependent phase transitions of beta’-LiZr2(PO4)3 studied by Raman spectroscopy. J. Phys. Chem. A 120, 1971–1977 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Wu, L., Liu, Y., Zhang, D., Feng, L. & Qin, W. Improved electrochemical performance at high rates of LiNi0.6Co0.2Mn0.2O2 cathode materials by pressure–treatment. J. Solid. State Chem. 289, 121487 (2020).

    Article  CAS  Google Scholar 

  93. Xiao, P., Lv, T., Chen, X. & Chang, C. LiNi0.8Co0.15Al0.05O2: enhanced electrochemical performance from reduced cationic disordering in Li slab. Sci. Rep. 7, 1408 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Uyama, T., Mukai, K. & Yamada, I. Synthesis of rhombohedral LiCo0.64Mn0.36O2 using a high-pressure method. Inorg. Chem. 58, 6684–6695 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Abulikemu, A. et al. Partial cation disorder in Li2MnO3 obtained by high-pressure synthesis. Appl. Phys. Lett. 120, 182404 (2022).

    Article  CAS  Google Scholar 

  96. Wang, S., Liu, J. & Sun, Q. New allotropes of Li2MnO3 as cathode materials with better cycling performance predicted in high pressure synthesis. J. Mater. Chem. A 5, 16936–16943 (2017).

    Article  CAS  Google Scholar 

  97. Uyama, T., Mukai, K. & Yamada, I. High-pressure synthesis and electrochemical properties of tetragonal LiMnO2. RSC Adv. 8, 26325–26334 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, S. et al. A high-pressure induced stable phase of Li2MnSiO4 as an effective poly-anion cathode material from simulations. J. Mater. Chem. A 7, 16406–16413 (2019).

    Article  CAS  Google Scholar 

  99. Grzechnik, A. et al. Reversible antifluorite to anticotunnite phase transition in Li2S at high pressures. J. Solid. State Chem. 154, 603–611 (2000).

    Article  CAS  Google Scholar 

  100. García−Moreno, O. et al. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LiMPO4 (M = Fe and Ni). Chem. Mater. 13, 1570–1576 (2001).

    Article  Google Scholar 

  101. Zhang, M. et al. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides. Matter 4, 164–181 (2021).

    Article  CAS  Google Scholar 

  102. Schneider, C. et al. Effect of particle size and pressure on the transport properties of the fast ion conductor t-Li7SiPS8. Adv. Energy Mater. 13, 2203873 (2023).

    Article  CAS  Google Scholar 

  103. Yoshiyuki Inaguma, J. Y., Yue−Jin, S., Mitsuru, I. & Nakamura, T. The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J. Electrochem. Soc. 142, L8–L11 (1995).

    Article  Google Scholar 

  104. Hirose, E., Niwa, K., Kataoka, K., Akimoto, J. & Hasegawa, M. Structural stability of the Li-ion conductor Li7La3Zr2O12 investigated by high-pressure in-situ X–ray diffraction and Raman spectroscopy. Mater. Res. Bull. 107, 361–365 (2018).

    Article  CAS  Google Scholar 

  105. Guillaume, C. L. et al. Cold melting and solid structures of dense lithium. Nat. Phys. 7, 211–214 (2011).

    Article  CAS  Google Scholar 

  106. Wang, X. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 19, 1339–1345 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, Q. et al. Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Mater. 25, 613–620 (2020).

    Article  Google Scholar 

  108. Liu, Q. et al. Self-healing janus interfaces for high–performance LAGP-based lithium metal batteries. ACS Energy Lett. 5, 1456–1464 (2020).

    Article  CAS  Google Scholar 

  109. Wu, F., Fitzhugh, W., Ye, L., Ning, J. & Li, X. Advanced sulfide solid electrolyte by core–shell structural design. Nat. Commun. 9, 4037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fitzhugh, W., Ye, L. & Li, X. The effects of mechanical constriction on the operation of sulfide based solid-state batteries. J. Mater. Chem. A 7, 23604–23627 (2019).

    Article  CAS  Google Scholar 

  111. Fitzhugh, W., Wu, F., Ye, L., Su, H. & Li, X. Strain-stabilized ceramic–sulfide electrolytes. Small 15, 1901470 (2019).

    Article  Google Scholar 

  112. Soto, F. A., Marzouk, A., El-Mellouhi, F. & Balbuena, P. B. Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem. Mater. 30, 3315–3322 (2018).

    Article  CAS  Google Scholar 

  113. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems — the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  CAS  Google Scholar 

  114. Peled, E. & Menkin, S. Review — SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  115. Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019).

    Article  CAS  Google Scholar 

  116. Jung, W. D. et al. Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 20, 2303–2309 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021). This paper reports a solid-state battery design of a less-stable electrolyte sandwiched between more-stable solid electrolytes that is not sensitive to micrometre-sized cracks, to achieve an ultrahigh current density with no Li dendrite penetration.

    Article  CAS  PubMed  Google Scholar 

  119. Gil−González, E. et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries. Energy Storage Mater. 45, 484–493 (2022).

    Article  Google Scholar 

  120. Ganser, M. et al. An extended formulation of Butler–Volmer electrochemical reaction kinetics including the influence of mechanics. J. Electrochem. Soc. 166, H167–H176 (2019). This work discusses the quantitative effects of external pressure on chemical reactions in SSLBs described by the extended version of the Butler–Volmer equation.

    Article  CAS  Google Scholar 

  121. Giovanelli, D., Lawrence, N. S. & Compton, R. G. Electrochemistry at high pressures: a review. Electroanalysis 16, 789–810 (2004).

    Article  CAS  Google Scholar 

  122. Seo, H. K. et al. Strong stress–composition coupling in lithium alloy nanoparticles. Nat. Commun. 10, 3428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    Article  CAS  Google Scholar 

  124. Muralidharan, N. et al. Tunable mechanochemistry of lithium battery electrodes. ACS Nano 11, 6243–6251 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Christensen, J. & Newman, J. Stress generation and fracture in lithium insertion materials. J. Solid. State Electrochem. 10, 293–319 (2006).

    Article  CAS  Google Scholar 

  126. Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Article  Google Scholar 

  127. Wu, J. et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021).

    Article  CAS  Google Scholar 

  128. Cheng, D. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article  CAS  Google Scholar 

  129. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Liu, M. et al. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nat. Commun. 12, 5943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, H. et al. In operando neutron scattering multiple-scale studies of lithium-ion batteries. Small 18, e2107491 (2022).

    Article  PubMed  Google Scholar 

  132. Atkins, D. et al. Accelerating battery characterization using neutron and synchrotron techniques: toward a multi-modal and multi-scale standardized experimental workflow. Adv. Energy Mater. 12, 2102694 (2021).

    Article  Google Scholar 

  133. Jung, S. H. et al. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries. Adv. Energy Mater. 10, 1903360 (2019).

    Article  Google Scholar 

  134. Li, L. et al. Toward high performance all-solid-state lithium batteries with high-voltage cathode materials: design strategies for solid electrolytes, cathode interfaces, and composite electrodes. Adv. Energy Mater. 11, 2003154 (2021).

    Article  CAS  Google Scholar 

  135. Wang, S. et al. Artificial alloy/Li3N double-layer enabling stable high-capacity lithium metal anodes. ACS Appl. Energy Mater. 4, 13132–13139 (2021).

    Article  CAS  Google Scholar 

  136. Zhao, X. et al. Design principles for zero-strain Li-ion cathodes. Joule 6, 1654–1671 (2022).

    Article  CAS  Google Scholar 

  137. Xu, C. et al. Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity of composite lithium for stable solid-state lithium batteries. Energy Environ. Sci. 16, 1049 (2023).

    Article  Google Scholar 

  138. Liu, Q. et al. Transference number reinforced-based gel copolymer electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 12, 26612–26621 (2022).

    Article  Google Scholar 

  139. Gao, H. et al. Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nat. Commun. 13, 5050 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bingkun Hu et al. An in situ-formed mosaic Li7Sn3@LiF interface layer for high-rate and long-life garnet-based lithium metal batteries. ACS Appl. Mater. Interfaces 11, 34939–34947 (2019).

    Article  PubMed  Google Scholar 

  141. Kai, S. et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 11784–11788 (2020).

    Article  Google Scholar 

  142. Zheng, H. et al. A rational design of garnet-type Li7La3Zr2O12 with ultrahigh moisture stability. Energy Storage Mater. 49, 278–290 (2022).

    Article  Google Scholar 

  143. Ren, Y. et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. J. Eur. Ceram. Soc. 35, 561–572 (2015).

    Article  CAS  Google Scholar 

  144. Buschmann, H., Berendts, S., Mogwitz, B. & Janek, J. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors ‘Li7La3Zr2O12’ and Li7−xLa3Zr2−xTaxO12 with garnet-type structure. J. Power Sources 206, 236–244 (2012).

    Article  CAS  Google Scholar 

  145. Sun, F. et al. Local Li+ framework regulation of a garnet-type solid-state electrolyte. ACS Energy Lett. 7, 2835–2844 (2022).

    Article  CAS  Google Scholar 

  146. Yu, C. et al. Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Mater. 30, 238–249 (2020).

    Article  Google Scholar 

  147. Zhou, L. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article  CAS  Google Scholar 

  148. Park, K. H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article  CAS  Google Scholar 

  149. Wang, C. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 76, 105015 (2020).

    Article  CAS  Google Scholar 

  150. Riegger, L. M., Schlem, R., Sann, J., Zeier, W. G. & Janek, J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed. 60, 6718–6723 (2021).

    Article  CAS  Google Scholar 

  151. Lee, W. et al. Ceramic–salt composite electrolytes from cold sintering. Adv. Funct. Mater. 29, 1807872 (2019).

    Article  Google Scholar 

  152. Chen, L. et al. Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, e2106142 (2021).

    Article  PubMed  Google Scholar 

  153. Duan, H. et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew. Chem. Int. Ed. 59, 12069–12075 (2020).

    Article  CAS  Google Scholar 

  154. Li, S. Y., Wang, W. P., Xin, S., Zhang, J. & Guo, Y. G. A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Mater. 32, 458–464 (2020).

    Article  Google Scholar 

  155. Sun, Z. et al. Transition metal dichalcogenides in alliance with Ag ameliorate the interfacial connection between Li anode and garnet solid electrolyte. J. Power Sources 468, 228379 (2020).

    Article  CAS  Google Scholar 

  156. Ji, X. et al. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, 2002741 (2020).

    Article  CAS  Google Scholar 

  157. Zeng, D. et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun. 13, 1909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jiang, Z. et al. Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries. Energy Storage Mater. 56, 300–309 (2023).

    Article  Google Scholar 

  159. Chen, X. et al. Improved stability against moisture and lithium metal by doping F into Li3InCl6. J. Power Sources 545, 231939 (2022).

    Article  CAS  Google Scholar 

  160. Mo, H. et al. Lead-free solid-state organic–inorganic halide perovskite electrolyte for lithium-ion conduction. ACS Appl. Mater. Interfaces 14, 17479–17485 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.L. acknowledges support by National Nature Science Foundation of China (no. 52072208 and no. 52261160384), the Shenzhen Science and Technology Program (KCXFZ20211020163810015), the Fundamental Research Project of Shenzhen (no. JCYJ20220818101004009), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111) and Shenzhen Outstanding Talents Training Fund. G.W. acknowledges support by the Australian Research Council through the ARC Discovery projects (DP210101389 and DP230101579), ARC Linkage project (LP200200926) and ARC Research Hub for Integrated Energy Storage Solutions (IH180100020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and writing of the manuscript, added substantial thoughts and revised the manuscript in a collaborative manner.

Corresponding authors

Correspondence to Dong Zhou, Baohua Li, Guoxiu Wang or Doron Aurbach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Venkatasubramanian Viswanathan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, Z., Zhang, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00669-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00669-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing