Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organic batteries for a greener rechargeable world

Subjects

The emergence of electric mobility has placed high demands on lithium-ion batteries, inevitably requiring a substantial consumption of transition-metal resources. The use of this resource raises concerns about the limited supply of transition metals along with the associated environmental footprint. Organic rechargeable batteries, which are transition-metal-free, eco-friendly and cost-effective, are promising alternatives to current lithium-ion batteries that could alleviate these mounting concerns. In this Review, we present an overview of the efforts to implement transition-metal-free organic materials as the redox-active component in diverse types of organic rechargeable batteries. In addition, we critically evaluate the current status of organic rechargeable batteries from a practical viewpoint and assess the feasibility of their use in various energy-storage applications with respect to environmental and economic aspects. We believe this Review provides a timely evaluation of organic rechargeable batteries from a real-world perspective, and we hope it will spur more intensive efforts towards a greener energy future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparative analysis of environmental and economic merits of redox-active organic materials.
Fig. 2: Redox motifs in representative redox-active organic electrodes.
Fig. 3: Molecular structures of representative redox-active organic materials.
Fig. 4: Comparative analysis of specific energy of representative redox-active organic materials.
Fig. 5: Comparative analysis of rate capability and cycle performance.
Fig. 6: Potential of employing redox-active organic materials for post-lithium-ion battery configurations.

Similar content being viewed by others

References

  1. Wang, C., Chen, B., Yu, Y., Wang, Y. & Zhang, W. Carbon footprint analysis of lithium ion secondary battery industry: two case studies from China. J. Clean. Prod. 163, 241–251 (2017).

    Article  CAS  Google Scholar 

  2. Ambrose, H. & Kendall, A. Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility. Transp. Res. D 47, 182–194 (2016).

    Article  Google Scholar 

  3. Kwak, W.-J. et al. Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020).

    Article  CAS  Google Scholar 

  4. Ma, L., Hendrickson, K. E., Wei, S. & Archer, L. A. Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015).

    Article  CAS  Google Scholar 

  5. Wang, L., Hu, J., Yu, Y., Huang, K. & Hu, Y. Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators? J. Clean. Prod. 276, 124244 (2020).

    Article  CAS  Google Scholar 

  6. Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    Article  CAS  Google Scholar 

  7. Esser, B. et al. A perspective on organic electrode materials and technologies for next generation batteries. J. Power Sources 482, 228814 (2021).

    Article  CAS  Google Scholar 

  8. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  9. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article  CAS  Google Scholar 

  10. Lee, S., Hong, J. & Kang, K. Redox-active organic compounds for future sustainable energy storage system. Adv. Energy Mater. 10, 2001445 (2020).

    Article  CAS  Google Scholar 

  11. Lakraychi, A. E., Dolhem, F., Vlad, A. & Becuwe, M. Organic negative electrode materials for metal-ion and molecular-ion batteries: progress and challenges from a molecular engineering perspective. Adv. Energy Mater. 11, 2101562 (2021).

    Article  CAS  Google Scholar 

  12. Stocker, T. et al. (eds) Climate Change 2013: The Physical Science Basis: Working Group I Contribution To The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change (Cambridge Univ. Press, 2014).

  13. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  Google Scholar 

  14. Sun, X., Luo, X., Zhang, Z., Meng, F. & Yang, J. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J. Clean. Prod. 273, 123006 (2020).

    Article  CAS  Google Scholar 

  15. Rosental, M., Fröhlich, T. & Liebich, A. Life cycle assessment of carbon capture and utilization for the production of large volume organic chemicals. Front. Clim. 2, 9 (2020).

    Article  Google Scholar 

  16. Wernet, G., Conradt, S., Isenring, H. P., Jiménez-González, C. & Hungerbühler, K. Life cycle assessment of fine chemical production: a case study of pharmaceutical synthesis. Int. J. Life Cycle Assess. 15, 294–303 (2010).

    Article  CAS  Google Scholar 

  17. Wernet, G., Mutel, C., Hellweg, S. & Hungerbühler, K. The environmental importance of energy use in chemical production. J. Ind. Ecol. 15, 96–107 (2011).

    Article  CAS  Google Scholar 

  18. Wentker, M., Greenwood, M. & Leker, J. A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies 12, 504 (2019).

    Article  CAS  Google Scholar 

  19. Battery Shipment And Installation For EV/ESS (SNE Research, 2021).

  20. Yang, Z. et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy. Adv. Energy Mater. 8, 1702056 (2018).

    Article  Google Scholar 

  21. Williams, D., Byrne, J. & Driscoll, J. A high energy density lithium/dichloroisocyanuric acid battery system. J. Electrochem. Soc. 116, 2 (1969).

    Article  CAS  Google Scholar 

  22. Liang, Y., Zhang, P. & Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 4, 1330–1337 (2013).

    Article  CAS  Google Scholar 

  23. Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    Article  CAS  Google Scholar 

  24. Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348 (2008).

    Article  CAS  Google Scholar 

  25. Chen, H. et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 131, 8984–8988 (2009).

    Article  CAS  Google Scholar 

  26. Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).

    Article  CAS  Google Scholar 

  27. Armand, M. et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8, 120–125 (2009).

    Article  CAS  Google Scholar 

  28. Jouhara, A. et al. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution. Nat. Commun. 9, 4401 (2018).

    Article  Google Scholar 

  29. Geng, J., Bonnet, J.-P., Renault, S., Dolhem, F. & Poizot, P. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit. Energy Environ. Sci. 3, 1929–1933 (2010).

    Article  CAS  Google Scholar 

  30. Song, Z., Zhan, H. & Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. 49, 8444–8448 (2010).

    Article  CAS  Google Scholar 

  31. Xing, Z. et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Mater. 2, 63–68 (2016).

    Article  Google Scholar 

  32. Miroshnikov, M. et al. Bioderived molecular electrodes for next-generation energy-storage materials. ChemSusChem 13, 2186–2204 (2020).

    Article  CAS  Google Scholar 

  33. Lee, B. et al. Exploiting biological systems: toward eco-friendly and high-efficiency rechargeable batteries. Joule 2, 61–75 (2018).

    Article  CAS  Google Scholar 

  34. Lee, S. et al. Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Mater. 20, 462–469 (2019).

    Article  Google Scholar 

  35. Kolek, M. et al. Ultra-high cycling stability of poly (vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 10, 2334–2341 (2017).

    Article  CAS  Google Scholar 

  36. Lee, K. et al. Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy Environ. Sci. 13, 4142–4156 (2020).

    Article  CAS  Google Scholar 

  37. Lee, M. et al. Multi-electron redox phenazine for ready-to-charge organic batteries. Green. Chem. 19, 2980–2985 (2017).

    Article  CAS  Google Scholar 

  38. Dai, G. et al. Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode. Energy Storage Mater. 16, 236–242 (2019).

    Article  Google Scholar 

  39. Huang, L. et al. π-Extended dihydrophenazine-based polymeric cathode material for high-performance organic batteries. ACS Sustain. Chem. Eng. 8, 17868–17875 (2020).

    Article  CAS  Google Scholar 

  40. Peterson, B. M., Gannett, C. N., Melecio-Zambrano, L., Fors, B. P. & Abruña, H. Effect of structural ordering on the charge storage mechanism of p-type organic electrode materials. ACS Appl. Mater. Interf. 13, 7135–7141 (2021).

    Article  CAS  Google Scholar 

  41. Yamamoto, K., Suemasa, D., Masuda, K., Aita, K. & Endo, T. Hyperbranched triphenylamine polymer for ultrafast battery cathode. ACS Appl. Mater. Interf. 10, 6346–6353 (2018).

    Article  CAS  Google Scholar 

  42. Peng, Z., Yi, X., Liu, Z., Shang, J. & Wang, D. Triphenylamine-based metal–organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability. ACS Appl. Mater. Interf. 8, 14578–14585 (2016).

    Article  CAS  Google Scholar 

  43. Otteny, F. et al. Poly (vinylphenoxazine) as fast-charging cathode material for organic batteries. ACS Sustain. Chem. Eng. 8, 238–247 (2019).

    Article  Google Scholar 

  44. Luo, C. et al. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc. Natl Acad. Sci. USA 115, 2004–2009 (2018).

    Article  CAS  Google Scholar 

  45. Singh, V. et al. Thiazole-linked covalent organic framework promoting fast two-electron transfer for lithium-organic batteries. Adv. Energy Mater. 11, 2003735 (2021).

    Article  CAS  Google Scholar 

  46. Wu, C. et al. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater. 36, 347–354 (2021).

    Article  Google Scholar 

  47. Lee, M. et al. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Ed. 52, 8322–8328 (2013).

    Article  CAS  Google Scholar 

  48. Peng, C. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 1–9 (2017).

    Article  Google Scholar 

  49. Schon, T. B., Tilley, A. J., Bridges, C. R., Miltenburg, M. B. & Seferos, D. S. Bio-derived polymers for sustainable lithium-ion batteries. Adv. Funct. Mater. 26, 6896–6903 (2016).

    Article  CAS  Google Scholar 

  50. Hong, J. et al. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014).

    Article  CAS  Google Scholar 

  51. Kim, J. et al. Biological nicotinamide cofactor as a redox-active motif for reversible electrochemical energy storage. Angew. Chem. Int. Ed. 58, 16764–16769 (2019).

    Article  CAS  Google Scholar 

  52. Fujihara, Y. et al. Electrical conductivity-relay between organic charge-transfer and radical salts toward conductive additive-free rechargeable battery. ACS Appl. Mater. Interf. 12, 25748–25755 (2020).

    Article  CAS  Google Scholar 

  53. Hanyu, Y. & Honma, I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode. Sci. Rep. 2, 453 (2012).

    Article  Google Scholar 

  54. Häupler, B. et al. PolyTCAQ in organic batteries: enhanced capacity at constant cell potential using two-electron-redox-reactions. J. Mater. Chem. A 2, 8999–9001 (2014).

    Article  Google Scholar 

  55. Wang, J. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021).

    Article  CAS  Google Scholar 

  56. Speer, M. E. et al. Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51, 15261–15264 (2015).

    Article  CAS  Google Scholar 

  57. Wild, A., Strumpf, M., Häupler, B., Hager, M. D. & Schubert, U. S. All-organic battery composed of thianthrene- and TCAQ-based polymers. Adv. Energy Mater. 7, 1601415 (2017).

    Article  Google Scholar 

  58. Kim, J. et al. A p–n fusion strategy to design bipolar organic materials for high-energy-density symmetric batteries. J. Mater. Chem. A 9, 14485–14494 (2021).

    Article  CAS  Google Scholar 

  59. Zhao, H. et al. Organic thiocarboxylate electrodes for a room-temperature sodium-ion battery delivering an ultrahigh capacity. Angew. Chem. Int. Ed. 56, 15334–15338 (2017).

    Article  CAS  Google Scholar 

  60. Zhang, B. et al. Isometric thionated naphthalene diimides as organic cathodes for high capacity lithium batteries. Chem. Mater. 32, 10575–10583 (2020).

    Article  CAS  Google Scholar 

  61. Lee, S. et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 30, 1704682 (2018).

    Article  Google Scholar 

  62. Visco, S. J. & DeJonghe, L. C. Ionic conductivity of organosulfur melts for advanced storage electrodes. J. Electrochem. Soc. 135, 2905 (1988).

    Article  CAS  Google Scholar 

  63. Zhou, J. et al. Selenium-doped cathodes for lithium–organosulfur batteries with greatly improved volumetric capacity and Coulombic efficiency. Adv. Mater. 29, 1701294 (2017).

    Article  Google Scholar 

  64. Visco, S., Liu, M. & De Jonghe, L. Ambient temperature high-rate lithium/organosulfur batteries. J. Electrochem. Soc. 137, 1191 (1990).

    Article  CAS  Google Scholar 

  65. Shadike, Z. et al. Review on organosulfur materials for rechargeable lithium batteries. Mater. Horiz. 8, 471–500 (2021).

    Article  CAS  Google Scholar 

  66. Nakahara, K. et al. Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351–354 (2002).

    Article  CAS  Google Scholar 

  67. Suguro, M., Iwasa, S., Kusachi, Y., Morioka, Y. & Nakahara, K. Cationic polymerization of poly (vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol. Rapid Commun. 28, 1929–1933 (2007).

    Article  CAS  Google Scholar 

  68. Wang, S., Li, F., Easley, A. D. & Lutkenhaus, J. L. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019).

    Article  CAS  Google Scholar 

  69. Oyaizu, K. & Nishide, H. Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 21, 2339–2344 (2009).

    Article  CAS  Google Scholar 

  70. Nigrey, P. J., MacInnes, D. Jr, Nairns, D. P., MacDiarmid, A. G. & Heeger, A. J. Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material. J. Electrochem. Soc. 128, 1651 (1981).

    Article  CAS  Google Scholar 

  71. Kaneto, K., Yoshino, K. & Inuishi, Y. Characteristics of polythiophene battery. Jpn. J. Appl. Phys. 22, L567 (1983).

    Article  Google Scholar 

  72. MacDiarmid, A. G., Yang, L., Huang, W. & Humphrey, B. Polyaniline: electrochemistry and application to rechargeable batteries. Synth. Met. 18, 393–398 (1987).

    Article  CAS  Google Scholar 

  73. Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    Article  CAS  Google Scholar 

  74. Gu, R. et al. Improved electrochemical performances of LiCoO2 at elevated voltage and temperature with an in situ formed spinel coating layer. ACS Appl. Mater. Interf. 10, 31271–31279 (2018).

    Article  CAS  Google Scholar 

  75. Kim, U.-H. et al. Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ. Sci. 14, 1573–1583 (2021).

    Article  CAS  Google Scholar 

  76. Neudeck, S. et al. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl. Mater. Interf. 10, 20487–20498 (2018).

    Article  CAS  Google Scholar 

  77. Song, J. et al. Enhancement of the rate capability of LiFePO4 by a new highly graphitic carbon-coating method. ACS Appl. Mater. Interfaces 8, 15225–15231 (2016).

    Article  CAS  Google Scholar 

  78. Luo, C., Fan, X., Ma, Z., Gao, T. & Wang, C. Self-healing chemistry between organic material and binder for stable sodium-ion batteries. Chem 3, 1050–1062 (2017).

    Article  CAS  Google Scholar 

  79. Lu, Y. et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 58, 7020–7024 (2019).

    Article  CAS  Google Scholar 

  80. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  81. Kasnatscheew, J. et al. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. Phys. Chem. Chem. Phys. 18, 3956–3965 (2016).

    Article  CAS  Google Scholar 

  82. Liang, Y., Zhang, P., Yang, S., Tao, Z. & Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600–605 (2013).

    Article  CAS  Google Scholar 

  83. Yao, M., Senoh, H., Araki, M., Sakai, T. & Yasuda, K. Organic positive-electrode materials based on dialkoxybenzoquinone derivatives for use in rechargeable lithium batteries. ECS Trans. 28, 3 (2010).

    Article  CAS  Google Scholar 

  84. Nishida, S., Yamamoto, Y., Takui, T. & Morita, Y. Organic rechargeable batteries with tailored voltage and cycle performance. ChemSusChem 6, 794–797 (2013).

    Article  CAS  Google Scholar 

  85. Lee, S., Kwon, J. E., Hong, J., Park, S. Y. & Kang, K. The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: electronic effects vs. substituent-Li/Na ionic interaction. J. Mater. Chem. A 7, 11438–11443 (2019).

    Article  CAS  Google Scholar 

  86. Sieuw, L. et al. Through-space charge modulation overriding substituent effect: rise of the redox potential at 3.35 V in a lithium-phenolate stereoelectronic isomer. Chem. Mater. 32, 9996–10006 (2020).

    Article  CAS  Google Scholar 

  87. Rambabu, D. et al. An electrically conducting Li-ion metal–organic framework. J. Am. Chem. Soc. 143, 11641–11650 (2021).

    Article  CAS  Google Scholar 

  88. Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    Article  CAS  Google Scholar 

  89. Yang, H. et al. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy Environ. Sci. 14, 4228–4267 (2021).

    Article  CAS  Google Scholar 

  90. Lee, Y. K. The effect of active material, conductive additives, and binder in a cathode composite electrode on battery performance. Energies 12, 658 (2019).

    Article  CAS  Google Scholar 

  91. Zheng, H., Yang, R., Liu, G., Song, X. & Battaglia, V. S. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J. Phys. Chem. C 116, 4875–4882 (2012).

    Article  CAS  Google Scholar 

  92. Fédèle, L. et al. Mesoscale texturation of organic-based negative electrode material through in situ proton reduction of conjugated carboxylic acid. Chem. Mater. 31, 6224–6230 (2019).

    Article  Google Scholar 

  93. Jouhara, A. et al. Playing with the p-doping mechanism to lower the carbon loading in n-type insertion organic electrodes: first feasibility study with binder-free composite electrodes. J. Electrochem. Soc. 167, 070540 (2020).

    Article  Google Scholar 

  94. Mao, M. et al. Electronic conductive inorganic cathodes promising high-energy organic batteries. Adv. Mater. 33, 2005781 (2021).

    Article  CAS  Google Scholar 

  95. Iordache, A. et al. From an enhanced understanding to commercially viable electrodes: the case of PTCLi4 as sustainable organic lithium-ion anode material. Adv. Sustain. Syst. 1, 1600032 (2017).

    Article  Google Scholar 

  96. Molina, A. et al. Electrode engineering of redox-active conjugated microporous polymers for ultra-high areal capacity organic batteries. ACS Energy Lett. 5, 2945–2953 (2020).

    Article  CAS  Google Scholar 

  97. Fang, C. et al. Immobilizing an organic electrode material through π–π interaction for high-performance Li-organic batteries. J. Mater. Chem. A 7, 22398–22404 (2019).

    Article  CAS  Google Scholar 

  98. Michelbacher, C. J. et al. Enabling Fast Charging: A Technology Gap Assessment (Idaho National Laboratory, 2017).

  99. Jenn, A., Clark-Sutton, K., Gallaher, M. & Petrusa, J. Environmental impacts of extreme fast charging. Environ. Res. Lett. 15, 094060 (2020).

    Article  CAS  Google Scholar 

  100. Nakahara, K. et al. Cell properties for modified PTMA cathodes of organic radical batteries. J. Power Sources 165, 398–402 (2007).

    Article  CAS  Google Scholar 

  101. Nakahara, K. et al. Al-laminated film packaged organic radical battery for high-power applications. J. Power Sources 163, 1110–1113 (2007).

    Article  CAS  Google Scholar 

  102. Janoschka, T., Hager, M. D. & Schubert, U. S. Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397–6409 (2012).

    Article  CAS  Google Scholar 

  103. Rostro, L., Wong, S. H. & Boudouris, B. W. Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47, 3713–3719 (2014).

    Article  CAS  Google Scholar 

  104. Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    Article  CAS  Google Scholar 

  105. Wang, S. et al. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 13, 4404–4409 (2013).

    Article  CAS  Google Scholar 

  106. Zhuo, S. et al. Size control of zwitterionic polymer micro/nanospheres and its dependence on sodium storage. Nanoscale Horiz. 4, 1092–1098 (2019).

    Article  CAS  Google Scholar 

  107. Wang, Y. & Weng, G. J. in Micromechanics And Nanomechanics Of Composite Solids 123–156 (Springer, 2018).

  108. Zhao, S. et al. Nanoengineering of advanced carbon materials for sodium-ion batteries. Small 17, e2007431 (2021).

    Article  Google Scholar 

  109. Kim, H. W. et al. Binder-free organic cathode based on nitroxide radical polymer-functionalized carbon nanotubes and gel polymer electrolyte for high-performance sodium organic polymer batteries. J. Mater. Chem. A 8, 17980–17986 (2020).

    Article  CAS  Google Scholar 

  110. Xie, J., Wang, Z., Xu, Z. J. & Zhang, Q. Toward a high-performance all-plastic full battery with a’single organic polymer as both cathode and anode. Adv. Energy Mater. 8, 1703509 (2018).

    Article  Google Scholar 

  111. Lin, C.-H., Lee, J.-T., Yang, D.-R., Chen, H.-W. & Wu, S.-T. Nitroxide radical polymer/carbon-nanotube-array electrodes with improved C-rate performance in organic radical batteries. RSC Adv. 5, 33044–33048 (2015).

    Article  CAS  Google Scholar 

  112. Zhao, Q., Wang, J., Chen, C., Ma, T. & Chen, J. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Res. 10, 4245–4255 (2017).

    Article  CAS  Google Scholar 

  113. Pender, J. P. et al. Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020).

    Article  CAS  Google Scholar 

  114. Rodríguez-Pérez, I. A. et al. Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139, 13031–13037 (2017).

    Article  Google Scholar 

  115. Zhang, K., Xie, Y., Monteiro, M. J. & Jia, Z. Triazole-enabled small TEMPO cathodes for lithium-organic batteries. Energy Storage Mater. 35, 122–129 (2021).

    Article  Google Scholar 

  116. Kwon, J. E. et al. Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries. J. Mater. Chem. A 6, 3134–3140 (2018).

    Article  CAS  Google Scholar 

  117. Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    Article  CAS  Google Scholar 

  118. Otteny, F. et al. Unlocking full discharge capacities of poly (vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking. Adv. Energy Mater. 8, 1802151 (2018).

    Article  Google Scholar 

  119. Song, Z. et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015).

    Article  CAS  Google Scholar 

  120. Zhao, Y. et al. Balance cathode-active and anode-active groups in one conjugated polymer towards high-performance all-organic lithium-ion batteries. Nano Energy 86, 106055 (2021).

    Article  CAS  Google Scholar 

  121. Song, Z., Qian, Y., Zhang, T., Otani, M. & Zhou, H. Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2, 1500124 (2015).

    Article  Google Scholar 

  122. Song, Z., Zhan, H. & Zhou, Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. https://doi.org/10.1039/b814515f (2009).

    Article  Google Scholar 

  123. Oyaizu, K., Choi, W. & Nishide, H. Functionalization of poly (4-chloromethylstyrene) with anthraquinone pendants for organic anode-active materials. Polym. Adv. Technol. 22, 1242–1247 (2011).

    Article  CAS  Google Scholar 

  124. Xu, W. et al. Factors affecting the battery performance of anthraquinone-based organic cathode materials. J. Mater. Chem. 22, 4032–4039 (2012).

    Article  CAS  Google Scholar 

  125. Zarren, G., Nisar, B. & Sher, F. Synthesis of anthraquinone-based electroactive polymers: a critical review. Mater. Today Sustain. 5, 100019 (2019).

    Article  Google Scholar 

  126. Zhou, Y. et al. Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy 15, 654–661 (2015).

    Article  CAS  Google Scholar 

  127. Zhao, L. et al. A novel polyquinone cathode material for rechargeable lithium batteries. J. Power Sources 233, 23–27 (2013).

    Article  CAS  Google Scholar 

  128. Molina, A. et al. New anthraquinone-based conjugated microporous polymer cathode with ultrahigh specific surface area for high-performance lithium-ion batteries. Adv. Funct. Mater. 30, 1908074 (2020).

    Article  CAS  Google Scholar 

  129. Wang, X., Zhou, J. & Tang, W. Poly (dithieno [3, 2-b: 2′, 3′-d] pyrrole) twisting redox pendants enabling high current durability in all-organic proton battery. Energy Storage Mater. 36, 1–9 (2021).

    Article  CAS  Google Scholar 

  130. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  131. Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  CAS  Google Scholar 

  132. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  133. Ma, T., Liu, L., Wang, J., Lu, Y. & Chen, J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries. Angew. Chem. Int. Ed. 59, 11533–11539 (2020).

    Article  CAS  Google Scholar 

  134. Zhang, X., Zhou, W., Zhang, M., Yang, Z. & Huang, W. Superior performance for lithium-ion battery with organic cathode and ionic liquid electrolyte. J. Energy Chem. 52, 28–32 (2021).

    Article  CAS  Google Scholar 

  135. Qin, J. et al. A metal-free battery with pure ionic liquid electrolyte. iScience 15, 16–27 (2019).

    Article  CAS  Google Scholar 

  136. Fang, Y.-B., Zheng, W., Li, L. & Yuan, W.-H. An ultrahigh rate ionic liquid dual-ion battery based on a poly (anthraquinonyl sulfide) anode. ACS Appl. Energy Mater. 3, 12276–12283 (2020).

    Article  CAS  Google Scholar 

  137. Huang, W. et al. Calix[6]quinone as high-performance cathode for lithium-ion battery. Sci. China Mater. 63, 339–346 (2020).

    Article  CAS  Google Scholar 

  138. Huang, W. et al. Synthesis and application of calix [6] quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries. Energy Storage Mater. 26, 465–471 (2020).

    Article  Google Scholar 

  139. Sun, H. et al. High-performance organic lithium-ion battery with plastic crystal electrolyte. Org. Electron. 87, 105966 (2020).

    Article  CAS  Google Scholar 

  140. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  CAS  Google Scholar 

  141. Cao, S. et al. Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review. J. Korean Ceram. Soc. 56, 111–129 (2019).

    Article  CAS  Google Scholar 

  142. Hao, F. et al. High-energy all-solid-state organic–lithium batteries based on ceramic electrolytes. ACS Energy Lett. 6, 201–207 (2020).

    Article  Google Scholar 

  143. Chi, X. et al. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem. Int. Ed. 57, 2630–2634 (2018).

    Article  CAS  Google Scholar 

  144. Luo, C. et al. Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries. Angew. Chem. Int. Ed. 57, 8567–8571 (2018).

    Article  CAS  Google Scholar 

  145. Sun, Y.-K. Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5, 3221–3223 (2020).

    Article  CAS  Google Scholar 

  146. Yang, X., Adair, K. R., Gao, X. & Sun, X. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 14, 643–671 (2021).

    Article  CAS  Google Scholar 

  147. Cheng, X.-B., Zhao, C.-Z., Yao, Y.-X., Liu, H. & Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5, 74–96 (2019).

    Article  CAS  Google Scholar 

  148. Lau, V. W.-h, Moudrakovski, I., Yang, J., Zhang, J. & Kang, Y.-M. Uncovering the shuttle effect in organic batteries and counter-strategies thereof: a case study of the N,N′-dimethylphenazine cathode. Angew. Chem. Int. Ed. 59, 4023–4034 (2020).

    Article  CAS  Google Scholar 

  149. Bai, S. et al. Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021).

    Article  CAS  Google Scholar 

  150. Dong, H. et al. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5, 1043–1050 (2020).

    Article  CAS  Google Scholar 

  151. Sun, Y. et al. Functional separator with a lightweight carbon-coating for stable, high-capacity organic lithium batteries. Chem. Eng. J. 418, 129404 (2021).

    Article  CAS  Google Scholar 

  152. Song, Z., Qian, Y., Otani, M. & Zhou, H. Stable Li–organic batteries with nafion-based sandwich-type separators. Adv. Energy Mater. 6, 1501780 (2016).

    Article  Google Scholar 

  153. Belanger, R. L. et al. Diffusion control of organic cathode materials in lithium metal battery. Sci. Rep. 9, 1213 (2019).

    Article  Google Scholar 

  154. Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).

    Article  CAS  Google Scholar 

  155. Rajagopalan, R., Tang, Y., Ji, X., Jia, C. & Wang, H. Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30, 1909486 (2020).

    Article  CAS  Google Scholar 

  156. Kim, H. et al. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8, 1702384 (2018).

    Article  Google Scholar 

  157. Li, M. et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 5, 276–294 (2020).

    Article  CAS  Google Scholar 

  158. Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020).

    Article  CAS  Google Scholar 

  159. Elia, G. A. et al. An overview and future perspectives of aluminum batteries. Adv. Mater. 28, 7564–7579 (2016).

    Article  CAS  Google Scholar 

  160. Delmas, C., Braconnier, J.-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid. State Ion. 3-4, 165–169 (1981).

    Article  CAS  Google Scholar 

  161. Kim, H. et al. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy Mater. 7, 1700098 (2017).

    Article  Google Scholar 

  162. Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel phase transition in LixMnO2. Electrochem. Solid. State Lett. 4, A78 (2001).

    Article  CAS  Google Scholar 

  163. Ma, X., Chen, H. & Ceder, G. Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 158, A1307 (2011).

    Article  CAS  Google Scholar 

  164. Kim, H. et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 29, 1702480 (2017).

    Article  Google Scholar 

  165. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  CAS  Google Scholar 

  166. Pramudita, J. C., Sehrawat, D., Goonetilleke, D. & Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017).

    Article  Google Scholar 

  167. Guo, S. et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew. Chem. Int. Ed. 54, 5894–5899 (2015).

    Article  CAS  Google Scholar 

  168. Kim, J., Yoon, G., Kim, H., Park, Y.-U. & Kang, K. Na3V(PO4)2: a new layered-type cathode material with high water stability and power capability for Na-ion batteries. Chem. Mater. 30, 3683–3689 (2018).

    Article  CAS  Google Scholar 

  169. Gao, H. et al. Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries. J. Am. Chem. Soc. 140, 18192–18199 (2018).

    Article  CAS  Google Scholar 

  170. Liu, C.-L., Luo, S.-H., Huang, H.-B., Zhai, Y.-C. & Wang, Z.-W. Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries. Chem. Eng. J. 356, 53–59 (2019).

    Article  CAS  Google Scholar 

  171. Masese, T. et al. Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors. Nat. Commun. 9, 3823 (2018).

    Article  Google Scholar 

  172. Xie, J. & Zhang, Q. Recent Progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15, 1805061 (2019).

    Article  Google Scholar 

  173. Jian, Z., Liang, Y., Rodríguez-Pérez, I. A., Yao, Y. & Ji, X. Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem. Commun. 71, 5–8 (2016).

    Article  CAS  Google Scholar 

  174. Zhang, Y. et al. Dispersion–assembly approach to synthesize three-dimensional graphene/polymer composite aerogel as a powerful organic cathode for rechargeable Li and Na batteries. ACS Appl. Mater. Interf. 9, 15549–15556 (2017).

    Article  CAS  Google Scholar 

  175. Zhao, Q. et al. Oxocarbon salts for fast rechargeable batteries. Angew. Chem. Int. Ed. 55, 12528–12532 (2016).

    Article  CAS  Google Scholar 

  176. Slesarenko, A. et al. New tetraazapentacene-based redox-active material as a promising high-capacity organic cathode for lithium and potassium batteries. J. Power Sources 435, 226724 (2019).

    Article  CAS  Google Scholar 

  177. Luo, C. et al. Reversible redox chemistry of azo compounds for sodium-ion batteries. Angew. Chem. Int. Ed. 57, 2879–2883 (2018).

    Article  CAS  Google Scholar 

  178. Zhang, Y. et al. Enhanced cycle performance of polyimide cathode using a quasi-solid-state electrolyte. J. Phys. Chem. C 122, 22294–22300 (2018).

    Article  CAS  Google Scholar 

  179. Tang, W. et al. Highly stable and high rate-performance Na-ion batteries using polyanionic anthraquinone as the organic cathode. ChemSusChem 12, 2181–2185 (2019).

    Article  CAS  Google Scholar 

  180. Tang, M. et al. Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes. Chem 4, 2600–2614 (2018).

    Article  CAS  Google Scholar 

  181. Luo, W., Allen, M., Raju, V. & Ji, X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 4, 1400554 (2014).

    Article  Google Scholar 

  182. Fan, L., Ma, R., Wang, J., Yang, H. & Lu, B. An ultrafast and highly stable potassium–organic battery. Adv. Mater. 30, 1805486 (2018).

    Article  Google Scholar 

  183. Tang, M. et al. An organic cathode with high capacities for fast-charge potassium-ion batteries. J. Mater. Chem. A 7, 486–492 (2019).

    Article  CAS  Google Scholar 

  184. Liang, Y. et al. An organic anode for high temperature potassium-ion batteries. Adv. Energy Mater. 9, 1802986 (2019).

    Article  Google Scholar 

  185. Chen, Y. et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015).

    Article  CAS  Google Scholar 

  186. Sharma, P., Damien, D., Nagarajan, K., Shaijumon, M. M. & Hariharan, M. Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries. J. Phys. Chem. Lett. 4, 3192–3197 (2013).

    Article  CAS  Google Scholar 

  187. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  CAS  Google Scholar 

  188. Qin, K., Huang, J., Holguin, K. & Luo, C. Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy Environ. Sci. 13, 3950–3992 (2020).

    Article  CAS  Google Scholar 

  189. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  CAS  Google Scholar 

  190. Sun, X. et al. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9, 2273–2277 (2016).

    Article  CAS  Google Scholar 

  191. Geng, L., Lv, G., Xing, X. & Guo, J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015).

    Article  CAS  Google Scholar 

  192. Xu, Z.-L. et al. A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nat. Commun. 12, 3369 (2021).

    Article  CAS  Google Scholar 

  193. Wu, F., Yang, H., Bai, Y. & Wu, C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019).

    Article  Google Scholar 

  194. Pan, B. et al. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 6, 1600140 (2016).

    Article  Google Scholar 

  195. Cui, L. et al. Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy 65, 103902 (2019).

    Article  CAS  Google Scholar 

  196. Kim, D. J. et al. Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2019).

    Article  CAS  Google Scholar 

  197. Yoo, D.-J., Heeney, M., Glöcklhofer, F. & Choi, J. W. Tetradiketone macrocycle for divalent aluminium ion batteries. Nat. Commun. 12, 2386 (2021).

    Article  CAS  Google Scholar 

  198. Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R. & Kovalenko, M. V. Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30, 1705644 (2018).

    Article  Google Scholar 

  199. Han, C., Li, H., Li, Y., Zhu, J. & Zhi, C. Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nat. Commun. 12, 2400 (2021).

    Article  CAS  Google Scholar 

  200. Gheytani, S. et al. An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017).

    Article  Google Scholar 

  201. Liu, Y. et al. Cathode design for aqueous rechargeable multivalent ion batteries: challenges and opportunities. Adv. Funct. Mater. 31, 2010445 (2021).

    Article  CAS  Google Scholar 

  202. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  CAS  Google Scholar 

  203. Huang, J. et al. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3, 1800272 (2019).

    Article  Google Scholar 

  204. Demir-Cakan, R., Palacin, M. R. & Croguennec, L. Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry. J. Mater. Chem. A 7, 20519–20539 (2019).

    Article  CAS  Google Scholar 

  205. Wang, Y. et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, 2000338 (2020).

    Article  CAS  Google Scholar 

  206. Ma, T., Zhao, Q., Wang, J., Pan, Z. & Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem. Int. Ed. 55, 6428–6432 (2016).

    Article  CAS  Google Scholar 

  207. Wang, Q., Liu, Y. & Chen, P. Phenazine-based organic cathode for aqueous zinc secondary batteries. J. Power Sources 468, 228401 (2020).

    Article  CAS  Google Scholar 

  208. Tian, B. et al. Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chem. Commun. 53, 2914–2917 (2017).

    Article  CAS  Google Scholar 

  209. Zhang, H., Fang, Y., Yang, F., Liu, X. & Lu, X. Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ. Sci. 13, 2515–2523 (2020).

    Article  CAS  Google Scholar 

  210. Guo, Z. et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737–11741 (2018).

    Article  CAS  Google Scholar 

  211. Han, C., Zhu, J., Zhi, C. & Li, H. The rise of aqueous rechargeable batteries with organic electrode materials. J. Mater. Chem. A 8, 15479–15512 (2020).

    Article  CAS  Google Scholar 

  212. Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016).

    Article  CAS  Google Scholar 

  213. Chen, H. et al. Use of a water-in-salt electrolyte to avoid organic material dissolution and enhance the kinetics of aqueous potassium ion batteries. Sustain. Energy Fuels 4, 128–131 (2020).

    Article  CAS  Google Scholar 

  214. Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  CAS  Google Scholar 

  215. Liu, C., Chi, X., Han, Q. & Liu, Y. A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10, 1903589 (2020).

    Article  CAS  Google Scholar 

  216. Ding, C., Zhang, H., Li, X., Liu, T. & Xing, F. Vanadium flow battery for energy storage: prospects and challenges. J. Phys. Chem. Lett. 4, 1281–1294 (2013).

    Article  CAS  Google Scholar 

  217. Gong, K. et al. A zinc–iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 8, 2941–2945 (2015).

    Article  CAS  Google Scholar 

  218. Lai, Q., Zhang, H., Li, X., Zhang, L. & Cheng, Y. A novel single flow zinc–bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013).

    Article  CAS  Google Scholar 

  219. Sánchez-Díez, E. et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power Sources 481, 228804 (2021).

    Article  Google Scholar 

  220. Rodby, K. E. et al. Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing. J. Power Sources 460, 227958 (2020).

    Article  CAS  Google Scholar 

  221. Yuan, Z., Duan, Y., Liu, T., Zhang, H. & Li, X. Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage. iScience 3, 40–49 (2018).

    Article  CAS  Google Scholar 

  222. Jin, S. et al. A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4, 1342–1348 (2019).

    Article  CAS  Google Scholar 

  223. Ji, Y. et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019).

    Article  Google Scholar 

  224. Beh, E. S. et al. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639–644 (2017).

    Article  CAS  Google Scholar 

  225. Kwon, G. et al. Highly persistent triphenylamine-based catholyte for durable organic redox flow batteries. Energy Storage Mater. 42, 185–192 (2021).

    Article  Google Scholar 

  226. Li, X. et al. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nat. Energy 6, 873–881 (2021).

    Article  CAS  Google Scholar 

  227. Kwabi, D. G., Ji, Y. & Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467–6489 (2020).

    Article  CAS  Google Scholar 

  228. Feng, R. et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science 372, 836–840 (2021).

    Article  CAS  Google Scholar 

  229. Xie, J. & Lu, Y.-C. Towards practical organic batteries. Nat. Mater. 20, 581–583 (2021).

    Article  CAS  Google Scholar 

  230. Hu, P. et al. Renewable-biomolecule-based full lithium-ion batteries. Adv. Mater. 28, 3486–3492 (2016).

    Article  CAS  Google Scholar 

  231. Sun, T. et al. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016).

    Article  CAS  Google Scholar 

  232. Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).

    Article  CAS  Google Scholar 

  233. Wang, C. et al. A selectively permeable membrane for enhancing cyclability of organic sodium-ion batteries. Adv. Mater. 28, 9182–9187 (2016).

    Article  CAS  Google Scholar 

  234. Patil, N. et al. An ultrahigh performance zinc-organic battery using poly (catechol) cathode in Zn(TFSI)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11, 2100939 (2021).

    Article  CAS  Google Scholar 

  235. Tie, Z. & Niu, Z. Design strategies for high-performance aqueous zn/organic batteries. Angew. Chem. Int. Ed. 59, 21293–21303 (2020).

    Article  CAS  Google Scholar 

  236. Forster, P. V. et al. in Climate Change 2007: The Physical Science Basis. Contribution Of Working Group I To The Fourth Assessment Report Of The Intergovernmental Panel On Climate Change (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  237. Myhre, G. D. et al. in Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I To The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

Download references

Acknowledgements

This study was supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2017M3D1A1039553). This work was also supported by the Center for Nanoparticle Research at Institute for Basic Science (IBS) (IBS-R006-A2).

Author information

Authors and Affiliations

Authors

Contributions

J.K. led the process, and prepared the content in the ‘Applications in rechargeable batteries’ section and the ‘Perspective’ section. Y. Kim prepared the content of the ‘Alternative energy storage platforms’ section. J.Y. prepared the content of the ‘Introduction’, ‘Assessment of redox-active organics’ and ‘Redox-active organic materials’ sections. J.K., Y. Kim and J.Y. revised and edited the manuscript before publication. All authors participated in researching data and substantial discussion about organization of manuscript.

Corresponding author

Correspondence to Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Stefan Freunberger, Alexandru Vlad and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

London metal exchange, 2021: https://www.lme.com/en/Metals/EV/LME-Cobalt#Trading+day+summary

Shanghai metal market, 2021: https://www.metal.com/price/New%20Energy/Ternary-precursor-material

United States Geological Survey (USGS): https://minerals.usgs.gov/minerals/pubs/mcs/2020/%20mcs2021.pdf

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, Y., Yoo, J. et al. Organic batteries for a greener rechargeable world. Nat Rev Mater 8, 54–70 (2023). https://doi.org/10.1038/s41578-022-00478-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00478-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing