Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of engineered materials in mucosal vaccination strategies

Abstract

Mucosal pathogens, as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus (HIV) and Mycobacterium tuberculosis, lead to substantial morbidity and mortality worldwide and pose serious threats to global health. Mucosal vaccination is crucial to combating mucosal pathogens because it enables the immune system to directly target and neutralize pathogens at their point of entry. Mucosal vaccines need to penetrate the mucus layer, reach the target tissue and activate robust immune responses in the mucosal tissues. Material-based strategies are necessary to meet these requirements. In this Review, we provide an overview of current mucosal vaccines, categorized by administration route, to highlight the importance of material design in overcoming the existing delivery challenges. We discuss the different classes of materials currently being used as vaccine carriers to induce antigen-specific mucosal immunity, including lipids, natural and synthetic polymers, inorganic materials and pathogen-inspired materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of type I and II mucosal tissues, and mucosal tissue IgA distribution.
Fig. 2: Vaccine administration routes and delivery vehicles.

Similar content being viewed by others

References

  1. Miquel-Clopés, A., Bentley, E. G., Stewart, J. P. & Carding, S. R. Mucosal vaccines and technology. Clin. Exp. Immunol. 196, 205–214 (2019).

    Article  Google Scholar 

  2. Knisely, J. M. et al. Mucosal vaccines for SARS-CoV-2: scientific gaps and opportunities — workshop report. NPJ Vaccines 8, 53 (2023).

    Article  Google Scholar 

  3. Mudgal, R., Nehul, S. & Tomar, S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum. Vaccin. Immunother. 16, 2921–2931 (2020).

    Article  CAS  Google Scholar 

  4. Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184.e13 (2020).

    Article  CAS  Google Scholar 

  5. Lavelle, E. C. & Ward, R. W. Mucosal vaccines — fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2021).

    Article  Google Scholar 

  6. Iwasaki, A. Exploiting mucosal immunity for antiviral vaccines. Annu. Rev. Immunol. 34, 575–608 (2016).

    Article  CAS  Google Scholar 

  7. France, M. M. & Turner, J. R. The mucosal barrier at a glance. J. Cell Sci. 130, 307–314 (2017).

    CAS  Google Scholar 

  8. Huang, M., Zhang, M., Zhu, H., Du, X. & Wang, J. Mucosal vaccine delivery: a focus on the breakthrough of specific barriers. Acta Pharm. Sin. B 12, 3456–3474 (2022).

    Article  CAS  Google Scholar 

  9. Anggraeni, R., Ana, I. D. & Wihadmadyatami, H. Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants. Clin. Exp. Vaccin. Res. 11, 235 (2022).

    Article  CAS  Google Scholar 

  10. Lavelle, E. C. & Ward, R. W. Mucosal vaccines — fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Article  CAS  Google Scholar 

  11. Holmgren, J., Czerkinsky, C., Lycke, N. & Svennerholm, A.-M. Mucosal immunity: implications for vaccine development. Immunobiology 184, 157–179 (1992).

    Article  CAS  Google Scholar 

  12. Kraan, H. et al. Buccal and sublingual vaccine delivery. J. Control. Release 190, 580–592 (2014).

    Article  CAS  Google Scholar 

  13. Allen, A. & Carroll, N. J. H. Adherent and soluble mucus in the stomach and duodenum. Dig. Dis. Sci. 30, 55S–62S (1985).

    Article  CAS  Google Scholar 

  14. Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G922–G929 (2001).

    Article  CAS  Google Scholar 

  15. Corr, S. C., Gahan, C. C. G. M. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).

    Article  CAS  Google Scholar 

  16. Leal, J., Smyth, H. D. C. & Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 532, 555–572 (2017).

    Article  CAS  Google Scholar 

  17. Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    Article  CAS  Google Scholar 

  18. Schuster, B. S., Suk, J. S., Woodworth, G. F. & Hanes, J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34, 3439–3446 (2013).

    Article  CAS  Google Scholar 

  19. Li, M. et al. Mucosal vaccines: strategies and challenges. Immunol. Lett. 217, 116–125 (2020).

    Article  CAS  Google Scholar 

  20. Skwarczynski, M. & Toth, I. Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opin. Drug Deliv. 17, 435–437 (2020).

    Article  Google Scholar 

  21. Bull, N. C. et al. Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1+ KLRG1 CD4+ T cells. Mucosal Immunol. 12, 555–564 (2019).

    Article  CAS  Google Scholar 

  22. Dijkman, K. et al. Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat. Med. 25, 255–262 (2019).

    Article  CAS  Google Scholar 

  23. Li, Y., Jin, L., Chen, T. & Pirozzi, C. J. The effects of secretory IgA in the mucosal immune system. Biomed. Res. Int. https://doi.org/10.1155/2020/2032057 (2020).

  24. Kubagawa, H. et al. Analysis of paraprotein transport into the saliva by using anti-idiotype antibodies. J. Immunol. 138, 435–439 (1987).

    Article  CAS  Google Scholar 

  25. Holmgren, J. & Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 11, S45–S53 (2005).

    Article  CAS  Google Scholar 

  26. Sasson, S. C., Gordon, C. L., Christo, S. N., Klenerman, P. & Mackay, L. K. Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell. Mol. Immunol. 17, 113–122 (2020).

    Article  CAS  Google Scholar 

  27. Kozlowski, P. A., Cu-Uvin, S., Neutra, M. R. & Flanigan, T. P. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun. 65, 1387–1394 (1997).

    Article  CAS  Google Scholar 

  28. Eriksson, K. et al. Specific-antibody-secreting cells in the rectums and genital tracts of nonhuman primates following vaccination. Infect. Immun. 66, 5889–5896 (1998).

    Article  CAS  Google Scholar 

  29. Gockel, C. M., Bao, S. & Beagley, K. W. Transcutaneous immunization induces mucosal and systemic immunity: a potent method for targeting immunity to the female reproductive tract. Mol. Immunol. 37, 537–544 (2000).

    Article  CAS  Google Scholar 

  30. Johansson, E. L., Wassén, L., Holmgren, J., Jertborn, M. & Rudin, A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect. Immun. 69, 7481–7486 (2001).

    Article  CAS  Google Scholar 

  31. Belyakov, I. M., Hammond, S. A., Ahlers, J. D., Glenn, G. M. & Berzofsky, J. A. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J. Clin. Invest. 113, 998–1007 (2004).

    Article  CAS  Google Scholar 

  32. Moldoveanu, Z., Clements, M. L., Prince, S. J., Murphy, B. R. & Mestecky, J. Human immune responses to influenza virus vaccines administered by systemic or mucosal routes. Vaccine 13, 1006–1012 (1995).

    Article  CAS  Google Scholar 

  33. Marconescu, P. S., Smallshaw, J. E., Pop, L. M., Ruback, S. L. & Vitetta, E. S. Intradermal administration of RiVax protects mice from mucosal and systemic ricin intoxication. Vaccine 28, 5315–5322 (2010).

    Article  CAS  Google Scholar 

  34. Challacombe, S. J., Rahman, D. & O’Hagan, D. T. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 15, 169–175 (1997).

    Article  CAS  Google Scholar 

  35. Eng, N. F., Garlapati, S., Gerdts, V., Babiuk, L. A. & Mutwiri, G. K. PCEP enhances IgA mucosal immune responses in mice following different immunization routes with influenza virus antigens. J. Immune Based Ther. Vaccines 8, 4 (2010).

    Article  Google Scholar 

  36. Yang, Z., Zhao, Q., Gao, Y. A. & Zhang, W. Combined oral and intravenous immunization stimulates strong IgA responses in both systemic and mucosal compartments. PLoS ONE 11, e0168037 (2016).

    Article  Google Scholar 

  37. Kuo-Haller, P., Cu, Y., Blum, J., Appleton, J. A. & Saltzman, W. M. Vaccine delivery by polymeric vehicles in the mouse reproductive tract induces sustained local and systemic immunity. Mol. Pharm. 7, 1585–1595 (2010).

    Article  CAS  Google Scholar 

  38. Henriques, P., Fortuna, A. & Doktorovová, S. Spray dried powders for nasal delivery: process and formulation considerations. Eur. J. Pharm. Biopharm. 176, 1–20 (2022).

    Article  CAS  Google Scholar 

  39. Chavda, V. P., Baviskar, K. P., Vaghela, D. A., Raut, S. S. & Bedse, A. P. Nasal sprays for treating COVID-19: a scientific note. Pharmacol. Rep. 75, 249–265 (2023).

    Article  Google Scholar 

  40. Luczo, J. M. et al. Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. NPJ Vaccines 6, 59 (2021).

    Article  CAS  Google Scholar 

  41. Patil, H. P. et al. Adjuvantation of pulmonary-administered influenza vaccine with GPI-0100 primarily stimulates antibody production and memory B cell proliferation. Vaccines 5, 19 (2017).

    Article  Google Scholar 

  42. Canelli, E. et al. Nano-adjuvanted dry powder vaccine for the mucosal immunization against airways pathogens. Front. Vet. Sci. 10, 1116722 (2023).

    Article  Google Scholar 

  43. Rossi, I. et al. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J. Control. Rel. 340, 209–220 (2021).

    Article  CAS  Google Scholar 

  44. Prausnitz, M. R., Mitragotri, S. & Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug. Discov. 3, 115–124 (2004).

    Article  CAS  Google Scholar 

  45. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article  CAS  Google Scholar 

  46. Czerkinsky, C., Çuburu, N., Kweon, M.-N., Anjuere, F. & Holmgren, J. Sublingual vaccination. Hum. Vaccin. 7, 110–114 (2011).

    Article  CAS  Google Scholar 

  47. Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9, eaaf6413 (2017).

    Article  Google Scholar 

  48. Jones, A. T. et al. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat. Commun. 10, 798 (2019).

    Article  CAS  Google Scholar 

  49. Ma, Y. et al. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm. Res. 31, 2393–2403 (2014).

    Article  CAS  Google Scholar 

  50. Mašek, J. et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles — important step towards effective mucosal vaccines. J. Control. Release 249, 183–195 (2017).

    Article  Google Scholar 

  51. Ou, B., Yang, Y., Lv, H., Lin, X. & Zhang, M. Current progress and challenges in the study of adjuvants for oral vaccines. BioDrugs 37, 143–180 (2023).

    Article  Google Scholar 

  52. Mokabari, K., Iriti, M. & Varoni, E. M. Mucoadhesive vaccine delivery systems for the oral mucosa. J. Dent. Res. 102, 709–718 (2023).

    Article  CAS  Google Scholar 

  53. Coffey, J. W., Gaiha, G. Das & Traverso, G. Oral biologic delivery: advances toward oral subunit, DNA, and mRNA vaccines and the potential for mass vaccination during pandemics. Annu. Rev. Pharmacol. Toxicol. 61, 517–540 (2021).

    Article  CAS  Google Scholar 

  54. Corthésy, B. & Bioley, G. Lipid-based particles: versatile delivery systems for mucosal vaccination against infection. Front. Immunol. 9, 431 (2018).

    Article  Google Scholar 

  55. Schwendener, R. A. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2, 152–182 (2014).

    Google Scholar 

  56. Wang, D. et al. Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 28, 3134–3142 (2010).

    Article  CAS  Google Scholar 

  57. Pang, Y. et al. Reduction of salmonella enteritidis number after infections by immunization of liposome-associated recombinant SefA. Avian Dis. 57, 627–633 (2013).

    Article  Google Scholar 

  58. Gupta, P. N. & Vyas, S. P. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf. B 82, 118–125 (2011).

    Article  CAS  Google Scholar 

  59. Wang, N. et al. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur. J. Pharm. Biopharm. 88, 194–206 (2014).

    Article  CAS  Google Scholar 

  60. Ma, T., Wang, L., Yang, T., Ma, G. & Wang, S. M-cell targeted polymeric lipid nanoparticles containing a Toll-like receptor agonist to boost oral immunity. Int. J. Pharm. 473, 296–303 (2014).

    Article  CAS  Google Scholar 

  61. He, H. et al. Adapting liposomes for oral drug delivery adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 9, 36–48 (2019).

    Article  Google Scholar 

  62. Shukla, A., Mishra, V. & Kesharwani, P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug. Discov. Today 21, 888–899 (2016).

    Article  CAS  Google Scholar 

  63. Eliasson, D. G. et al. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 29, 3951–3961 (2011).

    Article  CAS  Google Scholar 

  64. Mohamedi, S. A., Heath, A. W. & Jennings, R. A comparison of oral and parenteral routes for therapeutic vaccination with HSV-2 ISCOMs in mice; cytokine profiles, antibody responses and protection. Antivir. Res. 49, 83–99 (2001).

    Article  CAS  Google Scholar 

  65. Aguila, A. et al. Induction of protective and mucosal immunity against diphtheria by a immune stimulating complex (ISCOMS) based vaccine. Vaccine 24, 5201–5210 (2006).

    Article  CAS  Google Scholar 

  66. Baudner, B. C. & O’Hagan, D. T. Bioadhesive delivery systems for mucosal vaccine delivery. J. Drug. Target. 18, 752–770 (2010).

    Article  CAS  Google Scholar 

  67. Jabbal-Gill, I., Watts, P. & Smith, A. Chitosan-based delivery systems for mucosal vaccines. Expert. Opin. Drug. Deliv. 9, 1051–1067 (2012).

    Article  CAS  Google Scholar 

  68. Surwase, S. S. et al. Engineered nanoparticles inside a microparticle oral system for enhanced mucosal and systemic immunity. ACS Appl. Mater. Interfaces 14, 11124–11143 (2022).

    Article  CAS  Google Scholar 

  69. Van der Lubben, I. M., Verhoef, J. C., Borchard, G. & Junginger, H. E. Chitosan for mucosal vaccination. Adv. Drug. Deliv. Rev. 52, 139–144 (2001).

    Article  Google Scholar 

  70. Hori, M., Onishi, H. & Machida, Y. Evaluation of Eudragit-coated chitosan microparticles as an oral immune delivery system. Int. J. Pharm. 297, 223–234 (2005).

    Article  CAS  Google Scholar 

  71. Borges, O. et al. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J. Control. Release 114, 348–358 (2006).

    Article  CAS  Google Scholar 

  72. Borges, O. et al. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur. J. Pharm. Sci. 32, 278–290 (2007).

    Article  CAS  Google Scholar 

  73. De Smet, R., Allais, L. & Cuvelier, C. A. Recent advances in oral vaccine development. Hum. Vaccin. Immunother. 10, 1309–1318 (2014).

    Article  Google Scholar 

  74. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  CAS  Google Scholar 

  75. Vroman, I. & Tighzert, L. Biodegradable polymers. Materials 2, 307–344 (2009).

    Article  CAS  Google Scholar 

  76. Corthésy, B. et al. A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J. Biol. Chem. 271, 33670–33677 (1996).

    Article  Google Scholar 

  77. Nochi, T. et al. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc. Natl Acad. Sci. USA 104, 10986–10981 (2007).

    Article  CAS  Google Scholar 

  78. Tokuhara, D. et al. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine. Proc. Natl Acad. Sci. USA 107, 8794–8799 (2010).

    Article  CAS  Google Scholar 

  79. Atwe, S. U., Ma, Y. & Gill, H. S. Pollen grains for oral vaccination. J. Control. Release 194, 45–52 (2014).

    Article  CAS  Google Scholar 

  80. Pantazica, A. M. M., Cucos, L. M., Stavaru, C., Clarke, J. L. & Branza-Nichita, N. Challenges and prospects of plant-derived oral vaccines against hepatitis B and C viruses. Plants 10, 2037 (2021).

    Article  CAS  Google Scholar 

  81. Chan, H. T. & Daniell, H. Plant-made oral vaccines against human infectious diseases — are we there yet? Plant Biotechnol. J. 13, 1056–1070 (2015).

    Article  CAS  Google Scholar 

  82. Conway, M. A., Madrigal-Estebas, L., McClean, S., Brayden, D. J. & Mills, K. H. G. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19, 1940–1950 (2001).

    Article  CAS  Google Scholar 

  83. Maloy, K. J., Donachie, A. M., O’Hagan, D. T. & Mowat, A. M. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology 81, 661–667 (1994).

    CAS  Google Scholar 

  84. Chen, S. C. et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J. Virol. 72, 5757–5761 (1998).

    Article  CAS  Google Scholar 

  85. Kaneko, H. et al. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 267, 8–16 (2000).

    Article  CAS  Google Scholar 

  86. Zhu, Q. et al. Large intestine–targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat. Med. 18, 1291–1296 (2012).

    Article  CAS  Google Scholar 

  87. Tzeng, S. Y. et al. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc. Natl Acad. Sci. USA 115, E5269–E5278 (2018).

    Article  CAS  Google Scholar 

  88. Van De Weert, M., Hennink, W. E. & Jiskoot, W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17, 1159–1167 (2000).

    Article  Google Scholar 

  89. Mittal, G., Sahana, D. K., Bhardwaj, V. & Ravi Kumar, M. N. V. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Release 119, 77–85 (2007).

    Article  CAS  Google Scholar 

  90. Butreddy, A., Gaddam, R. P., Kommineni, N., Dudhipala, N. & Voshavar, C. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int. J. Mol. Sci. 22, 8884 (2021).

    Article  CAS  Google Scholar 

  91. Ghitman, J., Biru, E. I., Stan, R. & Iovu, H. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater. Des. 193, 108805 (2020).

    Article  CAS  Google Scholar 

  92. Operti, M. C. et al. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int. J. Pharm. 605, 120807 (2021).

    Article  CAS  Google Scholar 

  93. Snook, J. D. et al. Peptide nanofiber–CaCO3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. J. Mater. Chem. B 4, 1640–1649 (2016).

    Article  CAS  Google Scholar 

  94. Barhate, G., Gautam, M., Gairola, S., Jadhav, S. & Pokharkar, V. Enhanced mucosal immune responses against tetanus toxoid using novel delivery system comprised of chitosan-functionalized gold nanoparticles and botanical adjuvant: characterization, immunogenicity, and stability assessment. J. Pharm. Sci. 103, 3448–3456 (2014).

    Article  CAS  Google Scholar 

  95. Sun, Z. et al. The potential of calcium phosphate nanoparticles as adjuvants and vaccine delivery vehicles. Front. Mater. https://doi.org/10.3389/fmats.2021.788373 (2021).

  96. Cao, P., Han, F. Y., Grøndahl, L., Xu, Z. P. & Li, L. Enhanced oral vaccine efficacy of polysaccharide-coated calcium phosphate nanoparticles. ACS Omega 5, 18185–18197 (2020).

    Article  CAS  Google Scholar 

  97. Huang, X. et al. Characterization of calcium phosphate nanoparticles based on a pegylated chelator for gene delivery. ACS Appl. Mater. Interfaces 9, 10435–10445 (2017).

    Article  CAS  Google Scholar 

  98. Wei, X. et al. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 19, 1914–1921 (2019).

    Article  CAS  Google Scholar 

  99. Wang, T. et al. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties. Int. J. Pharm. 436, 351–358 (2012).

    Article  CAS  Google Scholar 

  100. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT02868073 (2018).

  101. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT01335347 (2013).

  102. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04563702 (2023).

  103. Liebowitz, D. et al. Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study. Lancet Infect. Dis. 20, 435–444 (2020).

    Article  CAS  Google Scholar 

  104. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT02918006 (2022).

  105. Barrett, J. C., Acar, H., Mellas, M. J. & Tirrell, M. V. in Peptide Applications in Biomedicine, Biotechnology and Bioengineering (ed. Koutsopoulos, S.) 287–326 (Woodhead, 2018).

  106. Langel, S. N. et al. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci. Transl. Med. 14, eabn6868 (2022).

    Article  CAS  Google Scholar 

  107. Raya Tonetti, F. et al. Immunomodulatory properties of bacterium-like particles obtained from immunobiotic lactobacilli: prospects for their use as mucosal adjuvants. Front Immunol. 11, 15 (2020).

    Article  Google Scholar 

  108. Villena, J. et al. Lactiplantibacillus plantarum as a potential adjuvant and delivery system for the development of SARS-Cov-2 oral vaccines. Microorganisms 9, 683 (2021).

    Article  CAS  Google Scholar 

  109. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04334980 (2022).

  110. Acevedo, R. et al. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, 21 (2014).

    Article  Google Scholar 

  111. Manus, J.-M. Brève: Covid-19 — proposition pour un vaccin oral monodose. Rev. Francoph. Lab. 2021, 13 (2021).

    Google Scholar 

  112. Ramvikas, M., Arumugam, M., Chakrabarti, S. R. & Jaganathan, K. S. in Micro and Nanotechnology in Vaccine Development, 279–301 (Elsevier, 2017).

  113. Afkhami, S. et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 185, 896–915 (2022).

    Article  CAS  Google Scholar 

  114. King, R. G. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines 9, 881 (2021).

    Article  CAS  Google Scholar 

  115. Ganesan, S. et al. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. PLoS ONE 17, e0272594 (2022).

    Article  CAS  Google Scholar 

  116. Wang, Q. et al. Intranasal booster using an Omicron vaccine confers broad mucosal and systemic immunity against SARS-CoV-2 variants. Signal. Transduct. Target. Ther. 8, 167 (2023).

    Article  CAS  Google Scholar 

  117. Wang, Z. et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat. Biomed. Eng. 6, 791–805 (2022).

    Article  CAS  Google Scholar 

  118. Wang, Z. et al. Homologous sequential immunization using salmonella oral administration followed by an intranasal boost with ferritin-based nanoparticles enhanced the humoral immune response against H1N1 influenza virus. Microbiol. Spectr. 11, e00102–e00123 (2023).

    Google Scholar 

  119. Stauft, C. B. et al. Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants. Nat. Commun. 14, 3393 (2023).

    Article  CAS  Google Scholar 

  120. Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2022).

    Article  CAS  Google Scholar 

  121. Wasan, E. K. et al. A lipidic delivery system of a triple vaccine adjuvant enhances mucosal immunity following nasal administration in mice. Vaccine 37, 1503–1515 (2019).

    Article  CAS  Google Scholar 

  122. Rose, F. et al. A strong adjuvant based on glycol-chitosan-coated lipid–polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J. Controlled Rel. 271, 88–97 (2018).

    Article  CAS  Google Scholar 

  123. Dhakal, S. et al. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front. Immunol. 9, 934 (2018).

    Article  Google Scholar 

  124. Nguyen, K. G., Mantooth, S. M., Vrabel, M. R. & Zaharoff, D. A. Intranasal delivery of thermostable subunit vaccine for cross-reactive mucosal and systemic antibody responses against SARS-CoV-2. Front. Immunol. 13, 858904 (2022).

    Article  CAS  Google Scholar 

  125. Pavot, V. et al. Directing vaccine immune responses to mucosa by nanosized particulate carriers encapsulating NOD ligands. Biomaterials 75, 327–339 (2016).

    Article  CAS  Google Scholar 

  126. Nochi, T. et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 9, 572–578 (2010).

    Article  CAS  Google Scholar 

  127. Fukuyama, Y. et al. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol. 8, 1144–1153 (2015).

    Article  CAS  Google Scholar 

  128. Shi, W. et al. Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuvant. Immunol. Lett. 198, 26–32 (2018).

    Article  CAS  Google Scholar 

  129. Deng, S. et al. An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters. Nat. Commun. 14, 2081 (2023).

    Article  CAS  Google Scholar 

  130. Afkhami, S. et al. Intranasal multivalent adenoviral-vectored vaccine protects against replicating and dormant M.tb in conventional and humanized mice. NPJ Vaccines 8, 25 (2023).

    Article  CAS  Google Scholar 

  131. Freitag, T. L. et al. Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models. Vaccine 41, 3233–3246 (2023).

    Article  CAS  Google Scholar 

  132. Moser, M. J. et al. Intranasal single-replication influenza vector induces cross-reactive serum and mucosal antibodies against SARS-CoV-2 variants. Vaccines 11, 1063 (2023).

    Article  CAS  Google Scholar 

  133. Zhang, Y. et al. Comparison of the immunogenicity of nasal‐spray rVSV vector, adenovirus vector, and inactivated COVID‐19‐based vaccines in rodent models. J. Med. Virol. 95, e28806 (2023).

    Article  CAS  Google Scholar 

  134. Matsuda, K. et al. A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity. J. Clin. Invest. 131, e140794 (2021).

    Article  Google Scholar 

  135. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT01443936 (2019).

  136. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT01806909 (2019).

  137. Matsuda, K. et al. Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Sci. Immunol. 4, eaau2710 (2019).

    Article  CAS  Google Scholar 

  138. Lund, F. E. & Randall, T. D. Scent of a vaccine. Science 373, 397–399 (2021).

    Article  CAS  Google Scholar 

  139. van Doremalen, N. et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 13, eabh0755 (2021).

    Article  Google Scholar 

  140. Hassan, A. O. et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 36, 109452 (2021).

    Article  CAS  Google Scholar 

  141. Hellfritzsch, M. & Scherließ, R. Mucosal vaccination via the respiratory tract. Pharmaceutics 11, 375 (2019).

    Article  CAS  Google Scholar 

  142. Sudduth, E. R., Trautmann-Rodriguez, M., Gill, N., Bomb, K. & Fromen, C. A. Aerosol pulmonary immune engineering. Adv. Drug Deliv. Rev. 199, 114831 (2023).

    Article  CAS  Google Scholar 

  143. Wang, H., Qin, L., Zhang, X., Guan, J. & Mao, S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J. Control. Rel. 352, 970–993 (2022).

    Article  CAS  Google Scholar 

  144. Tang, W., Zhang, Y. & Zhu, G. Pulmonary delivery of mucosal nanovaccines. Nanoscale 14, 263–276 (2022).

    Article  CAS  Google Scholar 

  145. Ebensen, T. et al. Pulmonary application of novel antigen-loaded chitosan nano-particles co-administered with the mucosal adjuvant C-Di-AMP resulted in enhanced immune stimulation and dose sparing capacity. Pharmaceutics 15, 1238 (2023).

    Article  CAS  Google Scholar 

  146. Kimoto, T. et al. Induction of systemic, mucosal, and cellular immunity against SARS‐CoV‐2 in mice vaccinated by trans‐airway with a S1 protein combined with a pulmonary surfactant‐derived adjuvant SF‐10. Influenza Other Respir. Viruses 17, e13119 (2023).

    Article  CAS  Google Scholar 

  147. Sun, S. et al. Respiratory mucosal vaccination of peptide-poloxamine-DNA nanoparticles provides complete protection against lethal SARS-CoV-2 challenge. Biomaterials 292, 121907 (2023).

    Article  CAS  Google Scholar 

  148. Thomas, C., Rawat, A., Hope-Weeks, L. & Ahsan, F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm. 8, 405–415 (2011).

    Article  CAS  Google Scholar 

  149. Fromen, C. A. et al. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc. Natl Acad. Sci. USA 112, 488 (2015).

    Article  CAS  Google Scholar 

  150. Li, A. V. et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5, 204ra130 (2013).

    Article  Google Scholar 

  151. Rakhra, K. et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci. Immunol. 6, eabd8003 (2021).

    Article  CAS  Google Scholar 

  152. Choudhary, P. et al. Intrauterine immunizations trigger antigen-specific mucosal and systemic immunity in pigs and passive protection in suckling piglets. Vaccine 39, 6322–6332 (2021).

    Article  CAS  Google Scholar 

  153. Castro, I. M. et al. Recombinant herpesvirus vectors: durable immune responses and durable protection against simian immunodeficiency virus SIVmac239 acquisition. J. Virol. 95, 10–1128 (2021).

    Article  Google Scholar 

  154. Klatt, N. R. et al. Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. NPJ Vaccines 6, 34 (2021).

    Article  CAS  Google Scholar 

  155. Peter, C. M. et al. Immunogenicity of an inactivated vaccine for intravaginal application against bovine alphaherpesvirus type 5 (BoHV-5). Mol. Immunol. 155, 69–78 (2023).

    Article  CAS  Google Scholar 

  156. Russi, R. C. et al. Heterologous prime-boost vaccination based on Polymorphic protein D protects against intravaginal Chlamydia trachomatis infection in mice. Sci. Rep. 12, 6664 (2022).

    Article  CAS  Google Scholar 

  157. Labuda, J. C. et al. Circulating immunity protects the female reproductive tract from Chlamydia infection. Proc. Natl Acad. Sci. USA 118, e2104407118 (2021).

    Article  CAS  Google Scholar 

  158. Chebloune, Y. et al. A single lentivector DNA based immunization contains a late heterologous SIVmac251 mucosal challenge infection. Vaccine 38, 3729–3739 (2020).

    Article  CAS  Google Scholar 

  159. Kato, S. et al. CD8 T cells show protection against highly pathogenic simian immunodeficiency virus (SIV) after vaccination with SIV gene-expressing BCG prime and vaccinia virus/Sendai virus vector boosts. J. Virol. 95, e01718–e01720 (2021).

    Article  CAS  Google Scholar 

  160. Ji, Z., Xie, Z., Zhang, Z., Gong, T. & Sun, X. Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials 128, 8–18 (2017).

    Article  CAS  Google Scholar 

  161. Stary, G. et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    Article  Google Scholar 

  162. Martelli, P. et al. Immune B cell responsiveness to single-dose intradermal vaccination against Mycoplasma hyopneumoniae. Res. Vet. Sci. 141, 66–75 (2021).

    Article  CAS  Google Scholar 

  163. Chandrasekar, S. S. et al. Systemic neutralizing antibodies and local immune responses are critical for the control of SARS-CoV-2. Viruses 14, 1262 (2022).

    Article  CAS  Google Scholar 

  164. Mishra, D., Dubey, V., Asthana, A., Saraf, D. & Jain, N. Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 24, 4847–4855 (2006).

    Article  CAS  Google Scholar 

  165. Mishra, D. et al. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur. J. Pharm. Sci. 33, 425–433 (2008).

    Article  Google Scholar 

  166. Glenn, G. M. et al. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med 6, 1403–1406 (2000).

    Article  CAS  Google Scholar 

  167. Güereña-Burgueño, F. et al. Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect. Immun. 70, 1874–1880 (2002).

    Article  Google Scholar 

  168. Alving, C. R., Peachman, K. K., Matyas, G. R., Rao, M. & Beck, Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev. Vaccines 19, 279–292 (2020).

    Article  CAS  Google Scholar 

  169. Hammerschmidt, S. I. et al. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. J. Clin. Invest. 121, 3051–3061 (2011).

    Article  CAS  Google Scholar 

  170. Saadeddin, A., Torres-Molina, F., Cárcel-Trullols, J., Araico, A. & Peris, J. E. Pharmacokinetics of the time-dependent elimination of all-trans-retinoic acid in rats. AAPS Pharm. Sci. 6, 1–9 (2004).

    Article  Google Scholar 

  171. Lim, S. J., Lee, M. K. & Kim, C. K. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J. Control. Release 100, 53–61 (2004).

    Article  CAS  Google Scholar 

  172. Christensen, D. et al. A liposome-based adjuvant containing two delivery systems with the ability to induce mucosal immunoglobulin a following a parenteral immunization. ACS Nano 13, 1116–1126 (2019).

    CAS  Google Scholar 

  173. Xia, Y. et al. Bridging systemic immunity with gastrointestinal immune responses via oil-in-polymer capsules. Adv. Mater. 30, e1801067 (2018).

    Article  Google Scholar 

  174. Du, Y. et al. Exploiting the lymph-node-amplifying effect for potent systemic and gastrointestinal immune responses via polymer/lipid nanoparticles. ACS Nano 13, 13809–13817 (2019).

    Article  CAS  Google Scholar 

  175. Shakya, A. K., Chowdhury, M. Y. E., Tao, W. & Gill, H. S. Mucosal vaccine delivery: current state and a pediatric perspective. J. Control. Release 240, 394–413 (2016).

    Article  CAS  Google Scholar 

  176. Hameed, S. A., Paul, S., Dellosa, G. K. Y., Jaraquemada, D. & Bello, M. B. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 7, 71 (2022).

    Article  CAS  Google Scholar 

  177. Suberi, A. et al. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci. Transl. Med. 15, eabq0603 (2023).

    Article  CAS  Google Scholar 

  178. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  CAS  Google Scholar 

  179. Hajam, I. A., Senevirathne, A., Hewawaduge, C., Kim, J. & Lee, J. H. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet. Res. 51, 37 (2020).

    Article  CAS  Google Scholar 

  180. Ball, R. L., Bajaj, P. & Whitehead, K. A. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci. Rep. https://doi.org/10.1038/s41598-018-20632-6 (2018).

  181. Chandrasekar, S. S., Kingstad-Bakke, B., Wu, C.-W., Suresh, M. & Talaat, A. M. A novel mucosal adjuvant system for immunization against avian coronavirus causing infectious bronchitis. J. Virol. 94, e01016–e01020 (2020).

    Article  CAS  Google Scholar 

  182. Vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01774-z (2023).

  183. Ai, L. et al. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. Cell Discov. 9, 9 (2023).

    Article  CAS  Google Scholar 

  184. Thomas, S. N. & Schudel, A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr. Opin. Chem. Eng. 7, 65–74 (2015).

    Article  Google Scholar 

  185. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019).

    Article  Google Scholar 

  186. Pebody, R. et al. Approaches to use the WHO respiratory syncytial virus surveillance platform to estimate disease burden. Influenza Other Respir. Viruses 14, 615–621 (2020).

    Article  Google Scholar 

  187. Stein, R. T. et al. Respiratory syncytial virus hospitalization and mortality: systematic review and meta-analysis. Pediatr. Pulmonol. 52, 556–569 (2017).

    Article  Google Scholar 

  188. Corbett, E. L. et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009–1021 (2003).

    Article  Google Scholar 

  189. WHO Coronavirus Disease (COVID-19) Dashboard. Bangladesh Physiother. J. https://doi.org/10.46945/bpj.10.1.03.01 (2020).

  190. O’Brien, K. L. et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374, 893–902 (2009).

    Article  Google Scholar 

  191. Kandeil, W. et al. A systematic review of the burden of pertussis disease in infants and the effectiveness of maternal immunization against pertussis. Expert Rev. Vaccines 19, 621–638 (2020).

    Article  CAS  Google Scholar 

  192. Watt, J. P. et al. Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet 374, 903–911 (2009).

    Article  Google Scholar 

  193. Khalil, I. A. et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).

    Article  Google Scholar 

  194. Salih, B. Helicobacter pylori infection in developing countries: the burden for how long? Saudi J. Gastroenterol. 15, 201–207 (2009).

    Article  Google Scholar 

  195. Troeger, C. et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18, 1211–1228 (2018).

    Article  Google Scholar 

  196. Stanaway, J. D. et al. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 19, 1312–1324 (2019).

    Article  Google Scholar 

  197. Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    Article  CAS  Google Scholar 

  198. Pandey, A. & Galvani, A. P. The global burden of HIV and prospects for control. Lancet HIV 6, e809–e811 (2019).

    Article  Google Scholar 

  199. Kirkcaldy, R. D., Weston, E., Segurado, A. C. & Hughes, G. Epidemiology of gonorrhoea: a global perspective. Sex. Health 16, 401–411 (2019).

    Article  Google Scholar 

  200. Formana, D. et al. Global burden of human papillomavirus and related diseases. Vaccine https://doi.org/10.1016/j.vaccine.2012.07.055 (2012).

  201. Looker, K. J. et al. The global and regional burden of genital ulcer disease due to herpes simplex virus: a natural history modelling study. BMJ Glob. Health 5, e001875 (2020).

    Article  Google Scholar 

  202. Kojima, N. & Klausner, J. D. An update on the global epidemiology of syphilis. Curr. Epidemiol. Rep. 5, 24–38 (2018).

    Article  Google Scholar 

  203. Averhoff, F. M., Glass, N. & Holtzman, D. Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin. Infect. Dis. https://doi.org/10.1093/cid/cis361 (2012).

  204. Thrift, A. P., El-Serag, H. B. & Kanwal, F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat. Rev. Gastroenterol. Hepatol. 14, 122–132 (2017).

    Article  Google Scholar 

  205. Treuting, P. M., Dintzis, S. M. & Montine, K. S. (eds) Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas 2nd edn (Academic, 2017).

  206. Jotwani, R. et al. Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies. J. Immunol. 167, 4693–4700 (2001).

    Article  CAS  Google Scholar 

  207. Reinartz, S. M. et al. Dendritic cell subsets in oral mucosa of allergic and healthy subjects. PLoS ONE 11, e0154409 (2016).

    Article  Google Scholar 

  208. Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184, 4090–4104.e15 (2021).

    Article  CAS  Google Scholar 

  209. Hovav, A. H. Dendritic cells of the oral mucosa. Mucosal Immunol. 7, 27–37 (2014).

    Article  CAS  Google Scholar 

  210. Squier, C. & Brogden, K. A. Human Oral Mucosa: Development, Structure and Function. https://doi.org/10.1002/9781118710470 (2013).

  211. Jahan, N., Archie, S. R., Al Shoyaib, A., Kabir, N. & Cheung, K. Recent approaches for solid dose vaccine delivery. Sci. Pharm. 87, 27 (2019).

    Article  CAS  Google Scholar 

  212. Helke, K. L. Book review: comparative anatomy and histology: a mouse, rat, and human atlas. Vet. Pathol. https://doi.org/10.1177/0300985818795862 (2018).

  213. Houston, S. A. et al. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9, 468–478 (2016).

    Article  CAS  Google Scholar 

  214. Esterházy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019).

    Article  Google Scholar 

  215. Tyler, C. J. et al. Inherent immune cell variation within colonic segments presents challenges for clinical trial design. J. Crohns Colitis 14, 1364–1377 (2020).

    Article  Google Scholar 

  216. Gallo, O., Locatello, L. G., Mazzoni, A., Novelli, L. & Annunziato, F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 14, 305–316 (2021).

    Article  CAS  Google Scholar 

  217. Sánchez Fernández, J. M. et al. Preliminary study of the lymphatic drainage system of the nose and paranasal sinuses and its role in detection of sentinel metastatic nodes. Acta Otolaryngol. 125, 566–570 (2005).

    Article  Google Scholar 

  218. Yeaman, G. R., Collins, J. E., Fanger, M. W. & Wira, C. R. CD8+ T cells in human uterine endometrial lymphoid aggregates: evidence for accumulation of cells by trafficking. Immunology 102, 434–440 (2001).

    Article  CAS  Google Scholar 

  219. Gudisa, R., Goyal, K., Gupta, P. & Singh, M. P. Localized and systemic immune response in human reproductive tract. Front. Cell. Infect. Microbiol. 11, 649839 (2021).

    Article  Google Scholar 

  220. Geppert, B., Lönnerfors, C., Bollino, M., Arechvo, A. & Persson, J. A study on uterine lymphatic anatomy for standardization of pelvic sentinel lymph node detection in endometrial cancer. Gynecol. Oncol. 145, 256–261 (2017).

    Article  Google Scholar 

  221. Patton, D. L. et al. Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am. J. Obstet. Gynecol. 183, 967–973 (2000).

    Article  CAS  Google Scholar 

  222. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04816019 (2022).

  223. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04679909 (2023).

  224. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04751682 (2022).

  225. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04809389 (2021).

  226. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04619628 (2022).

  227. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04839042 (2022).

  228. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04798001 (2022).

  229. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04954287 (2023).

  230. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04871737 (2023).

  231. Registro Publico Cubano de Ensayos Clinicos. rpcec.sld.cu/en/trials/RPCEC00000345-En (2022).

  232. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT05067933 (2023).

  233. US National Library of Medicine. clinicaltrials.gov/ct2/show/NCT04732468 (2021).

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.E., A.S., U.v.A., R.L. and A.J. conceptualized the manuscript. B.E. A.S., I.S. and Z.C. contributed to literature review, manuscript writing and figure composition. A.H.L., M.K., F.T. and D.M.F. contributed to literature review and manuscript writing. B.I. and G.L. contributed to literature review. J.H. contributed to figure visualization. B.E., A.S., U.v.A., R.L. and A.J. edited and finalized the manuscript.

Corresponding authors

Correspondence to Ulrich von Andrian, Robert Langer or Ana Jaklenec.

Ethics declarations

Competing interests

R.L. receives licensing fees (to patents on which he was an inventor) from, invested in, consults (or was on Scientific Advisory Boards or Boards of Directors) for, lectured (and received a fee), or conducts sponsored research at MIT for which he was not paid for the following entities: 611 Therapeutics; Abpro International; Acorda (formerly Civitas Therapeutics); Alfred University; Aleph Farms; Alivio Therapeutics; Alkermes; Allevi; Allurion; Alnylam Pharmaceuticals, Inc; Amberstone Bioscience; Amgen; aMoon; Apotex; Arcadia Biosciences, Inc; Arsenal Medical; Artificial Cell Technology, Inc; Avalon-Globocare; Bai Biosciences; BASF Corporation; Bayer; Balzan Foundation; Bexson Biomedical; Bilayer Therapeutics; Biogen; BioInnovation Institute (Novo Nordisk Founden); BioTE Medical; Blackrock; Blackstone (formerly Clarus); Boston Children’s Hospital; CBC Group Investment Mgmt Group; Celanese; Celero; Cellink/BICO; Cellomics Technology LLC; Cellular Biomedical; CE&N/ACS; Charles River Laboratories, Inc.; Clontech Laboratories; Combined Therapeutics (CTx); Conference Forum; Cornell University; Crispr Therapeutics Ag; Crown Bioscience, Inc.; Daré Biosciences (formerly Microchips Biotech, Juniper Pharmaceuticals and Columbia Laboratories); Daros, Inc.; DeepBiome; Dewpoint Therapeutics; Dispendix; Eagle Pharmaceuticals; Earli; Edigene Biotechnology, Inc.; Editas Medicine, Inc.; ELC (Estee Lauder Companies); Eli Lilly; Eisai, Inc.; Entrega; EpiBone; Establishment Labs, SA.; Everlywell; Evox Therapeutics, Ltd.; Fate; Flagship Pioneering; Frequency Therapeutics, Inc.; GeneLeap Biotech; Genemedicine Co Lmtd; GenScript USA, Inc; Geneo Medicine; GENUV; Glaxosmithkline LLC; Glycobia; Glympse Bio; Goldman Sachs; Greenlight Biosciences; HCR (HealthCare Royalty Partners); HKF DNA Technologies; Hopewell Therapeutics; Horizon Discovery Group Plc; Humacyte, Inc.; IBEX Pharmaceuticals, Inc.; Immunai; ImmuneXcite, Inc.; Institute of Immunology Co. Ltd; Integrated DNA Technologies, Inc.; InVivo Therapeutics; IxBio; J.R. Simplot Company; Jnana Therapeutics; Kala Pharmaceuticals; Kallyope, Inc.; Kendall Capital; Kensa; Kodikaz Therapeutics; KAST (Korean Academy of Science and Technology); Ksq Therapeutics, Inc.; Kunlun Capital; Landsdowne Labs; LikeMinds; Lonza; Luminopia, Inc.; Luye (Shandong luye); Lyndra Therapeutics; Lyra Therapeutics (formerly 480 Biomedical); Maurice Marie Janot Award 2020; McGovern Institute; Medikinetics Co., Ltd.; Merck; MGH Ragon Institute; Micelle; Moderna Therapeutics; Momenta; Muse Biotechnologies, Inc.; Mylan; N2Tech; Nanobiosym; Nanobiotix; Neochromosone; Neoteny 4 LLP; NextRNA; Newbridge Ventures LLC; Noveome Biotherapeutics, Inc.; Novo Nordisk; Ohio State University; Olivo (acquired by Shiseido); Ovid Therapeutics; Particles for Humanity; Pfizer, Inc.; Pioneer Hi-Bred International, Inc.; Placon Therapeutics; Polaris Partners; Pontifical Academy of Sciences; Portal Instruments; Preceres LLC (acquired by Monsanto); PrognomIQ, Inc.; Pulmatrix; PureTech; Quris; ReLive; Rensselaer Polytechnic Institute/Department of Chemical and Biological Engineering; Reprocell USA, Inc. (formerly Stemgent); Replay Bio; Rubius Therapeutics; Satellite Bio; SBEF (Seoul Bio Economy Forum); Secant Medical, Inc.; Seer, Inc.; Selecta Biosciences; Senses LLC; Setsuro Tech Inc.; Seventh Sense Biosystems, Inc.; Shenzhen Rice Life Technology, Ltd; Shire Ag; Sigilon; Sigma Aldrich Co. LLC; SiO2 Materials Science; Ske S.R.L.; Soil Culture Solutions LLC (Dba Soilcea); Souffle Therapeutics; SQZ Biotechnologies; StemBioSys, Inc.; SuonoBio; T2 Biosystems; Taconic Biosciences, Inc. (formerly Taconic Farms); Taiwania Capital (Bio-Asia Taiwan Symposium); TARA; Tarveda Therapeutics; Teal Bio; Terasaki Institute; Tesio Pharmaceuticals; Third Rock Ventures; Tiba Biotech LLC; TissiuM (formerly Gecko); Transgenic, Inc.; Translate Bio (formerly Rana Therapeutics, Inc.); Trilink Biotechnologies, Inc.; Unilever (Living Proof); University of Bergen, Norway (Falch Lecture Honorarium); VasoRX; Verseau Therapeutics, Inc.; Virex Health; Vitakey; Vivtex Corporation; Westlake University; Whitehead Institute; Wiki Foods; Xenter; YourBio (formerly 7th Sense Biosystems); Yz Biosciences (Guangzhou), Inc.; Zenomics; ZWI Therapeutics. A.J. receives licensing fees (to patents on which she was an inventor) from, invested in, consults (or was on Scientific Advisory Boards or Boards of Directors) for, lectured (and received a fee), or conducts sponsored research at MIT for which she was not paid for the following entities: Moderna Therapeutics; OmniPulse Biosciences; Particles for Humanity; SiO2 Materials Science; Takeda (formerly Shire Ag); VitaKey. All the other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Dennis Christensen, who co-reviewed with Signe Tandrup Schmidt; Ed Lavelle; and Amirali Popat for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshaghi, B., Schudel, A., Sadeghi, I. et al. The role of engineered materials in mucosal vaccination strategies. Nat Rev Mater 9, 29–45 (2024). https://doi.org/10.1038/s41578-023-00625-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00625-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology