Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extreme light confinement and control in low-symmetry phonon-polaritonic crystals

Abstract

Polaritons are a hybrid class of quasiparticles originating from the strong and resonant coupling between light and matter excitations. Recent years have witnessed a surge of interest in new polariton types, arising from directional, long-lived material resonances, and leading to extreme optical anisotropy that enables new regimes of nanoscale, highly confined light propagation. Although such exotic propagation features may also in principle be achieved by using carefully designed metamaterials, it has recently been realized that they can naturally emerge when coupling infrared light to directional lattice vibrations — phonons — in polar crystals. Interestingly, a reduction in crystal symmetry increases the directionality of optical phonons and the resulting anisotropy of the response, which in turn enables new polaritonic phenomena, such as hyperbolic polaritons with highly directional propagation, ghost polaritons with complex-valued wavevectors, and shear polaritons with strongly asymmetric propagation features. In this Review, we develop a critical overview of recent advances in the discovery of phonon polaritons in low-symmetry crystals, highlighting the role of broken symmetries in dictating the polariton response and associated nanoscale light propagation features. We also discuss emerging opportunities for polaritons in lower-symmetry materials and metamaterials, with connections to topological physics and the possibility of using anisotropic nonlinearities and optical pumping to further control their nanoscale response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and optical symmetry breaking in polar crystals.
Fig. 2: Out-of-plane hyperbolicity in uniaxial crystals: volume-hyperbolic phonon polaritons in hBN.
Fig. 3: Surface anisotropy in off-cut crystals: ghost polaritons and leaky polaritons.
Fig. 4: Phonon polaritons in orthorhombic crystals with biaxial optical response.
Fig. 5: Axial dispersion and shear in monoclinic crystals.
Fig. 6: Twist-optics: controlling the propagation of PhPs with twisted bilayer and trilayer vdW stacks.
Fig. 7: Low-symmetry metacrystals.

Similar content being viewed by others

References

  1. Wood, R. W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. London Edinburgh Dublin Philos. Mag. J. Sci. 4, 396–402 (1902).

    Article  Google Scholar 

  2. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).

    Article  CAS  Google Scholar 

  3. Maier, S. A. et al. Plasmonics: Fundamentals and Applications Vol. 1 (Springer, 2007).

  4. Basov, D. N., Fogler, M. M. & de Abajo, F. J. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  5. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  Google Scholar 

  6. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article  Google Scholar 

  7. Ribeiro, R. F., Martínez-Martínez, L. A., Du, M., Campos-Gonzalez-Angulo, J. & Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 9, 6325–6339 (2018).

    Article  CAS  Google Scholar 

  8. Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    Article  CAS  Google Scholar 

  9. Herrera, F. & Owrutsky, J. Molecular polaritons for controlling chemistry with quantum optics. J. Chem. Phys. 152, 100902 (2020).

    Article  CAS  Google Scholar 

  10. Mueller, N. S. et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature 583, 780–784 (2020).

    Article  CAS  Google Scholar 

  11. Huang, L. et al. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 85, 046401 (2022).

    Article  Google Scholar 

  12. Foteinopoulou, S., Devarapu, G. C. R., Subramania, G. S., Krishna, S. & Wasserman, D. Phonon-polaritonics: enabling powerful capabilities for infrared photonics. Nanophotonics 8, 2129–2175 (2019).

    Article  Google Scholar 

  13. Gubbin, C. R., De Liberato, S. & Folland, T. G. Surface phonon polaritons for infrared optoelectronics. J. Appl. Phys. 131, 030901 (2022).

    Article  CAS  Google Scholar 

  14. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article  CAS  Google Scholar 

  15. Khurgin, J. B. Relative merits of phononics vs. plasmonics: the energy balance approach. Nanophotonics 7, 305–316 (2018).

    Article  Google Scholar 

  16. He, M. et al. Anisotropy and modal hybridization in infrared nanophotonics using low-symmetry materials. ACS Photonics 9, 1078–1095 (2022).

    Article  CAS  Google Scholar 

  17. Born, M. & Huang, K. Dynamical Theory of Crystal Lattices (Clarendon, 1954).

  18. Henry, C. & Hopfield, J. Raman scattering by polaritons. Phys. Rev. Lett. 15, 964 (1965).

    Article  CAS  Google Scholar 

  19. Barker, A. S. Direct optical coupling to surface excitations. Phys. Rev. Lett. 28, 892–895 (1972).

    Article  CAS  Google Scholar 

  20. Falge, H. & Otto, A. Dispersion of phonon-like surface polaritons on α-quartz observed by attenuated total reflection. Phys. Status Solidi B 56, 523–534 (1973).

    Article  CAS  Google Scholar 

  21. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  CAS  Google Scholar 

  22. Caldwell, J. D. et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).

    Article  CAS  Google Scholar 

  23. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Article  Google Scholar 

  24. Geim, A. & Novoselov, K. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  25. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  26. Koppens, F. H., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  27. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  28. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  29. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  30. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  31. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  CAS  Google Scholar 

  32. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315, 1686–1686 (2007).

    Article  CAS  Google Scholar 

  33. Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article  CAS  Google Scholar 

  34. Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article  CAS  Google Scholar 

  35. Ni, X. et al. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat. Commun. 14, 2845 (2023).

    Article  CAS  Google Scholar 

  36. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  Google Scholar 

  37. Gervais, F. & Piriou, B. Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J. Phys. C 7, 2374 (1974).

    Article  CAS  Google Scholar 

  38. Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  39. Winta, C. J., Gewinner, S., Schöllkopf, W., Wolf, M. & Paarmann, A. Second-harmonic phonon spectroscopy of α-quartz. Phys. Rev. B 97, 094108 (2018).

    Article  CAS  Google Scholar 

  40. Gubbin, C. R. & De Liberato, S. Optical nonlocality in polar dielectrics. Phys. Rev. X 10, 021027 (2020).

    CAS  Google Scholar 

  41. Correas-Serrano, D., Gomez-Diaz, J. & Tymchenko, M. Nonlocal response of hyperbolic metasurfaces. Opt. Express 23, 29434–29448 (2015).

    Article  CAS  Google Scholar 

  42. Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotechnol. 11, 9–15 (2016).

    Article  CAS  Google Scholar 

  43. Ratchford, D. C. et al. Controlling the infrared dielectric function through atomic-scale heterostructures. ACS Nano 13, 6730–6741 (2019).

    Article  CAS  Google Scholar 

  44. Landau, L. D. et al. Electrodynamics of Continuous Media Vol. 8 (Elsevier, 2013).

  45. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Cengage Learning, 2022).

  46. Tompkins, H. & Irene, E. A. Handbook of Ellipsometry (William Andrew, 2005).

  47. Weiglhofer, W. S. & Lakhtakia, A. Introduction to Complex Mediums for Optics and Electromagnetics Vol. 123 (SPIE, 2003).

  48. Schubert, M. et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).

    Article  Google Scholar 

  49. Mock, A., Korlacki, R., Knight, S. & Schubert, M. Anisotropy, phonon modes, and lattice anharmonicity from dielectric function tensor analysis of monoclinic cadmium tungstate. Phys. Rev. B 95, 165202 (2017).

    Article  Google Scholar 

  50. Passler, N. C. & Paarmann, A. Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 34, 2128–2139 (2017).

    Article  CAS  Google Scholar 

  51. Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article  Google Scholar 

  52. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

  53. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  54. Gil, B., Cassabois, G., Cusco, R., Fugallo, G. & Artus, L. Boron nitride for excitonics, nano photonics, and quantum technologies. Nanophotonics 9, 3483–3504 (2020).

    Article  CAS  Google Scholar 

  55. Su, C. & Fu, C. Surface and volume phonon polaritons in a uniaxial hyperbolic material: optic axis parallel versus perpendicular to the surface. Opt. Express 29, 39824–39837 (2021).

    Article  CAS  Google Scholar 

  56. Jacob, Z. Hyperbolic phonon–polaritons. Nat. Mater. 13, 1081–1083 (2014).

    Article  CAS  Google Scholar 

  57. Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228–235 (2017).

    Article  CAS  Google Scholar 

  58. Gomez-Diaz, J. S., Tymchenko, M. & Alu, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015).

    Article  Google Scholar 

  59. Belov, P. A., Simovski, C. R. & Ikonen, P. Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 71, 193105 (2005).

    Article  Google Scholar 

  60. Correas-Serrano, D., Alù, A. & Gomez-Diaz, J. S. Plasmon canalization and tunneling over anisotropic metasurfaces. Phys. Rev. B 96, 075436 (2017).

    Article  Google Scholar 

  61. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article  CAS  Google Scholar 

  62. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674–678 (2015).

    Article  CAS  Google Scholar 

  63. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article  CAS  Google Scholar 

  64. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  CAS  Google Scholar 

  65. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    Article  CAS  Google Scholar 

  66. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    Article  CAS  Google Scholar 

  67. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172–17172 (2018).

    Article  CAS  Google Scholar 

  68. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics 15, 197–202 (2021).

    Article  CAS  Google Scholar 

  69. Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  CAS  Google Scholar 

  70. Winta, C. J., Wolf, M. & Paarmann, A. Low-temperature infrared dielectric function of hyperbolic α-quartz. Phys. Rev. B 99, 144308 (2019).

    Article  CAS  Google Scholar 

  71. High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

    Article  CAS  Google Scholar 

  72. D’yakonov, M. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).

    Google Scholar 

  73. Narimanov, E. E. Dyakonov waves in biaxial anisotropic crystals. Phys. Rev. A 98, 013818 (2018).

    Article  CAS  Google Scholar 

  74. Narimanov, E. Ghost resonance in anisotropic materials: negative refractive index and evanescent field enhancement in lossless media. Adv. Photonics 1, 046003 (2019).

    Article  CAS  Google Scholar 

  75. Kuś, M., Haake, F. & Delande, D. Prebifurcation periodic ghost orbits in semiclassical quantization. Phys. Rev. Lett. 71, 2167 (1993).

    Article  Google Scholar 

  76. Py, M. A., Schmid, P. E. & Vallin, J. T. Raman scattering and structural properties of MoO3. Nuovo Cim. B 38, 271–279 (1977).

    Article  Google Scholar 

  77. Seguin, L., Figlarz, M., Cavagnat, R. & Lassègues, J.-C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3xH2O molybdenum trioxide hydrates. Spectrochim. Acta A 51, 1323–1344 (1995).

    Article  Google Scholar 

  78. Ratnaparkhe, A., Kumar Radha, S. & Lambrecht, W. R. L. Calculated phonon modes, infrared and Raman spectra in orthorhombic α-MoO3 and monolayer MoO3. J. Appl. Phys. 130, 104302 (2021).

    Article  CAS  Google Scholar 

  79. Álvarez Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near- and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article  Google Scholar 

  80. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).

    Article  Google Scholar 

  81. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  CAS  Google Scholar 

  82. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  CAS  Google Scholar 

  83. Zhao, Y. et al. Ultralow-loss phonon polaritons in the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).

    Article  CAS  Google Scholar 

  84. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article  CAS  Google Scholar 

  85. Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    Article  CAS  Google Scholar 

  86. Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Sci. Adv. 7, eabj0127 (2021).

    Article  Google Scholar 

  87. Zheng, Z. et al. Controlling and focusing in-plane hyperbolic phonon polaritons in α-MoO3 with a curved plasmonic antenna. Adv. Mater. 34, 2104164 (2022).

    Article  CAS  Google Scholar 

  88. Qu, Y. et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3. Adv. Mater. 34, 2105590 (2022).

    Article  CAS  Google Scholar 

  89. Álvarez Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).

    Article  Google Scholar 

  90. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016).

    Article  CAS  Google Scholar 

  91. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  CAS  Google Scholar 

  92. Leng, H., Szychowski, B., Daniel, M.-C. & Pelton, M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 9, 4012 (2018).

    Article  Google Scholar 

  93. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities Vol. 21 (Oxford Univ. Press, 2017).

  94. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  CAS  Google Scholar 

  95. Duan, J. et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci. Adv. 7, eabf2690 (2021).

    Article  CAS  Google Scholar 

  96. Zhang, Q. et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett. 21, 3112–3119 (2021).

    Article  CAS  Google Scholar 

  97. Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).

    Article  CAS  Google Scholar 

  98. Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article  Google Scholar 

  99. Álvarez Pérez, G. et al. Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated graphene. ACS Photonics 9, 383–390 (2022).

    Article  Google Scholar 

  100. Bapat, A., Dixit, S., Gupta, Y., Low, T. & Kumar, A. Gate tunable light-matter interaction in natural biaxial hyperbolic van der Waals heterostructures. Nanophotonics 11, 2329–2340 (2022).

    Article  CAS  Google Scholar 

  101. Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

    Article  CAS  Google Scholar 

  102. Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article  CAS  Google Scholar 

  103. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  Google Scholar 

  104. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  CAS  Google Scholar 

  105. Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    Article  CAS  Google Scholar 

  106. Claus, R. Polariton dispersion and crystal optics in monoclinic materials. Phys. Status Solidi B 88, 683–688 (1978).

    Article  CAS  Google Scholar 

  107. Petit, Y., Joly, S., Segonds, P. & Boulanger, B. Recent advances in monoclinic crystal optics. Laser Photonics Rev. 7, 920–937 (2013).

    Article  CAS  Google Scholar 

  108. Schubert, M. Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons Vol. 209 (Springer, 2004).

  109. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article  CAS  Google Scholar 

  110. Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).

    Article  CAS  Google Scholar 

  111. Mooshammer, F. et al. In-plane anisotropy in biaxial ReS2 crystals probed by nano-optical imaging of waveguide modes. ACS Photonics 9, 443–451 (2022).

    Article  CAS  Google Scholar 

  112. Jia, G., Xue, W., Jia, Z. & Schubert, M. Giant photonic spin Hall effect induced by hyperbolic shear polaritons. Phys. Chem. Chem. Phys. 25, 11245–11252 (2023).

    Article  CAS  Google Scholar 

  113. Hu, C. et al. Source-configured symmetry-broken hyperbolic polaritons. eLight 3, 14 (2023).

    Article  Google Scholar 

  114. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  115. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  116. Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Article  Google Scholar 

  117. Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    Article  CAS  Google Scholar 

  118. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  CAS  Google Scholar 

  119. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article  CAS  Google Scholar 

  120. Herzig Sheinfux, H. & Koppens, F. H. L. The rise of twist-optics. Nano Lett. 20, 6935–6936 (2020).

    Article  CAS  Google Scholar 

  121. Zheng, C. et al. Molding broadband dispersion in twisted trilayer hyperbolic polaritonic surfaces. ACS Nano 16, 13241–13250 (2022).

    Article  CAS  Google Scholar 

  122. Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023).

    Article  CAS  Google Scholar 

  123. Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).

    Article  Google Scholar 

  124. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013).

    Article  CAS  Google Scholar 

  125. Ferrari, L., Wu, C., Lepage, D., Zhang, X. & Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quantum. Electron. 40, 1–40 (2015).

    Article  Google Scholar 

  126. Gomez-Diaz, J. & Alu, A. Flatland optics with hyperbolic metasurfaces. ACS Photonics 3, 2211–2224 (2016).

    Article  CAS  Google Scholar 

  127. Huo, P., Zhang, S., Liang, Y., Lu, Y. & Xu, T. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater. 7, 1801616 (2019).

    Article  Google Scholar 

  128. Guo, Z., Jiang, H. & Chen, H. Zero-index and hyperbolic metacavities: fundamentals and applications. J. Phys. D 55, 083001 (2021).

    Article  Google Scholar 

  129. Liu, Y. & Zhang, X. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett. 103, 141101 (2013).

    Article  Google Scholar 

  130. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  CAS  Google Scholar 

  131. Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    Article  CAS  Google Scholar 

  132. Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 6, 450–454 (2012).

    Article  CAS  Google Scholar 

  133. Chshelokova, A. V. et al. Hyperbolic transmission-line metamaterials. J. Appl. Phys. 112, 073116 (2012).

    Article  Google Scholar 

  134. Shchelokova, A. V., Filonov, D. S., Kapitanova, P. V. & Belov, P. A. Magnetic topological transition in transmission line metamaterials. Phys. Rev. B 90, 115155 (2014).

    Article  Google Scholar 

  135. Yermakov, O. et al. Hybrid waves localized at hyperbolic metasurfaces. Phys. Rev. B 91, 235423 (2015).

    Article  Google Scholar 

  136. Yang, Y. et al. Hyperbolic spoof plasmonic metasurfaces. NPG Asia Mater. 9, e428–e428 (2017).

    Article  Google Scholar 

  137. Yang, Y. et al. Magnetic hyperbolic metasurface: concept, design, and applications. Adv. Sci. 5, 1801495 (2018).

    Article  Google Scholar 

  138. Yang, Y. et al. Type-I hyperbolic metasurfaces for highly-squeezed designer polaritons with negative group velocity. Nat. Commun. 10, 2002 (2019).

    Article  Google Scholar 

  139. Yermakov, O. et al. Surface waves on self-complementary metasurfaces: all-frequency hyperbolicity, extreme canalization, and TE-TM polarization degeneracy. Phys. Rev. X 11, 031038 (2021).

    CAS  Google Scholar 

  140. Chen, Q. et al. Negative refraction of ultra-squeezed in-plane hyperbolic designer polaritons. Photonics Res. 9, 1540–1549 (2021).

    Article  Google Scholar 

  141. Li, M. et al. Topologically reconfigurable magnetic polaritons. Sci. Adv. 8, eadd6660 (2022).

    Article  CAS  Google Scholar 

  142. Zheng, P. et al. Anomalous wave propagation in topological transition metasurfaces. Adv. Opt. Mater. 7, 1801483 (2019).

    Article  Google Scholar 

  143. Girich, A., Ivzhenko, L., Hrinchenko, A., Tarapov, S. & Yermakov, O. Manipulation over surface waves in bilayer hyperbolic metasurfaces: topological transition and multidirectional canalization. IEEE Microw. Wirel. Tech. Lett. 33, 367–370 (2023).

    Article  Google Scholar 

  144. Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009).

    Article  CAS  Google Scholar 

  145. Shen, C. et al. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015).

    Article  Google Scholar 

  146. Ju, F., Cheng, Y. & Liu, X. Acoustic spin hall-like effect in hyperbolic metamaterials controlled by the helical wave. Sci. Rep. 8, 11113 (2018).

    Article  Google Scholar 

  147. Quan, L. & Alù, A. Hyperbolic sound propagation over nonlocal acoustic metasurfaces. Phys. Rev. Lett. 123, 244303 (2019).

    Article  CAS  Google Scholar 

  148. Yves, S. & Alù, A. Extreme anisotropy and dispersion engineering in locally resonant acoustic metamaterials. J. Acoust. Soc. Am. 150, 2040–2045 (2021).

    Article  Google Scholar 

  149. Oh, J. H., Min Seung, H. & Young Kim, Y. A truly hyperbolic elastic metamaterial lens. Appl. Phys. Lett. 104, 073503 (2014).

    Article  Google Scholar 

  150. Lee, H., Oh, J. H., Seung, H. M., Cho, S. H. & Kim, Y. Y. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Sci. Rep. 6, 24026 (2016).

    Article  CAS  Google Scholar 

  151. Zhu, R., Chen, Y., Wang, Y., Hu, G. & Huang, G. A single-phase elastic hyperbolic metamaterial with anisotropic mass density. J. Acoust. Soc. Am. 139, 3303–3310 (2016).

    Article  CAS  Google Scholar 

  152. Dong, H.-W., Zhao, S.-D., Wang, Y.-S. & Zhang, C. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging. Sci. Rep. 8, 2247 (2018).

    Article  Google Scholar 

  153. Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    Article  CAS  Google Scholar 

  154. Oudich, M. et al. Photonic analog of bilayer graphene. Phys. Rev. B 103, 214311 (2021).

    Article  CAS  Google Scholar 

  155. Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

    Article  CAS  Google Scholar 

  156. Lou, B., Wang, B., Rodríguez, J. A., Cappelli, M. & Fan, S. Tunable guided resonance in twisted bilayer photonic crystal. Sci. Adv. 8, eadd4339 (2022).

    Article  CAS  Google Scholar 

  157. Tang, H., Ni, X., Du, F., Srikrishna, V. & Mazur, E. On-chip light trapping in bilayer moiré photonic crystal slabs. Appl. Phys. Lett. 121, 231702 (2022).

    Article  CAS  Google Scholar 

  158. Yi, C.-H., Park, H. C. & Park, M. J. Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic moiré superlattices. Light Sci. Appl. 11, 289 (2022).

    Article  CAS  Google Scholar 

  159. López, M. R., Peñaranda, F., Christensen, J. & San-Jose, P. Flat bands in magic-angle vibrating plates. Phys. Rev. Lett. 125, 214301 (2020).

    Article  Google Scholar 

  160. Deng, Y. et al. Magic-angle bilayer phononic graphene. Phys. Rev. B 102, 180304 (2020).

    Article  CAS  Google Scholar 

  161. Gardezi, S. M., Pirie, H., Carr, S., Dorrell, W. & Hoffman, J. E. Simulating twistronics in acoustic metamaterials. 2D Mater. 8, 031002 (2021).

    Article  CAS  Google Scholar 

  162. Oudich, M., Deng, Y. & Jing, Y. Twisted pillared phononic crystal plates. Appl. Phys. Lett. 120, 232202 (2022).

    Article  CAS  Google Scholar 

  163. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  CAS  Google Scholar 

  164. Martí-Sabaté, M. & Torrent, D. Dipolar localization of waves in twisted phononic crystal plates. Phys. Rev. Appl. 15, L011001 (2021).

    Article  Google Scholar 

  165. Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).

    Article  CAS  Google Scholar 

  166. Liu, S. et al. Moiré metasurfaces for dynamic beamforming. Sci. Adv. 8, eabo1511 (2022).

    Article  Google Scholar 

  167. Rosa, M. I., Ruzzene, M. & Prodan, E. Topological gaps by twisting. Commun. Phys. 4, 130 (2021).

    Article  Google Scholar 

  168. Wu, S.-Q. et al. Higher-order topological states in acoustic twisted moiré superlattices. Phys. Rev. Appl. 17, 034061 (2022).

    Article  CAS  Google Scholar 

  169. Cohen, M.-I. et al. Generalized laws of refraction and reflection at interfaces between different photonic artificial gauge fields. Light Sci. Appl. 9, 200 (2020).

    Article  CAS  Google Scholar 

  170. Yang, Y. et al. Demonstration of negative refraction induced by synthetic gauge fields. Sci. Adv. 7, eabj2062 (2021).

    Article  Google Scholar 

  171. Liu, Y. et al. Magnetic moiré effects and two types of topological transition in a twisted-bilayer hyperbolic metasurface with double-split ring arrays. Opt. Express 30, 36552–36563 (2022).

    Article  CAS  Google Scholar 

  172. Girich, A., Ivzhenko, L., Hrinchenko, A., Tarapov, S. & Yermakov, O. Manipulation over surface waves in bilayer hyperbolic metasurfaces: topological transition and multidirectional canalization. IEEE Microw. Wirel. Compon. Lett. 33, 367–370 (2022).

  173. Yves, S. et al. Moiré-driven topological transitions and extreme anisotropy in elastic metasurfaces. Adv. Sci. 9, 2200181 (2022).

    Article  Google Scholar 

  174. Yves, S., Peng, Y.-G. & Alù, A. Topological Lifshitz transition in twisted hyperbolic acoustic metasurfaces. Appl. Phys. Lett. 121, 122201 (2022).

    Article  CAS  Google Scholar 

  175. Yves, S., Galiffi, E., Ni, X., Renzi, E. M. & Alù, A. Twist-induced hyperbolic shear metasurfaces. Preprint at https://arXiv.org/abs/2306.01775 (2023).

  176. Artoni, M. & Birman, J. L. Quantum-optical properties of polariton waves. Phys. Rev. B 44, 3736–3756 (1991).

    Article  CAS  Google Scholar 

  177. Mancini, A. et al. Multiplication of the orbital angular momentum of phonon polaritons via sublinear dispersion. Preprint at https://arXiv.org/abs/2306.05209 (2023).

  178. Wang, M. et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2, 12 (2022).

    Article  CAS  Google Scholar 

  179. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article  CAS  Google Scholar 

  180. Sternbach, A. J. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article  CAS  Google Scholar 

  181. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  Google Scholar 

  182. Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  CAS  Google Scholar 

  183. Alfaro-Mozaz, F. J. et al. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat. Commun. 10, 42 (2019).

    Article  CAS  Google Scholar 

  184. Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der Waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).

    Article  CAS  Google Scholar 

  185. Galiffi, E. et al. Photonics of time-varying media. Adv. Photonics 4, 014002 (2022).

    Article  CAS  Google Scholar 

  186. Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190–1191 (2023).

    Article  CAS  Google Scholar 

  187. Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article  CAS  Google Scholar 

  188. Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article  CAS  Google Scholar 

  189. Disa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).

    Article  CAS  Google Scholar 

  190. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  191. Cartella, A., Nova, T. F., Fechner, M., Merlin, R. & Cavalleri, A. Parametric amplification of optical phonons. Proc. Natl Acad. Sci. USA 115, 12148–12151 (2018).

    Article  CAS  Google Scholar 

  192. Michael, M. H. et al. Generalized Fresnel–Floquet equations for driven quantum materials. Phys. Rev. B 105, 174301 (2022).

    Article  CAS  Google Scholar 

  193. Sugiura, S., Demler, E. A., Lukin, M. & Podolsky, D. Resonantly enhanced polariton wave mixing and parametric instability in a Floquet medium. J. Chem. Phys. 156, 174110 (2022).

    Article  CAS  Google Scholar 

  194. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  CAS  Google Scholar 

  195. Babadi, M., Knap, M., Martin, I., Refael, G. & Demler, E. Theory of parametrically amplified electron-phonon superconductivity. Phys. Rev. B 96, 014512 (2017).

    Article  Google Scholar 

  196. Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).

    Article  CAS  Google Scholar 

  197. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Carbogno (FHI Berlin) for computing the displacement vectors of the relevant phonon modes shown in Fig. 1. A.A., E.G., X.N., S.Y., E.M.R. and R.N. were partially supported by the Simons Foundation, the Air Force Office of Scientific Research with MURI grants no. FA9550-18-1-0379 and FA9550-22-1-0317, and the Office of Naval Research with grant no. N00014-19-1-2011. E.G. acknowledges funding from the Simons Foundation through a Junior Fellowship of the Simons Society of Fellows. G.C., S.W., M.W. and A.P. acknowledge support by the Max Planck Society. G.Á.-P. acknowledges support through the Severo Ochoa programme from the Government of the Principality of Asturias (grant no. PA-20-PF-BP19-053). P.A.-G. acknowledges support from the European Research Council under Consolidator grant no. 101044461, TWISTOPTICS and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2022-141304NB-I00).

Author information

Authors and Affiliations

Authors

Contributions

E.G., G.C. and X.N. contributed equally to the article. All authors contributed substantially to the discussion of the content. A.A. initiated the project. E.G., G.C, X.N., G.Á.-P., P.A.-G., S.Y., E.M.R. and A.P. researched the data and wrote the respective sections of the article. E.G., G.C., X.N., G.Á.-P., E.M.R., S.Y., A.P. and A.A. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Alexander Paarmann or Andrea Alù.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Qing Dai, Alexey Kavokin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiffi, E., Carini, G., Ni, X. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat Rev Mater 9, 9–28 (2024). https://doi.org/10.1038/s41578-023-00620-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00620-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing