Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal

Abstract

Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons—hybrid light–matter quasiparticles with open isofrequency contours—feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO3 or α-V2O5) crystals, where they obey certain propagation patterns. However, lower-symmetry materials such as monoclinic crystals were recently demonstrated to offer richer opportunities for polaritonic phenomena. Here, using scanning near-field optical microscopy, we report the direct real-space nanoscale imaging of symmetry-broken hyperbolic phonon polaritons in monoclinic CdWO4 crystals, and showcase inherently asymmetric polariton excitation and propagation associated with the nanoscale shear phenomena. We also introduce a quantitative theoretical model to describe these polaritons that leads to schemes to enhance crystal asymmetry via the damping loss of phonon modes. Ultimately, our findings show that polaritonic nanophotonics is attainable using natural materials with low symmetry, favouring a versatile and general way to manipulate light at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyperbolic polaritons in LSCs.
Fig. 2: Near-field observation of polaritons in LSCs.
Fig. 3: Near-field images of polaritons in low-symmetry CdWO4 crystals.
Fig. 4: Symmetry-broken nature of hyperbolic polaritons in LSCs.

Similar content being viewed by others

Data availability

All data are available in the Article or Supplementary Information.

References

  1. Born, M. & Wolf, E. Principles of Optics 5th edn, 333–334 (Pergamon, 1975).

  2. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article  CAS  Google Scholar 

  3. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  4. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  Google Scholar 

  5. Hu, G., Shen, J., Qiu, C.-W., Alù, A. & Dai, S. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020).

    Article  CAS  Google Scholar 

  6. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  Google Scholar 

  7. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  8. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  9. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  CAS  Google Scholar 

  10. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, e1705318 (2018).

    Article  Google Scholar 

  11. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  Google Scholar 

  12. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  Google Scholar 

  13. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  CAS  Google Scholar 

  14. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article  CAS  Google Scholar 

  15. Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article  Google Scholar 

  16. Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article  CAS  Google Scholar 

  17. Schubert, M. et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).

    Article  Google Scholar 

  18. Passler, N. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article  CAS  Google Scholar 

  19. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  CAS  Google Scholar 

  20. Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  CAS  Google Scholar 

  21. Ambrosio, A. et al. Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light Sci. Appl. 7, 27 (2018).

    Article  Google Scholar 

  22. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  CAS  Google Scholar 

  23. Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    Article  CAS  Google Scholar 

  24. Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    Article  CAS  Google Scholar 

  25. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    Article  CAS  Google Scholar 

  26. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).

    Article  CAS  Google Scholar 

  27. Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).

    Article  CAS  Google Scholar 

  28. Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).

    Article  CAS  Google Scholar 

  29. Kittel, C., McEuen, P. & McEuen, P. Introduction to Solid State Physics Vol. 8 (Wiley, 1996).

  30. Landau, L. et al. Electrodynamics of Continuous Media Vol. 8 (Elsevier, 2013).

  31. Gillette, R. H. Calcium and cadmium tungstate as a scintillation counter crystal for gamma-ray detection. Rev. Sci. Instrum. 21, 294–301 (1950).

    Article  Google Scholar 

  32. Mock, A., Korlacki, R., Knight, S. & Schubert, M. Anisotropy, phonon modes, and lattice anharmonicity from dielectric function tensor analysis of monoclinic cadmium tungstate. Phys. Rev. B 95, 165202 (2017).

    Article  Google Scholar 

  33. Huber, A., Ocelic, N. & Hillenbrand, R. Local excitation and interference of surface phonon polaritons studied by near‐field infrared microscopy. J. Microsc. 229, 389–395 (2008).

    Article  CAS  Google Scholar 

  34. Lee, D. et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2, 1 (2022).

    Article  Google Scholar 

  35. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

C.-W.Q. acknowledges support from the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme (CRP award NRF CRP22-2019-0006) and from the grant (A-0005947−16-00) from Advanced Research and Technology Innovation Centre (ARTIC). Q.D. acknowledges support from the National Natural Science Foundation of China (grant no. 51925203). D.H. acknowledges support from the National Natural Science Foundation of China (grant no. 52072083). J.D.C. acknowledges financial support from the US National Science Foundation (grant no. 2128240). J.W. acknowledges the Advanced Manufacturing and Engineering Young Individual Research Grant (AME YIRG grant no. A2084c170) and SERC Central Research Fund (CRF). P.L. acknowledges support from the National Natural Science Foundation of China (grant no. 62075070). W.M. acknowledges support from the Fundamental Research Funds for the Central Universities, HUST (grant no. 2022JYCXJJ009). A.A. and X.N. were supported by the Air Force Office of Scientific Research, the Office of Naval Research and the Simons Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.-W.Q, P.L. and A.A. conceived the idea. G.H. and W.M. performed the theory, simulation and design, with substantial input from C.-W.Q. and A.A. D.H. measured the sample with supervision by P.L. and Q.D. X.D.Z. fabricated the Au nanoantenna. G.H., W.M., X.L.Z., J.C., A.P., Q.D., A.A., P.L. and C.W. analysed the data, with input from all the authors. G.H., W.M. and D.H. wrote the manuscript with substantial contributions from all the others. C.-W.Q. oversaw the project.

Corresponding authors

Correspondence to Qing Dai, Andrea Alù, Peining Li or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–3 and Figs. 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Ma, W., Hu, D. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023). https://doi.org/10.1038/s41565-022-01264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01264-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing