Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Machine learning for nanoplasmonics

Abstract

Plasmonic nanomaterials have outstanding optoelectronic properties potentially enabling the next generation of catalysts, sensors, lasers and photothermal devices. Owing to optical and electron techniques, modern nanoplasmonics research generates large datasets characterizing features across length scales. Furthermore, optimizing syntheses leading to specific nanostructures requires time-consuming multiparametric approaches. These complex datasets and trial-and-error practices make nanoplasmonics research ripe for the application of machine learning (ML) and advanced data processing methods. ML algorithms capture relationships between synthesis, structure and performance in a way that far exceeds conventional simulation and theory approaches, enabling effective performance optimization. For example, neural networks can tailor the nanostructure morphology to target desired properties, identify synthetic conditions and extract quantitative information from complex data. Here we discuss the nascent field of ML for nanoplasmonics, describe the opportunities and limitations of ML in nanoplasmonic research, and conclude that ML is potentially transformative, especially if the community curates and shares its big data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Traditional workflow in nanoplasmonics, in which practitioners make nanostructures, characterize their structure and plasmonic properties, and then optimize for application.
Fig. 2: ML-enhanced prediction and characterization.
Fig. 3: ML-controlled synthesis.
Fig. 4: ML extraction of information from images.
Fig. 5: Applications of ML in sensing.

Similar content being viewed by others

References

  1. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  2. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  CAS  Google Scholar 

  3. Willets, K. A., Wilson, A. J., Sundaresan, V. & Joshi, P. B. Super-resolution imaging and plasmonics. Chem. Rev. 117, 7538–7582 (2017).

    Article  CAS  Google Scholar 

  4. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  5. Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    Article  CAS  Google Scholar 

  6. Park, W., Lu, D. & Ahn, S. Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44, 2940–2962 (2015).

    Article  CAS  Google Scholar 

  7. Gu, M. et al. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics 1, 235–248 (2012).

    Article  CAS  Google Scholar 

  8. Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Light Sci. Appl 9, 90 (2020).

    Article  CAS  Google Scholar 

  9. Abadeer, N. S. & Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 120, 4691–4716 (2016).

    Article  CAS  Google Scholar 

  10. Xavier, J., Yu, D. S., Jones, C., Zossimova, E. & Vollmer, F. Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip. Nanophotonics 10, 1387–1435 (2021).

    Article  CAS  Google Scholar 

  11. Zhou, Z.-K. et al. Quantum plasmonics get applied. Prog. Quantum Electron. 65, 1–20 (2019).

    Article  Google Scholar 

  12. Henry, A.-I. et al. Correlated structure and optical property studies of plasmonic nanoparticles. J. Phys. Chem. C 115, 9291–9305 (2011).

    Article  CAS  Google Scholar 

  13. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    Article  CAS  Google Scholar 

  14. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  15. Brown, K. A., Brittman, S., Maccaferri, N., Jariwala, D. & Celano, U. Machine learning in nanoscience: big data at small scales. Nano Lett. 20, 2–10 (2020).

    Article  CAS  Google Scholar 

  16. Vahidzadeh, E. & Shankar, K. Artificial neural network-based prediction of the optical properties of spherical core–shell plasmonic metastructures. Nanomaterials 11, 633 (2021).

    Article  CAS  Google Scholar 

  17. Malkiel, I. et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. 7, 60 (2018).

    Article  Google Scholar 

  18. Kim, W. et al. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 12, 7100–7108 (2018).

    Article  CAS  Google Scholar 

  19. Lussier, F., Missirlis, D., Spatz, J. P. & Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells. ACS Nano 13, 1403–1411 (2019).

    CAS  Google Scholar 

  20. Shi, H. et al. Setting up a surface-enhanced Raman scattering database for artificial-intelligence-based label-free discrimination of tumor suppressor genes. Anal. Chem. 90, 14216–14221 (2018).

    Article  CAS  Google Scholar 

  21. Tao, H. et al. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 6, 701–716 (2021).

    Article  Google Scholar 

  22. Yen, S.-C., Chen, Y.-L. & Su, Y.-H. Materials genome evolution of surface plasmon resonance characteristics of Au nanoparticles decorated ZnO nanorods. APL Mater. 8, 091109 (2020).

    Article  CAS  Google Scholar 

  23. Leong, Y. X. et al. Surface-enhanced Raman scattering (SERS) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. Nano Lett. 21, 2642–2649 (2021).

    Article  CAS  Google Scholar 

  24. Macias, G. et al. Whisky tasting using a bimetallic nanoplasmonic tongue. Nanoscale 11, 15216–15223 (2019).

    Article  CAS  Google Scholar 

  25. Zhang, T. et al. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photon. Res. 7, 368–380 (2019).

    Article  CAS  Google Scholar 

  26. Nelson, M. D. & Di Vece, M. Using a neural network to improve the optical absorption in halide perovskite layers containing core-shells silver nanoparticles. Nanomaterials 9, 437 (2019).

    Article  CAS  Google Scholar 

  27. He, J., He, C., Zheng, C., Wang, Q. & Ye, J. Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale 11, 17444–17459 (2019).

    Article  CAS  Google Scholar 

  28. Roberts, N. B. & Keshavarz Hedayati, M. A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color. Appl. Phys. Lett. 119, 061101 (2021).

    Article  CAS  Google Scholar 

  29. Wang, M., Wang, T., Cai, P. & Chen, X. Nanomaterials discovery and design through machine learning. Small Methods 3, 1900025 (2019).

    Article  Google Scholar 

  30. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  31. Li, X., Shu, J., Gu, W. & Gao, L. Deep neural network for plasmonic sensor modeling. Opt. Mater. Express 9, 3857–3862 (2019).

    Article  CAS  Google Scholar 

  32. Pashkov, D. M. et al. Quantitative analysis of the UV–vis spectra for gold nanoparticles powered by supervised machine learning. J. Phys. Chem. C 125, 8656–8666 (2021).

    Article  CAS  Google Scholar 

  33. Arzola-Flores, J. A. & Gonzalez, A. L. Machine learning for predicting the surface plasmon resonance of perfect and concave gold nanocubes. J. Phys. Chem. C 124, 25447–25454 (2020).

    Article  CAS  Google Scholar 

  34. Hiszpanski, A. M. et al. Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge. J. Chem. Inf. Model. 60, 2876–2887 (2020).

    Article  CAS  Google Scholar 

  35. Ashalley, E. et al. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photon. Res. 8, 1213–1225 (2020).

    Article  CAS  Google Scholar 

  36. Sajedian, I., Badloe, T. & Rho, J. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express 27, 5874–5883 (2019).

    Article  CAS  Google Scholar 

  37. Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018).

    Article  CAS  Google Scholar 

  38. Kasani, S., Curtin, K. & Wu, N. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8, 2065–2089 (2019).

    Article  CAS  Google Scholar 

  39. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  40. MacFarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  41. Tao, H. C. et al. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 6, 701–716 (2021).

    Article  Google Scholar 

  42. Ringe, E., Van Duyne, R. P. & Marks, L. D. Kinetic and thermodynamic modified Wulff constructions for twinned nanoparticles. J. Phys. Chem. C 117, 15859–15870 (2013).

    Article  CAS  Google Scholar 

  43. Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).

    Article  CAS  Google Scholar 

  44. Pinho, B. & Torrente-Murciano, L. Dial-a-particle: precise manufacturing of plasmonic nanoparticles based on early growth information - redefining automation for slow material synthesis. Adv. Energy Mater. 11, 2100918 (2021).

    Article  CAS  Google Scholar 

  45. Britton, J. & Raston, C. L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 46, 1250–1271 (2017).

    Article  CAS  Google Scholar 

  46. Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: toward autonomous robotic experimentation. Adv. Mater. 33, 2004495 (2021).

    Article  CAS  Google Scholar 

  47. Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    Article  CAS  Google Scholar 

  48. Copp, S. M., Bogdanov, P., Debord, M., Singh, A. & Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. Adv. Mater. 26, 5839–5845 (2014).

    Article  CAS  Google Scholar 

  49. Copp, S. M. et al. Fluorescence color by data-driven design of genomic silver clusters. ACS Nano 12, 8240–8247 (2018).

    Article  CAS  Google Scholar 

  50. Adorf, C. S., Moore, T. C., Melle, Y. J. U. & Glotzer, S. C. Analysis of self-assembly pathways with unsupervised machine learning algorithms. J. Phys. Chem. B 124, 69–78 (2020).

    Article  CAS  Google Scholar 

  51. Dijkstra, M. & Luijten, E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021).

    Article  CAS  Google Scholar 

  52. Nette, J., Howes, P. D. & deMello, A. J. Microfluidic synthesis of luminescent and plasmonic nanoparticles: fast, efficient, and data-rich. Adv. Mater. Technol. 5, 2000060 (2020).

    Article  CAS  Google Scholar 

  53. Wu, C.-C., Pan, F. & Su, Y.-H. Surface plasmon resonance of gold nano-sea-urchins controlled by machine-learning-based regulation in seed-mediated growth. Adv. Photon. Res. 2, 2170031 (2021).

    Article  Google Scholar 

  54. Mekki-Berrada, F. et al. Two-step machine learning enables optimized nanoparticle synthesis. npj Comput. Mater. 7, 55 (2021).

    Article  CAS  Google Scholar 

  55. Dong, B. et al. Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning. Ultrason. Sonochem. 73, 105485 (2021).

    Article  CAS  Google Scholar 

  56. Fernandes, D. L. A. et al. Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization. RSC Adv. 6, 95693–95697 (2016).

    Article  CAS  Google Scholar 

  57. Fukada, K. & Seyama, M. Microfluidic devices controlled by machine learning with failure experiments. Anal. Chem. 94, 7060–7065 (2022).

    Article  CAS  Google Scholar 

  58. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  Google Scholar 

  59. Hopper, E. R. et al. Size control in the colloidal synthesis of plasmonic magnesium nanoparticles. J. Phys. Chem. C 126, 563–577 (2022).

    Article  CAS  Google Scholar 

  60. Woehrle, G. H., Hutchinson, J. E., Ozkar, S. & Finke, R. G. Analysis of nanoparticle transmission electron microscopy data using a public- domain image-processing program, image. Turk. J. Chem. 30, 1–13 (2006).

    CAS  Google Scholar 

  61. Wang, X. et al. Autodetect-mNP: an unsupervised machine learning algorithm for automated analysis of transmission electron microscope images of metal nanoparticles. JACS Au 1, 316–327 (2021).

    Article  CAS  Google Scholar 

  62. Lee, B. et al. Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis. ACS Nano 14, 17125–17133 (2020).

    Article  CAS  Google Scholar 

  63. Xu, S. et al. Deep learning analysis of polaritonic wave images. ACS Nano 15, 18182–18191 (2021).

    Article  CAS  Google Scholar 

  64. Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci. 6, 1421–1430 (2020).

    Article  CAS  Google Scholar 

  65. Zhong, Y., Li, C., Zhou, H. & Wang, G. Developing noise-resistant three-dimensional single particle tracking using deep neural networks. Anal. Chem. 90, 10748–10757 (2018).

    Article  CAS  Google Scholar 

  66. Moon, G., Son, T., Lee, H. & Kim, D. Deep learning approach for enhanced detection of surface plasmon scattering. Anal. Chem. 91, 9538–9545 (2019).

    Article  CAS  Google Scholar 

  67. Ma, Y. P., Li, Q., Luo, J. B., Huang, C. Z. & Zhou, J. Weak reaction scatterometry of plasmonic resonance light scattering with machine learning. Anal. Chem. 93, 12131–12138 (2021).

    Article  CAS  Google Scholar 

  68. Horgan, C. C. et al. High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy. Anal. Chem. 93, 15850–15860 (2021).

    Article  CAS  Google Scholar 

  69. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  Google Scholar 

  70. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    Article  CAS  Google Scholar 

  71. Collins, S. M. & Midgley, P. A. Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 180, 133–141 (2017).

    Article  CAS  Google Scholar 

  72. Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    Article  CAS  Google Scholar 

  73. Dobigeon, N. & Brun, N. Spectral mixture analysis of EELS spectrum-images. Ultramicroscopy 120, 25–34 (2012).

    Article  CAS  Google Scholar 

  74. Altmann, Y., McLaughlin, S. & Hero, A. Robust linear spectral unmixing using anomaly detection. IEEE Trans. Comput. Imaging 1, 74–85 (2015).

    Article  Google Scholar 

  75. Bosman, M., Watanabe, M., Alexander, D. T. L. & Keast, V. J. Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006).

    Article  CAS  Google Scholar 

  76. Kalinin, S. V. et al. Separating physically distinct mechanisms in complex infrared plasmonic nanostructures via machine learning enhanced electron energy loss spectroscopy. Adv. Opt. Mater. 9, 2001808 (2021).

    Article  CAS  Google Scholar 

  77. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  CAS  Google Scholar 

  78. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article  CAS  Google Scholar 

  79. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    Article  Google Scholar 

  80. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  Google Scholar 

  81. Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V. & Amal, R. Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 9, 11774–11787 (2019).

    Article  CAS  Google Scholar 

  82. Martirez, J. M. P., Bao, J. L. & Carter, E. A. First-principles insights into plasmon-induced catalysis. Annu. Rev. Phys. Chem. 72, 99–119 (2021).

    Article  CAS  Google Scholar 

  83. Rück, M., Garlyyev, B., Mayr, F., Bandarenka, A. S. & Gagliardi, A. Oxygen reduction activities of strained platinum core–shell electrocatalysts predicted by machine learning. J. Phys. Chem. Lett. 11, 1773–1780 (2020).

    Article  Google Scholar 

  84. Chen, C. & Li, S. Z. Valence electron density-dependent pseudopermittivity for nonlocal effects in optical properties of metallic nanoparticles. ACS Photonics 5, 2295–2304 (2018).

    Article  Google Scholar 

  85. Hu, W. et al. Machine learning protocol for surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 10, 6026–6031 (2019).

    Article  CAS  Google Scholar 

  86. Chu, W., Saidi, W. A. & Prezhdo, O. V. Long-lived hot electron in a metallic particle for plasmonics and catalysis: ab initio nonadiabatic molecular dynamics with machine learning. ACS Nano 14, 10608–10615 (2020).

    Article  CAS  Google Scholar 

  87. Sun, B., Fernandez, M. & Barnard, A. S. Machine learning for silver nanoparticle electron transfer property prediction. J. Chem. Inf. Model. 57, 2413–2423 (2017).

    Article  CAS  Google Scholar 

  88. Nesfchi, M. M. et al. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the process by artificial intelligence techniques. Mater. Sci. Semicond. Process. 122, 105465 (2021).

    Article  Google Scholar 

  89. Mikolajczyk, A. et al. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale 11, 11808–11818 (2019).

    Article  CAS  Google Scholar 

  90. Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from e-beam and x-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).

    Article  Google Scholar 

  91. Domulevicz, L., Jeong, H., Paul, N. K., Gomez-Diaz, J. S. & Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. Angew. Chem. Int. Ed. 60, 16436–16441 (2021).

    Article  CAS  Google Scholar 

  92. Tian, C. et al. Deep learning on image denoising: an overview. Neural Netw. 131, 251–275 (2020).

    Article  Google Scholar 

  93. Adir, O. et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, 1901989 (2020).

    Article  CAS  Google Scholar 

  94. Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 5, 3346–3364 (2020).

    Article  CAS  Google Scholar 

  95. Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).

    Article  CAS  Google Scholar 

  96. Masson, J. F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2, 16–30 (2017).

    Article  CAS  Google Scholar 

  97. Gomes, J. C. M., Souza, L. C. & Oliveira, L. C. SmartSPR sensor: machine learning approaches to create intelligent surface plasmon based sensors. Biosens. Bioelectron. 172, 112760 (2021).

    Article  CAS  Google Scholar 

  98. Thadson, K., Visitsattapongse, S. & Pechprasarn, S. Deep learning-based single-shot phase retrieval algorithm for surface plasmon resonance microscope based refractive index sensing application. Sci. Rep. 11, 16289 (2021).

    Article  CAS  Google Scholar 

  99. Song, M. K., Chen, S. X., Hu, P. P., Huang, C. Z. & Zhou, J. Automated plasmonic resonance scattering imaging analysis via deep learning. Anal. Chem. 93, 2619–2626 (2021).

    Article  CAS  Google Scholar 

  100. Weng, S. Z. et al. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy. Analyst 145, 4827–4835 (2020).

    Article  CAS  Google Scholar 

  101. Erzina, M. et al. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs. Sens. Actuators B308, 127660 (2020).

    Article  CAS  Google Scholar 

  102. Fang, X. L. et al. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning. J. Appl. Phys. 129, 127660 (2021).

    Article  Google Scholar 

  103. Hunter, R. et al. Optofluidic label-free SERS platform for rapid bacteria detection in serum. Sens. Actuators B300, 126907 (2019).

    Article  CAS  Google Scholar 

  104. Lussier, F., Thibault, V., Charron, B., Wallace, G. Q. & Masson, J. F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. Trends Anal. Chem. 124, 115796 (2020).

    Article  CAS  Google Scholar 

  105. Thrift, W. J. et al. Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing. ACS Nano 14, 15336–15348 (2020).

    Article  CAS  Google Scholar 

  106. Kajendirarajah, U., Olivia Avilés, M. & Lagugné-Labarthet, F. Deciphering tip-enhanced Raman imaging of carbon nanotubes with deep learning neural networks. Phys. Chem. Chem. Phys. 22, 17857–17866 (2020).

    Article  CAS  Google Scholar 

  107. Zivanovic, V. et al. Optical nanosensing of lipid accumulation due to enzyme inhibition in live cells. ACS Nano 13, 9363–9375 (2019).

    Article  CAS  Google Scholar 

  108. de Albuquerque, C. D. L., Sobral-Filho, R. G., Poppi, R. J. & Brolo, A. G. Digital protocol for chemical analysis at ultralow concentrations by surface-enhanced Raman scattering. Anal. Chem. 90, 1248–1254 (2018).

    Article  Google Scholar 

  109. Thrift, W. J. & Ragan, R. Quantification of analyte concentration in the single molecule regime using convolutional neural networks. Anal. Chem. 91, 13337–13342 (2019).

    Article  CAS  Google Scholar 

  110. Thrift, W. J. et al. Surface-enhanced Raman scattering-based odor compass: locating multiple chemical sources and pathogens. ACS Sens. 4, 2311–2319 (2019).

    Article  CAS  Google Scholar 

  111. Smith, J. D. et al. Plasmonic anticounterfeit tags with high encoding capacity rapidly authenticated with deep machine learning. ACS Nano 15, 2901–2910 (2021).

    Article  CAS  Google Scholar 

  112. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  113. Lashgari, E., Liang, D. & Maoz, U. Data augmentation for deep-learning-based electroencephalography. J. Neurosci. Methods 346, 108885 (2020).

    Article  Google Scholar 

  114. Xie, Y. et al. How to achieve auto-identification in Raman analysis by spectral feature extraction & adaptive hypergraph. Spectrochim. Acta A 222, 117086 (2019).

    Article  CAS  Google Scholar 

  115. So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020).

    Article  Google Scholar 

  116. Xu, X., Aggarwal, D. & Shankar, K. Instantaneous property prediction and inverse design of plasmonic nanostructures using machine learning: current applications and future directions. Nanomaterials 12, 633 (2022).

    Article  Google Scholar 

  117. Kabir, H. M. D., Khosravi, A., Hosen, M. A. & Nahavandi, S. Neural network-based uncertainty quantification: a survey of methodologies and applications. IEEE Access 6, 36218–36234 (2018).

    Article  Google Scholar 

  118. Jospin, L. V., Laga, H., Boussaid, F., Buntine, W. & Bennamoun, M. Hands-on bayesian neural networks – a tutorial for deep learning users. IEEE Comput. Intell. Mag. 17, 29–48 (2022).

    Article  Google Scholar 

  119. Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine learning with human knowledge. iScience 23, 101656 (2020).

    Article  Google Scholar 

  120. Nickel, M., Murphy, K., Tresp, V. & Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 11–33 (2016).

    Article  Google Scholar 

  121. Adadi, A. & Berrada, M. Peeking inside the black-box: a survey on explainable artificial intelligence. IEEE Access 6, 52138–52160 (2018).

    Article  Google Scholar 

  122. Gilpin, L. H. et al. Explaining explanations: an overview of interpretability of machine learning. In Proc. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 80–89 (IEEE, 2018).

  123. Linardatos, P., Papastefanopoulos, V. & Kotsiantis, S. Explainable AI: a review of machine learning interpretability methods. Entropy 23, 18 (2021).

    Article  Google Scholar 

  124. Lipton, Z. C. The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16, 31–57 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Natural Science and Engineering Research Council of Canada, The Royal Society, UK, International Exchange Scheme IES\R3\203092 and UKRI Future Leaders Fellowship programme, grant number MR/S017186/1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Francois Masson, John S. Biggins or Emilie Ringe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Regina Ragan and Xiaonan Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masson, JF., Biggins, J.S. & Ringe, E. Machine learning for nanoplasmonics. Nat. Nanotechnol. 18, 111–123 (2023). https://doi.org/10.1038/s41565-022-01284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01284-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing