Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoparticle synthesis assisted by machine learning

Abstract

Many properties of nanoparticles are governed by their shape, size, polydispersity and surface chemistry. To apply nanoparticles in chemical sensing, medical diagnostics, catalysis, thermoelectrics, photovoltaics or pharmaceutics, they have to be synthesized with precisely controlled characteristics. This is a time-consuming, laborious and resource-intensive task, because nanoparticle syntheses often include multiple reagents and are conducted under interdependent experimental conditions. Machine learning (ML) offers a promising tool for the accelerated development of efficient protocols for nanoparticle synthesis and, potentially, for the synthesis of new types of nanoparticles. In this Review, we discuss ML algorithms that can be used for nanoparticle synthesis and highlight key approaches for the collection of large datasets. We examine ML-guided synthesis of semiconductor, metal, carbon-based and polymeric nanoparticles, and conclude with a discussion of current limitations, advantages and perspectives in the development of ML-assisted nanoparticle synthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Machine learning algorithms in nanoparticle synthesis.
Fig. 2: Dataset generation in autonomous robotic and microfluidic syntheses integrated with machine learning algorithms.
Fig. 3: Prediction of the relationship between reaction conditions and properties of semiconductor nanoparticles.
Fig. 4: Experiment planning for the synthesis of semiconductor nanoparticles.
Fig. 5: Experiment planning for the synthesis of metal nanoparticles.

References

  1. Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).

    Article  CAS  Google Scholar 

  2. West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).

    Article  CAS  Google Scholar 

  3. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  4. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    Article  CAS  Google Scholar 

  5. Ding, C., Zhu, A. & Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20–30 (2014).

    Article  CAS  Google Scholar 

  6. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  7. Klinkova, A., Choueiri, R. M. & Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).

    Article  CAS  Google Scholar 

  8. Astruc, D. Introduction: nanoparticles in catalysis. Chem. Rev. 120, 461–463 (2020).

    Article  CAS  Google Scholar 

  9. Zheng, Y. et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8, 5290–5296 (2014).

    Article  CAS  Google Scholar 

  10. Yang, J. & Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224–229 (2006).

    Article  CAS  Google Scholar 

  11. Kim, G. H. et al. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 15, 7691–7696 (2015).

    Article  CAS  Google Scholar 

  12. Konstantatos, G. & Sargent, E. H. Solution-processed quantum dot photodetectors. Proc. IEEE 97, 1666–1683 (2009).

    Article  CAS  Google Scholar 

  13. Kulkarni, S. A., Mhaisalkar, S. G., Mathews, N. & Boix, P. P. Perovskite nanoparticles: synthesis, properties, and novel applications in photovoltaics and LEDs. Small Methods 3, 1800231.

  14. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  Google Scholar 

  15. Mirtchev, P., Henderson, E. J., Soheilnia, N., Yip, C. M. & Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 22, 1265–1269 (2012).

    Article  CAS  Google Scholar 

  16. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  17. Kumar, V., Toffoli, G. & Rizzolio, F. Fluorescent carbon nanoparticles in medicine for cancer therapy. ACS Med. Chem. Lett. 4, 1012–1013 (2013).

    Article  CAS  Google Scholar 

  18. Zhang, H., Oh, M., Allen, C. & Kumacheva, E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5, 2461–2468 (2004).

    Article  CAS  Google Scholar 

  19. Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006).

    Article  CAS  Google Scholar 

  20. Galati, E. et al. Shape-specific patterning of polymer-functionalized nanoparticles. ACS Nano 11, 4995–5002 (2017).

    Article  CAS  Google Scholar 

  21. Abolhasani, M., Oskooei, A., Klinkova, A., Kumacheva, E. & Günther, A. Shaken, and stirred: Oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab Chip 14, 2309–2318 (2014).

    Article  CAS  Google Scholar 

  22. Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice Hall, 2020).

  23. Liu, Y. et al. A deep learning system for differential diagnosis of skin diseases. Nat. Med. 26, 900–908 (2020).

    Article  CAS  Google Scholar 

  24. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article  CAS  Google Scholar 

  25. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    Article  CAS  Google Scholar 

  26. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  Google Scholar 

  27. Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature 585, 217–220 (2020).

    Article  CAS  Google Scholar 

  28. Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article  CAS  Google Scholar 

  29. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361, 360–365 (2018).

    Article  CAS  Google Scholar 

  30. Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).

    Article  Google Scholar 

  31. Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).

    Article  Google Scholar 

  32. Ren, Z. et al. Inverse design of crystals using generalized invertible crystallographic representation. Preprint at arXiv https://arxiv.org/abs/2005.07609 (2020).

  33. Häse, F. et al. Olympus: a benchmarking framework for noisy optimization and experiment planning. Mach. Learn. Sci. Technol. https://doi.org/10.1088/2632-215310.1088/2632-2153/abedc8 (2021).

  34. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  Google Scholar 

  35. Langner, S. et al. Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems. Adv. Mater. 32, 1907801 (2020).

    Article  CAS  Google Scholar 

  36. Lookman, T., Balachandran, P. V., Xue, D. & Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ Comput. Mater. 5, 21 (2019).

    Article  Google Scholar 

  37. Li, J. et al. Review AI applications through the whole life cycle of material discovery. Matter 3, 393–432 (2020).

    Article  Google Scholar 

  38. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  39. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    Article  Google Scholar 

  40. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  41. Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).

    Article  Google Scholar 

  42. Friedman, J. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article  Google Scholar 

  43. Criminisi, A., Shotton, J. & Konukoglu, E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7, 81–227 (2012).

    Article  Google Scholar 

  44. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  45. Friederich, P., Krenn, M., Tamblyn, I. & Aspuru-Guzik, A. Scientific intuition inspired by machine learning-generated hypotheses. Mach. Learn. Sci. Technol. 2, 025027 (2021).

    Article  Google Scholar 

  46. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  Google Scholar 

  47. Liu, H., Ong, Y. S., Shen, X. & Cai, J. When gaussian process meets big data: a review of scalable GPs. IEEE Trans. Neural Netw. Learn. Syst. 31, 4405–4423 (2020).

    Article  Google Scholar 

  48. Bordes, A., Ertekin, S., Weston, J. & Bottou, L. Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005).

    Google Scholar 

  49. Sani, H. M., Lei, C. & Neagu, D. in Artificial Intelligence XXXV. SGAI 2018. Lecture Notes in Computer Science (eds Bramer, M. & Petridis, M.) 191–197 (Springer, 2018).

  50. Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl Acad. Sci. USA 117, 30033–30038 (2020).

    Article  CAS  Google Scholar 

  51. Box, G. E. P., Hunter, J. S. & Hunter, W. G. Statistics for Experimenters: Design, Innovation, and Discovery 2nd edn 672 pp (Wiley, 2005).

  52. Vikhar, P. A. in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC) 261–265 (IEEE, 2017).

  53. Hansen, N. in Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing Vol. 192 (eds Lozano, J. A., Larrañaga, P., Inza, I. & Bengoetxea, E.) 75–102 (Springer, 2006).

  54. Huyer, W. & Neumaier, A. SNOBFIT - Stable noisy optimization by branch and fit. ACM Trans. Math. Softw. 35, 1–25 (2008).

    Article  Google Scholar 

  55. Krishnadasan, S., Brown, R. J. C., DeMello, A. J. & DeMello, J. C. Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip 7, 1434–1441 (2007).

    Article  CAS  Google Scholar 

  56. Li, J. et al. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 11, 2046 (2020).

    Article  CAS  Google Scholar 

  57. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

  58. Hutter, F., Hoos, H. H. & Leyton-Brown, K. in Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science Vol. 6683 (ed. Coello, C. A. C.) 507–523 (Springer, 2011).

  59. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge. Preprint at arXiv https://arxiv.org/abs/2003.12127 (2020).

  60. Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).

    Article  Google Scholar 

  61. Christensen, M. et al. Data-Science driven autonomous process optimization. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.13146404.v2 (2020).

  62. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  Google Scholar 

  63. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article  CAS  Google Scholar 

  64. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  65. Chollet, F. Keras. GitHub https://github.com/fchollet/keras (2015).

  66. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Preprint at arXiv https://arxiv.org/abs/1603.04467 (2016).

  67. Paszke, A. et al. in 31st Conference on Neural Information Processing Systems (Curran Associates, 2017).

  68. Head, T. et al. scikit-optimize/scikit-optimize: v0.5.2. Zenodo https://doi.org/10.5281/zenodo.1207017 (2018).

  69. The GpyOpt authors. GPyOpt: A Bayesian optimization framework in Python (University of Sheffield, 2016).

  70. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: A Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015).

    Article  Google Scholar 

  71. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  Google Scholar 

  72. Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990).

    Article  CAS  Google Scholar 

  73. Toyota, A. et al. Combinatorial synthesis of CdSe nanoparticles using microreactors. J. Phys. Chem. C 114, 7527–7534 (2010).

    Article  CAS  Google Scholar 

  74. Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev. 44, 1653–1679 (2015).

    Article  CAS  Google Scholar 

  75. Maceiczyk, R. M., Lignos, I. G. & Demello, A. J. Online detection and automation methods in microfluidic nanomaterial synthesis. Curr. Opin. Chem. Eng. 8, 29–35 (2015).

    Article  Google Scholar 

  76. Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: toward autonomous robotic experimentation. Adv. Mater. 44, 2004495 (2020).

    Google Scholar 

  77. Chan, E. M. et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010).

    Article  CAS  Google Scholar 

  78. Salaheldin, A. M. et al. Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chem. Eng. J. 320, 232–243 (2017).

    Article  CAS  Google Scholar 

  79. Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc. Chem. Res. 50, 2976–2985 (2017).

    Article  CAS  Google Scholar 

  80. Loffler, M. S., Chitrakaran, V. & Dawson, D. M. Design and implementation of the robotic platform. J. Intell. Robot. Syst. 39, 105–129 (2004).

    Article  Google Scholar 

  81. Aspuru-Guzik, S. & Persson, K. Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence. Mission Innovation: Innovation Challenge 6 (University of California 2018).

  82. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

  83. Zhong, J. et al. When robotics met fluidics. Lab Chip 20, 709–716 (2020).

    Article  CAS  Google Scholar 

  84. Dagtepe, P. & Chikan, V. Quantized Ostwald ripening of colloidal nanoparticles. J. Phys. Chem. C 114, 16263–16269 (2010).

    Article  CAS  Google Scholar 

  85. Whitehead, C. B., Özkar, S. & Finke, R. G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 31, 7116–7132 (2019).

    Article  CAS  Google Scholar 

  86. Polte, J. Fundamental growth principles of colloidal metal nanoparticles - a new perspective. CrystEngComm 17, 6809–6830 (2015).

    Article  CAS  Google Scholar 

  87. Sahi, S. et al. Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation. Sci. Rep. 8, 10515 (2018).

    Article  Google Scholar 

  88. O’Brien, M. N., Jones, M. R. & Mirkin, C. A. The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc. Natl Acad. Sci. USA 113, 11717–11725 (2016).

    Article  Google Scholar 

  89. Brus, L. E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  90. Aldakov, D. & Reiss, P. Safer-by-design fluorescent nanocrystals: metal halide perovskites vs semiconductor quantum dots. J. Phys. Chem. C 123, 12527–12541 (2019).

    Article  CAS  Google Scholar 

  91. Takagahara, T. & Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992).

    Article  CAS  Google Scholar 

  92. McHugh, K. J. et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 30, 1706356 (2018).

    Article  Google Scholar 

  93. Aswathy, R. G., Yoshida, Y., Maekawa, T. & Kumar, D. S. Near-infrared quantum dots for deep tissue imaging. Anal. Bioanal. Chem. 397, 1417–1435 (2010).

    Article  CAS  Google Scholar 

  94. Reiss, P., Protière, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

    Article  CAS  Google Scholar 

  95. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  96. Oulton, R. in 2015 17th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2017).

  97. Levy, J. Quantum-information processing with ferroelectrically coupled quantum dots. Phys. Rev. A . 64, 052306 (2001).

    Article  Google Scholar 

  98. Van Embden, J., Chesman, A. S. R. & Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246–2285 (2015).

    Article  Google Scholar 

  99. Kwon, S. G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011).

    Article  CAS  Google Scholar 

  100. Tan, T. T., Selvan, S. T., Zhao, L., Gao, S. & Ying, J. Y. Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots. Chem. Mater. 19, 3112–3117 (2007).

    Article  CAS  Google Scholar 

  101. Reiss, P., Carrière, M., Lincheneau, C., Vaure, L. & Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731–10819 (2016).

    Article  CAS  Google Scholar 

  102. Joo, J. et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125, 11100–11105 (2003).

    Article  CAS  Google Scholar 

  103. Zhang, H., Hyun, B. R., Wise, F. W. & Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 12, 5856–5860 (2012).

    Article  CAS  Google Scholar 

  104. Zhang, J. et al. Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6, 1830–1833 (2015).

    Article  CAS  Google Scholar 

  105. Voznyy, O. et al. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 13, 11122–11128 (2019).

    Article  CAS  Google Scholar 

  106. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  107. Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    Article  CAS  Google Scholar 

  108. Du, J. S. et al. Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission. Sci. Adv. 6, eabc4959 (2020).

    Article  CAS  Google Scholar 

  109. Ha, S. T., Su, R., Xing, J., Zhang, Q. & Xiong, Q. Metal halide perovskite nanomaterials: synthesis and applications. Chem. Sci. 8, 2522–2536 (2017).

    Article  CAS  Google Scholar 

  110. Orimoto, Y. et al. Application of artificial neural networks to rapid data analysis in combinatorial nanoparticle syntheses. J. Phys. Chem. C 116, 17885–17896 (2012).

    Article  CAS  Google Scholar 

  111. Maceiczyk, R. M. & Demello, A. J. Fast and reliable metamodeling of complex reaction spaces using universal kriging. J. Phys. Chem. C 118, 20026–20033 (2014).

    Article  CAS  Google Scholar 

  112. Balachandran, P. V., Kowalski, B., Sehirlioglu, A. & Lookman, T. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun. 9, 1668 (2018).

    Article  Google Scholar 

  113. Li, Z. et al. Robot-accelerated perovskite investigation and discovery. Chem. Mater. 32, 5650–5663 (2020).

    Article  CAS  Google Scholar 

  114. Kirman, J. et al. Machine-learning-accelerated perovskite crystallization. Matter 2, 938–947 (2020).

    Article  Google Scholar 

  115. Sun, S. et al. Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule 3, 1437–1451 (2019).

    Article  CAS  Google Scholar 

  116. Braham, E. J. et al. Machine learning-directed navigation of synthetic design space: a statistical learning approach to controlling the synthesis of perovskite halide nanoplatelets in the quantum-confined regime. Chem. Mater. 31, 3281–3292 (2019).

    Article  CAS  Google Scholar 

  117. Li, J. et al. AIR-Chem: authentic intelligent robotics for chemistry. J. Phys. Chem. A 122, 9142–9148 (2018).

    Article  CAS  Google Scholar 

  118. Bezinge, L., Maceiczyk, R. M., Lignos, I., Kovalenko, M. V. & Demello, A. J. Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Appl. Mater. Interfaces 10, 18869–18878 (2018).

    Article  CAS  Google Scholar 

  119. Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32, 2001626 (2020).

    Article  CAS  Google Scholar 

  120. Abdel-latif, K. et al. Self-driven multistep quantum dot synthesis enabled by autonomous robotic experimentation in flow. Adv. Intell. Syst. 3, 2000245 (2020).

    Article  Google Scholar 

  121. Petryayeva, E. & Krull, U. J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing — A review. Anal. Chim. Acta 706, 8–24 (2011).

    Article  CAS  Google Scholar 

  122. Fong, K. E. & Yung, L. Y. L. Localized surface plasmon resonance: A unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 5, 12043–12071 (2013).

    Article  CAS  Google Scholar 

  123. Ren, X. et al. High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 12, 5200–5207 (2016).

    Article  CAS  Google Scholar 

  124. He, J. et al. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc. 135, 7974–7984 (2013).

    Article  CAS  Google Scholar 

  125. de Aberasturi, D. J., Serrano-Montes, A. B. & Liz-Marzán, L. M. Modern applications of plasmonic nanoparticles: from energy to health. Adv. Opt. Mater. 3, 602–617 (2015).

    Article  Google Scholar 

  126. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 6, 3669–3712 (2011).

    Article  Google Scholar 

  127. Zhao, P., Li, N. & Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638–665 (2013).

    Article  CAS  Google Scholar 

  128. Grzelczak, M., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).

    Article  CAS  Google Scholar 

  129. Abedini, A. et al. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 8, 474 (2013).

    Article  Google Scholar 

  130. Baghbanzadeh, M., Carbone, L., Cozzoli, P. D. & Kappe, C. O. Microwave chemistry microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. 50, 11312–11359 (2011).

    Article  CAS  Google Scholar 

  131. Haiss, W., Thanh, N. T. K., Aveyard, J. & Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal. Chem. 79, 4215–4221 (2007).

    Article  CAS  Google Scholar 

  132. Grand, J., Auguie, B. & Ru, E. C. Le Combined extinction and absorption UV–visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles. Anal. Chem. 91, 14639–14648 (2019).

    Article  CAS  Google Scholar 

  133. Gherman, A. M. M. et al. Artificial neural networks modeling of the parameterized gold nanoparticles generation through photo-induced process. Mater. Res. Express 5, 085011 (2018).

    Article  Google Scholar 

  134. shafaei, A. & Khayati, G. R. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm. Measurement 151, 107199 (2020).

    Article  Google Scholar 

  135. Li, J. et al. Deep learning accelerated gold nanocluster synthesis. Adv. Intell. Syst. 1, 1900029 (2019).

    Article  Google Scholar 

  136. Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).

    Article  CAS  Google Scholar 

  137. Mekki-Berrada, F. et al. Two-step machine learning enables optimized nanoparticle synthesis. NPJ Comput. Mater. 7, 55 (2021).

    Article  Google Scholar 

  138. Zhu, S. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015).

    Article  CAS  Google Scholar 

  139. Lijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article  Google Scholar 

  140. Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. & Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3, 1473 (2013).

    Article  Google Scholar 

  141. Roy, P., Chen, P. C., Periasamy, A. P., Chen, Y. N. & Chang, H. T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications. Mater. Today 18, 447–458 (2015).

    Article  CAS  Google Scholar 

  142. Singh, V. et al. Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011).

    Article  CAS  Google Scholar 

  143. Xie, S., Li, W., Pan, Z., Chang, B. & Lianfeng, S. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153–1158 (2000).

    Article  CAS  Google Scholar 

  144. Hu, B. et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010).

    Article  CAS  Google Scholar 

  145. Zhu, H. et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. https://doi.org/10.1039/B907612C (2009).

  146. Li, H. et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605–609 (2011).

    Article  CAS  Google Scholar 

  147. Cao, A. & Qu, J. Size dependent thermal conductivity of single-walled carbon nanotubes. J. Appl. Phys. 112, 013503 (2012).

    Article  Google Scholar 

  148. Zhou, Y. et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl. Catal. B Environ. 248, 157–166 (2019).

    Article  CAS  Google Scholar 

  149. Zheng, S. et al. Solvent-mediated shape engineering of fullerene (C60) polyhedral microcrystals. Chem. Mater. 30, 7146–7153 (2018).

    Article  CAS  Google Scholar 

  150. Kim, J., Park, C. & Choi, H. C. Selective growth of a C70 crystal in a mixed solvent system: From cube to tube. Chem. Mater. 27, 2408–2413 (2015).

    Article  CAS  Google Scholar 

  151. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  Google Scholar 

  152. Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711–723 (2010).

    Article  CAS  Google Scholar 

  153. Wang, Y., Zhang, L., Liang, R. P., Bai, J. M. & Qiu, J. D. Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal. Chem. 85, 9148–9155 (2013).

    Article  CAS  Google Scholar 

  154. Weatherup, R. S. et al. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 11, 4154–4160 (2011).

    Article  CAS  Google Scholar 

  155. Millipore, M. et al. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 153, 100–103 (2019).

    Article  Google Scholar 

  156. Khabushev, E. M. et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10, 6962–6966 (2019).

    Article  CAS  Google Scholar 

  157. Pudza, M. Y. et al. Sustainable synthesis processes for carbon dots through response surface methodology and artificial neural network. Processes 7, 704 (2019).

    Article  CAS  Google Scholar 

  158. Nikolaev, P. et al. Autonomy in materials research: A case study in carbon nanotube growth. NPJ Comput. Mater. 2, 16031 (2016).

    Article  Google Scholar 

  159. Vauthier, C. & Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 26, 1025–1058 (2009).

    Article  CAS  Google Scholar 

  160. Wei, Q., Becherer, T., Noeske, P. L. M., Grunwald, I. & Haag, R. A universal approach to crosslinked hierarchical polymer multilayers as stable and highly effective antifouling coatings. Adv. Mater. 26, 2688–2693 (2014).

    Article  CAS  Google Scholar 

  161. Gan, Q., Wang, T., Cochrane, C. & McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces 44, 65–73 (2005).

    Article  CAS  Google Scholar 

  162. Shalaby, K. S. et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int. J. Nanomed. 9, 4953–4964 (2014).

    CAS  Google Scholar 

  163. Zaki, M. R., Varshosaz, J. & Fathi, M. Preparation of agar nanospheres: Comparison of response surface and artificial neural network modeling by a genetic algorithm approach. Carbohydr. Polym. 122, 314–320 (2015).

    Article  CAS  Google Scholar 

  164. Hashad, R. A., Ishak, R. A. H., Fahmy, S., Mansour, S. & Geneidi, A. S. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int. J. Biol. Macromol. 86, 50–58 (2016).

    Article  CAS  Google Scholar 

  165. Esmaeilzadeh-Gharedaghi, E. et al. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An Artificial Neural Networks Study. Pharm. Dev. Technol. 17, 638–647 (2012).

    Article  CAS  Google Scholar 

  166. Baharifar, H. & Amani, A. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: an artificial neural networks study. J. Pharm. Sci. 106, 411–417 (2017).

    Article  CAS  Google Scholar 

  167. Youshia, J., Ali, M. E. & Lamprecht, A. Artificial neural network based particle size prediction of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 119, 333–342 (2017).

    Article  CAS  Google Scholar 

  168. Lehman, J. & Stanley, K. O. Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19, 189–223 (2011).

    Article  Google Scholar 

  169. Grizou, J., Points, L. J., Sharma, A. & Cronin, L. A curious formulation robot enables the discovery of a novel protocell behavior. Sci. Adv. 6, eaay4237 (2020).

    Article  CAS  Google Scholar 

  170. Häse, F., Roch, L. M. & Aspuru-Guzik, A. Chimera: Enabling hierarchy based multi-objective optimization for self-driving laboratories. Chem. Sci. 9, 7642–7655 (2018).

    Article  Google Scholar 

  171. Li, J., Tu, Y., Liu, R., Lu, Y. & Zhu, X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots. Adv. Sci. 7, 1901957 (2020).

    Article  CAS  Google Scholar 

  172. Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997).

    Article  Google Scholar 

  173. Lipton, Z. C. The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16, 31–57 (2018).

    Article  Google Scholar 

  174. Stiglic, G. et al. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10, e1379 (2020).

    Article  Google Scholar 

  175. Amann, J. et al. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).

    Article  Google Scholar 

  176. Hiszpanski, A. M. et al. Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge. J. Chem. Inf. Model. 60, 2876–2887 (2020).

    Article  CAS  Google Scholar 

  177. Mehr, S. H. M., Craven, M., Leonov, A. I., Keenan, G. & Cronin, L. A universal system for digitization and automatic execution of the chemical synthesis literature. Science 370, 101–108 (2020).

    Article  CAS  Google Scholar 

  178. Kim, E., Huang, K., Jegelka, S. & Olivetti, E. Virtual screening of inorganic materials synthesis parameters with deep learning. NPJ Comput. Mater. 3, 53 (2017).

    Article  Google Scholar 

  179. Open Reaction Database. https://docs.open-reaction-database.org/en/latest/index.html (2021).

  180. Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31, 405–412 (2015).

    Article  CAS  Google Scholar 

  181. Gilson, M. K. et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–D1053 (2016).

    Article  CAS  Google Scholar 

  182. Jana, N. R., Gearheart, L. & Murphy, C. J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17, 6782–6786 (2001).

    Article  CAS  Google Scholar 

  183. Li, J., Wang, H., Lin, L., Fang, Q. & Peng, X. Quantitative identification of basic growth channels for formation of monodisperse nanocrystals. J. Am. Chem. Soc. 140, 5474–5484 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) via the Discovery Grants program for financial support. A.A.-G., M.A. and T.C.W. acknowledge support from the Office of Naval Research, as well as Tata Sons, Limited. E.K. thanks the Canada Research Chairs Program. A.A.-G. is thankful for the Canada 150 Research Chairs Program. H.T. acknowledges the Connaught International Scholarship for Doctoral Students.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and edited the manuscript.

Corresponding authors

Correspondence to Alán Aspuru-Guzik or Eugenia Kumacheva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Wu, T., Aldeghi, M. et al. Nanoparticle synthesis assisted by machine learning. Nat Rev Mater 6, 701–716 (2021). https://doi.org/10.1038/s41578-021-00337-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00337-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing