Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibre-based composites from the integration of metal–organic frameworks and polymers

Abstract

The integration of metal–organic frameworks (MOFs) with polymer fibres enables the formation of fibrous composite materials with advantages over traditional single-component polymer films and mixed-matrix membranes. In comparison with mixed-matrix membranes, MOF–polymer fibrous composites offer improved molecular transport through the material and easier access to the active sites of MOFs. These attributes make fibrous composites appealing for clothing, personal protective equipment, air purification and filtration, biomedical equipment and delivery of therapeutics, along with detection and sensing applications. In this Review, we outline approaches for the incorporation of MOFs into, or onto, polymer fibres and present some applications for MOF–polymer fabrics. The integration of MOFs and polymers can either occur prior to fibre formation (namely, MOF-first), via particle deposition (resulting in either covalent or non-covalent attachment) of MOFs to the fibre or by in situ MOF growth after fibre formation (namely, fibre-first). We focus on the structure–processing–activity relationships — for example, MOF loading, MOF crystal size, polymer concentration and processing parameters — that impact the behaviour of fibrous composites. We conclude with a discussion of research avenues that can advance this burgeoning field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Technology enhancements using MOF–polymer fibre composites.
Fig. 2: Strategies for the integration of MOFs into, or onto, fibres.
Fig. 3: Morphologies of MOF–fibre composites made using the MOF-first strategy42.
Fig. 4: Fibre formation techniques.
Fig. 5: Integration of MOF crystals onto preformed polymer fibres, namely, the fibre-first strategy.

Similar content being viewed by others

References

  1. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  2. DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014).

    Article  CAS  Google Scholar 

  3. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  4. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2011).

    Article  Google Scholar 

  5. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  6. Schmidt, B. Metal-organic frameworks in polymer science: Polymerization catalysis, polymerization environment, and hybrid materials. Macromol. Rapid Commun. 41, 1900333 (2020).

    Article  CAS  Google Scholar 

  7. Pastore, V. J. & Cook, T. R. Coordination-driven self-assembly in polymer–inorganic hybrid materials. Chem. Mater. 32, 3680–3700 (2020).

    Article  CAS  Google Scholar 

  8. Mallick, A. et al. Advances in shaping of metal–organic frameworks for CO2 capture: Understanding the effect of rubbery and glassy polymeric binders. Ind. Eng. Chem. Res. 57, 16897–16902 (2018).

    Article  CAS  Google Scholar 

  9. Liu, J. X. & Woll, C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017).

    Article  CAS  Google Scholar 

  10. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  11. Liu, G. P. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  CAS  Google Scholar 

  12. Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    Article  CAS  Google Scholar 

  13. Kitao, T., Zhang, Y. Y., Kitagawa, S., Wang, B. & Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017).

    Article  CAS  Google Scholar 

  14. Denny, M. S., Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    Article  CAS  Google Scholar 

  15. Kalaj, M. et al. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 120, 8267–8302 (2020).

    Article  CAS  Google Scholar 

  16. Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).

    Article  CAS  Google Scholar 

  17. Zhao, J. J. et al. Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. Adv. Mater. Interfaces 1, 1400040 (2014).

    Article  Google Scholar 

  18. Kalaj, M., Denny, M. S., Bentz, K. C., Palomba, J. M. & Cohen, S. M. Nylon–MOF composites through postsynthetic polymerization. Angew. Chem. Int. Ed. 58, 2336–2340 (2019).

    Article  CAS  Google Scholar 

  19. Deneff, J. I. & Walton, K. S. Production of metal-organic framework-bearing polystyrene fibers by solution blow spinning. Chem. Eng. Sci. 203, 220–227 (2019).

    Article  CAS  Google Scholar 

  20. Chen, Y. F. et al. A solvent-free hot-pressing method for preparing metal–organic-framework coatings. Angew. Chem. Int. Ed. 55, 3419–3423 (2016).

    Article  CAS  Google Scholar 

  21. Bunge, M. A. et al. Modification of fibers with nanostructures using reactive dye chemistry. Ind. Eng. Chem. Res. 54, 3821–3827 (2015).

    Article  CAS  Google Scholar 

  22. Liu, M. M., Cai, N., Chan, V. & Yu, F. Q. Development and applications of MOFs derivative one-dimensional nanofibers via electrospinning: A mini-review. Nanomaterials 9, 1306 (2019).

    Article  CAS  Google Scholar 

  23. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, L. Y. et al. Fabrication of 2D metal–organic framework nanosheet@fiber composites by spray technique. Chem. Commun. 55, 8293–8296 (2019).

    Article  CAS  Google Scholar 

  25. Ma, K. et al. Facile and scalable coating of metal–organic frameworks on fibrous substrates by a coordination replication method at room temperature. ACS Appl. Mater. Interfaces 11, 22714–22721 (2019).

    Article  CAS  Google Scholar 

  26. Zhang, Y. Y. et al. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 138, 5785–5788 (2016).

    Article  CAS  Google Scholar 

  27. Zhao, J. J. et al. Ultra-fast degradation of chemical warfare agents using MOF–nanofiber kebabs. Angew. Chem. Int. Ed. 55, 13224–13228 (2016).

    Article  CAS  Google Scholar 

  28. Amid, H., Maze, B., Flickinger, M. C. & Pourdeyhimi, B. Hybrid adsorbent nonwoven structures: A review of current technologies. J. Mater. Sci. 51, 4173–4200 (2016).

    Article  CAS  Google Scholar 

  29. Zhao, J. J. et al. Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J. Mater. Chem. A 3, 1458–1464 (2015).

    Article  CAS  Google Scholar 

  30. Armstrong, M., Balzer, C., Shan, B. H. & Mu, B. Influence of particle size and loading on particle accessibility in electrospun poly(ethylene oxide) and ZIF-8 composite fibers: Experiments and theory. Langmuir 33, 9066–9072 (2017).

    Article  CAS  Google Scholar 

  31. Duan, P. et al. Polymer infiltration into metal–organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 141, 7589–7595 (2019).

    Article  CAS  Google Scholar 

  32. Peterson, G. W., Lu, A. X. & Epps, T. H. III Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH2 metal–organic framework composites to enhance chemical warfare agent removal. ACS Appl. Mater. Interfaces 9, 32248–32254 (2017).

    Article  CAS  Google Scholar 

  33. Kalaj, M. & Cohen, S. M. Spray-coating of catalytically active MOF–polythiourea through postsynthetic polymerization. Angew. Chem. Int. Ed. 59, 13984–13989 (2020).

    Article  CAS  Google Scholar 

  34. Neufeld, M. J., Harding, J. L. & Reynolds, M. M. Immobilization of metal–organic framework copper(II) benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Appl. Mater. Interfaces 7, 26742–26750 (2015).

    Article  CAS  Google Scholar 

  35. Pomerantz, N. L. et al. Air, water vapor, and aerosol transport through textiles with surface functional coatings of metal oxides and metal–organic frameworks. ACS Appl. Mater. Interfaces 11, 24683–24690 (2019).

    Article  CAS  Google Scholar 

  36. Luo, C. J., Stoyanov, S. D., Stride, E., Pelan, E. & Edirisinghe, M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem. Soc. Rev. 41, 4708–4735 (2012).

    Article  CAS  Google Scholar 

  37. Moyo, D., Patanaik, A. & Anandjiwala, R. D. in Process Control in Textile Manufacturing (eds Majumdar, A., Das, A., Alagirusamy, R. & Kothari, V. K.) 279–299 (Woodhead Publishing, 2013).

  38. Greiner, A. & Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 46, 5670–5703 (2007).

    Article  CAS  Google Scholar 

  39. Ren, J. W. et al. Electrospun MOF nanofibers as hydrogen storage media. Int. J. Hydrog. Energy 40, 9382–9387 (2015).

    Article  CAS  Google Scholar 

  40. Ostermann, R., Cravillon, J., Weidmann, C., Wiebcke, M. & Smarsly, B. M. Metal–organic framework nanofibers via electrospinning. Chem. Commun. 47, 442–444 (2011).

    Article  CAS  Google Scholar 

  41. Xu, Y. et al. Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives. Mater. Lett. 87, 20–23 (2012).

    Article  CAS  Google Scholar 

  42. Armstrong, M. R., Shan, B. & Mu, B. Microscopy study of morphology of electrospun fiber-MOF composites with secondary growth. MRS Adv. 2, 2457–2463 (2017).

    Article  CAS  Google Scholar 

  43. Liu, F. L. & Xu, H. Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine. Talanta 162, 261–267 (2017).

    Article  CAS  Google Scholar 

  44. Wu, Y.-n et al. Electrospun fibrous mats as skeletons to produce free-standing MOF membranes. J. Mater. Chem. 22, 16971–16978 (2012).

    Article  CAS  Google Scholar 

  45. Rose, M., Boehringer, B., Jolly, M., Fischer, R. & Kaskel, S. MOF processing by electrospinning for functional textiles. Adv. Eng. Mater. 13, 356–360 (2011).

    Article  CAS  Google Scholar 

  46. Singbumrung, K. et al. Preparation of Cu-BTC/PVA fibers with antibacterial applications. Fibers Polym. 19, 1373–1378 (2018).

    Article  CAS  Google Scholar 

  47. Dwyer, D. et al. Chemical protective textiles of UiO-66-integrated PVDF composite fibers with rapid heterogeneous decontamination of toxic organophosphates. ACS Appl. Mater. Interfaces 48, 34585–34591 (2018).

    Article  Google Scholar 

  48. Brettmann, B. K. et al. Free surface electrospinning of fibers containing microparticles. Langmuir 28, 9714–9721 (2012).

    Article  CAS  Google Scholar 

  49. Wahiduzzaman, A. K., Stone, J., Harp, S. & Mujibur, K. Synthesis and electrospraying of nanoscale MOF (metal organic framework) for high-performance CO2 adsorption membrane. Nanoscale Res. Lett. 12, 6 (2017).

    Article  CAS  Google Scholar 

  50. Feijó de Melo, E. et al. LnMOF@PVA nanofiber: energy transfer and multicolor light-emitting devices. J. Mater. Chem. C 1, 7574–7581 (2013).

    Article  Google Scholar 

  51. Yao, A. N., Jiao, X. L., Chen, D. R. & Li, C. Photothermally enhanced detoxification of chemical warfare agent simulants using bioinspired core–shell dopamine–melanin@metal–organic frameworks and their fabrics. ACS Appl. Mater. Interfaces 11, 7927–7935 (2019).

    Article  CAS  Google Scholar 

  52. Hong, Y. et al. Process evaluation of the metal-organic frameworks for the application of personal protective equipment with filtration function. Polymers 10, 1386 (2018).

    Article  Google Scholar 

  53. Zhang, Y. G., Zhang, Y. F., Wang, X. F., Yu, J. Y. & Din, B. Ultrahigh metal–organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability. ACS Appl. Mater. Interfaces 10, 34802–34810 (2018).

    Article  CAS  Google Scholar 

  54. Lu, A. X. et al. MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl. Mater. Interfaces 9, 13632–13636 (2017).

    Article  CAS  Google Scholar 

  55. Lin, R. J., Hernandez, B. V., Ge, L. & Zhu, Z. H. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J. Mater. Chem. A 6, 293–312 (2018).

    Article  CAS  Google Scholar 

  56. Wang, C. H. et al. Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem. Eng. J. 330, 262–271 (2017).

    Article  CAS  Google Scholar 

  57. Armstrong, M. et al. Prolonged HKUST-1 functionality under extreme hydrothermal conditions by electrospinning polystyrene fibers as a new coating method. Micropor. Mesopor. Mater. 270, 34–39 (2018).

    Article  CAS  Google Scholar 

  58. Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes - A review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    Article  CAS  Google Scholar 

  59. Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C. & Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017).

    Article  CAS  Google Scholar 

  60. Dai, J. et al. Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core–shell microspheres for solvent-resistant nanofiltration. J. Membr. Sci. 589, 117261 (2019).

    Article  CAS  Google Scholar 

  61. Vu, M. T. et al. Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes. J. Membr. Sci. 587, 117157 (2019).

    Article  CAS  Google Scholar 

  62. Qian, Q. H. et al. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility. ACS Appl. Mater. Interfaces 11, 31257–31269 (2019).

    Article  CAS  Google Scholar 

  63. Semino, R., Moreton, J. C., Ramsahye, N. A., Cohen, S. M. & Maurin, G. Understanding the origins of metal–organic framework/polymer compatibility. Chem. Sci. 9, 315–324 (2018).

    Article  CAS  Google Scholar 

  64. Pastore, V. J., Cook, T. R. & Rzayev, J. Polymer–MOF hybrid composites with high porosity and stability through surface-selective ligand exchange. Chem. Mater. 30, 8639–8649 (2018).

    Article  CAS  Google Scholar 

  65. Gao, X., Zhang, J. Y. & Huang, K. ROMP for metal–organic frameworks: An efficient technique toward robust and high-separation performance membranes. ACS Appl. Mater. Interfaces 10, 34640–34645 (2018).

    Article  CAS  Google Scholar 

  66. Zhang, W. X. et al. Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation. J. Membr. Sci. 527, 8–17 (2017).

    Article  CAS  Google Scholar 

  67. Shahid, S. et al. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J. Membr. Sci. 492, 21–31 (2015).

    Article  CAS  Google Scholar 

  68. Zhang, Y. Y., Feng, X., Yuan, S., Zhou, J. W. & Wang, B. Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorg. Chem. Front. 3, 896–909 (2016).

    Article  CAS  Google Scholar 

  69. Liu, Y. et al. Super-stable, highly efficient, and recyclable fibrous metal–organic framework membranes for precious metal recovery from strong acidic solutions. Small 15, 1805242 (2019).

    Article  Google Scholar 

  70. Sabetghadam, A. et al. Towards high performance metal–organic framework–microporous polymer mixed matrix membranes: addressing compatibility and limiting aging by polymer doping. Chem. Eur. J. 24, 12796–12800 (2018).

    Article  CAS  Google Scholar 

  71. Ma, X. J., Chai, Y. T., Li, P. & Wang, B. Metal–organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 52, 1461–1470 (2019).

    Article  CAS  Google Scholar 

  72. Venna, S. R. et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A 3, 5014–5022 (2015).

    Article  CAS  Google Scholar 

  73. Peterson, G. W., Au, K., Tovar, T. M. & Epps, T. H. Multivariate CuBTC metal–organic framework with enhanced selectivity, stability, compatibility, and processability. Chem. Mater. 31, 8459–8465 (2019).

    Article  CAS  Google Scholar 

  74. Lange, L. E., Ochanda, F. O., Obendorf, S. K. & Hinestroza, J. P. CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers Polym. 15, 200–207 (2014).

    Article  CAS  Google Scholar 

  75. Balzer, C. et al. Modeling nanoparticle dispersion in electrospun nanofibers. Langmuir 34, 1340–1346 (2018).

    Article  CAS  Google Scholar 

  76. Ji, L. W., Jung, K. H., Medford, A. J. & Zhang, X. W. Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. J. Mater. Chem. 19, 4992–4997 (2009).

    Article  CAS  Google Scholar 

  77. Giliopoulos, D., Zamboulis, A., Giannakoudakis, D., Bikiaris, D. & Triantafyllidis, K. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules 25, 185 (2020).

    Article  CAS  Google Scholar 

  78. Liu, W., Gao, Y., Liu, X. Y., Qiu, Y. P. & Xu, F. J. Tensile and interfacial properties of dry-jet wet-spun and wet-spun polyacrylonitrile-based carbon fibers at cryogenic condition. J. Eng. Fibers Fabr. 14, 1–8 (2019).

    Google Scholar 

  79. Hu, J. et al. Mixed-matrix membrane hollow fibers of Cu-3(BTC)(2) MOF and polyimide for gas separation and adsorption. Ind. Eng. Chem. Res. 49, 12605–12612 (2010).

    Article  CAS  Google Scholar 

  80. Chung, T. S., Kafchinski, E. R. & Foley, P. Development of asymmetric hollow fibers from polyimides for air separation. J. Membr. Sci. 75, 181–195 (1992).

    Article  CAS  Google Scholar 

  81. Zhang, L. et al. Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy. Chem. Eur. J. 24, 13792–13799 (2018).

    Article  CAS  Google Scholar 

  82. Pimentel, B. R., Fultz, A. W., Presnell, K. V. & Lively, R. P. Synthesis of water-sensitive metal–organic frameworks within fiber sorbent modules. Ind. Eng. Chem. Res. 56, 5070–5077 (2017).

    Article  CAS  Google Scholar 

  83. Tashvigh, A. A. & Chung, T. S. Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration. J. Membr. Sci. 572, 580–587 (2019).

    Article  Google Scholar 

  84. Wang, L. Y., Yong, W. F., Yu, L. E. & Chung, T. S. Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. J. Membr. Sci. 535, 342–349 (2017).

    Article  CAS  Google Scholar 

  85. Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J. & Mattoso, L. H. C. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113, 2322–2330 (2009).

    Article  CAS  Google Scholar 

  86. Oliveira, J. E., Mattoso, L. H. C., Orts, W. J. & Medeiros, E. S. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study. Adv. Mater. Sci. Eng. 2013, 409572 (2013).

    Article  Google Scholar 

  87. Daristotle, J. L., Behrens, A. M., Sandler, A. D. & Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces 8, 34951–34963 (2016).

    Article  CAS  Google Scholar 

  88. Lyu, Z. Y. et al. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019).

    Article  Google Scholar 

  89. Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).

    Article  Google Scholar 

  90. Li, S. Z. & Huo, F. W. Metal–organic framework composites: from fundamentals to applications. Nanoscale 7, 7482–7501 (2015).

    Article  CAS  Google Scholar 

  91. DeWitt, S. J. A., Landa, H. O. R., Kawajiri, Y., Realff, M. & Lively, R. P. Development of phase-change-based thermally modulated fiber sorbents. Ind. Eng. Chem. Res. 58, 5768–5776 (2019).

    Article  CAS  Google Scholar 

  92. Healy, C. et al. The thermal stability of metal-organic frameworks. Coord. Chem. Rev. 419, 213388 (2020).

    Article  CAS  Google Scholar 

  93. Dubois, P. & Alexandre, M. Performant clay/carbon nanotube polymer nanocomposites. Adv. Eng. Mater. 8, 147–154 (2006).

    Article  CAS  Google Scholar 

  94. Molavi, H., Shojaei, A. & Mousavi, S. A. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2–UiO-66. J. Mater. Chem. A 6, 2775–2791 (2018).

    Article  CAS  Google Scholar 

  95. Zhao, X. X., Zhang, H., Xu, S. & Wang, Y. ZIF-8 membrane synthesized via covalent-assisted seeding on polyimide substrate for pervaporation dehydration. AlChE J. 65, e16620 (2019).

    Article  Google Scholar 

  96. Tung, J., Gupta, R. K., Simon, G. P., Edward, G. H. & Bhattacharya, S. N. Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer 46, 10405–10418 (2005).

    Article  CAS  Google Scholar 

  97. Cho, J. W. & Paul, D. R. Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001).

    Article  CAS  Google Scholar 

  98. Zachariades, A. E., Mead, W. T. & Porter, R. S. Recent developments in ultra-orientation of polyethylene by solid-state extrusion. Chem. Rev. 80, 351–364 (1980).

    Article  CAS  Google Scholar 

  99. Lopez-Maya, E. et al. Textile/metal–organic-framework composites as self-detoxifying filters for chemical-warfare agents. Angew. Chem. Int. Ed. 54, 6790–6794 (2015).

    Article  CAS  Google Scholar 

  100. Zhuang, J. L., Ar, D., Yu, X. J., Liu, J. X. & Terfort, A. Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution. Adv. Mater. 25, 4631–4635 (2013).

    Article  CAS  Google Scholar 

  101. Wang, G. H., Lei, Y. Q. & Song, H. C. Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Talanta 144, 369–374 (2015).

    Article  CAS  Google Scholar 

  102. Wang, G. H. & Lei, Y. Q. Fabrication of metal–organic framework MOF-177 coatings on stainless steel fibers for head-space solid-phase microextraction of phenols. Bull. Environ. Contam. Toxicol. 99, 270–275 (2017).

    Article  CAS  Google Scholar 

  103. Chen, X. F. et al. Metal–organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry. Analyst 137, 5411–5419 (2012).

    Article  CAS  Google Scholar 

  104. Qian, X. M., Zheng, X. D., Zhang, H. & Kang, W. M. The method of producing nanomaterials and melt blown nonwovens composites. Adv. Mater. Res. 150-151, 667–672 (2011).

    Article  CAS  Google Scholar 

  105. Wang, L. et al. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015).

    Article  CAS  Google Scholar 

  106. DeCoste, J. B., Denny, M. S., Peterson, G. W., Mahle, J. J. & Cohen, S. M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 7, 2711–2716 (2016).

    Article  CAS  Google Scholar 

  107. Gambill, C. R., Roberts, T. D. & Shechter, H. Benzenesulfonyl chloride does react with tertiary amines. The Hinsberg test in proper prospective. J. Chem. Educ. 49, 287–291 (1972).

    Article  CAS  Google Scholar 

  108. Wu, B. et al. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Sci. Rep. 4, 4334 (2014).

    Article  CAS  Google Scholar 

  109. Yu, M. et al. Covalent immobilization of metal–organic frameworks onto the surface of nylon — a new approach to the functionalization and coloration of textiles. Sci. Rep. 6, 22796 (2016).

    Article  Google Scholar 

  110. Lee, D. T., Zhao, J. J., Peterson, G. W. & Parsons, G. N. Catalytic “MOF-cloth” formed via directed supramolecular assembly of UiO-66-NH2 crystals on atomic layer deposition-coated textiles for rapid degradation of chemical warfare agent simulants. Chem. Mater. 29, 4894–4903 (2017).

    Article  CAS  Google Scholar 

  111. McDonald, K. A., Feldblyum, J. I., Koh, K., Wong-Foy, A. G. & Matzger, A. J. Polymer@MOF@MOF: “grafting from” atom transfer radical polymerization for the synthesis of hybrid porous solids. Chem. Commun. 51, 11994–11996 (2015).

    Article  CAS  Google Scholar 

  112. Zhang, Y. Y. et al. Photoinduced postsynthetic polymerization of a metal–organic framework toward a flexible stand-alone membrane. Angew. Chem. Int. Ed. 54, 4259–4263 (2015).

    Article  CAS  Google Scholar 

  113. Lin, R. J. et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl. Mater. Interfaces 6, 5609–5618 (2014).

    Article  CAS  Google Scholar 

  114. Yao, B. J., Jiang, W. L., Dong, Y., Liu, Z. X. & Dong, Y. B. Post-synthetic polymerization of UIO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation. Chem. Eur. J. 22, 10565–10571 (2016).

    Article  CAS  Google Scholar 

  115. Gamage, N. D. H., McDonald, K. A. & Matzger, A. J. MOF-5-polystyrene: Direct production from monomer, improved hydrolytic stability, and unique guest adsorption. Angew. Chem. Int. Ed. 55, 12099–12103 (2016).

    Article  CAS  Google Scholar 

  116. Tanabe, K. K., Wang, Z. & Cohen, S. M. Systematic functionalization of a metal–organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 130, 8508–8517 (2008).

    Article  CAS  Google Scholar 

  117. Cohen, S. M. The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017).

    Article  CAS  Google Scholar 

  118. Zimpel, A. et al. Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers. Chem. Mater. 28, 3318–3326 (2016).

    Article  CAS  Google Scholar 

  119. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  120. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  Google Scholar 

  121. Ameloot, R. et al. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nat. Chem. 3, 382–387 (2011).

    Article  CAS  Google Scholar 

  122. Bradshaw, D., Garai, A. & Huo, J. Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem. Soc. Rev. 41, 2344–2381 (2012).

    Article  CAS  Google Scholar 

  123. Hermes, S., Schroder, F., Chelmowski, R., Woll, C. & Fischer, R. A. Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005).

    Article  CAS  Google Scholar 

  124. Hermes, S., Zacher, D., Baunemann, A., Woll, C. & Fischer, R. A. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 19, 2168–2173 (2007).

    Article  CAS  Google Scholar 

  125. Lis, M. J. et al. In-situ direct synthesis of HKUST-1 in wool fabric for the improvement of antibacterial properties. Polymers 11, 713 (2019).

    Article  Google Scholar 

  126. Yang, Y. Y. et al. Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil–water separation. Cellulose 26, 9335–9348 (2019).

    Article  CAS  Google Scholar 

  127. Tanaka, S. & Miyashita, R. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega 2, 6437–6445 (2017).

    Article  CAS  Google Scholar 

  128. Ma, K. K. et al. Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber. J. Am. Chem. Soc. 141, 15626–15633 (2019).

    Article  CAS  Google Scholar 

  129. Denny, M. S. Jr. & Cohen, S. M. In situ modification of metal–organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 54, 9029–9032 (2015).

    Article  CAS  Google Scholar 

  130. Li, W. B., Meng, Q., Zhang, C. Y. & Zhang, G. L. Metal–organic framework/PVDF composite membranes with high H2 permselectivity synthesized by ammoniation. Chem. Eur. J. 21, 7224–7230 (2015).

    Article  CAS  Google Scholar 

  131. Kusgens, P., Siegle, S. & Kaskel, S. Crystal growth of the metal–organic framework Cu3(BTC)2 on the surface of pulp fibers. Adv. Eng. Mater. 11, 93–95 (2009).

    Article  Google Scholar 

  132. Hashem, T., Ibrahim, A. H., Wöll, C. & Alkordi, M. H. Grafting zirconium-based metal–organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(VI) ions and methyl orange from water. ACS Appl. Nano Mater. 2, 5804–5808 (2019).

    Article  CAS  Google Scholar 

  133. Rubin, H. N., Neufeld, B. H. & Reynolds, M. M. Surface-anchored metal–organic framework–cotton material for tunable antibacterial copper delivery. ACS Appl. Mater. Interfaces 10, 15189–15199 (2018).

    Article  CAS  Google Scholar 

  134. Hafren, J. & Cordova, A. Direct organocatalytic polymerization from cellulose fibers. Macromol. Rapid Commun. 26, 82–86 (2005).

    Article  CAS  Google Scholar 

  135. Pinto, M. D., Sierra-Avila, C. A. & Hinestroza, J. P. In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19, 1771–1779 (2012).

    Article  Google Scholar 

  136. Zhou, S. Y., Stromme, M. & Xu, C. Highly transparent, flexible, and mechanically strong nanopapers of cellulose nanofibers @metal–organic frameworks. Chem. Eur. J. 25, 3515–3520 (2019).

    Article  CAS  Google Scholar 

  137. Hu, Z. et al. Construction of anti-ultraviolet “shielding clothes” on poly(p-phenylene benzobisoxazole) fibers: Metal organic framework-mediated absorption strategy. ACS Appl. Mater. Interfaces 10, 43262–43274 (2018).

    Article  CAS  Google Scholar 

  138. Centrone, A. et al. Growth of metal–organic frameworks on polymer surfaces. J. Am. Chem. Soc. 132, 15687–15691 (2010).

    Article  CAS  Google Scholar 

  139. Zhou, M. M. et al. A polydopamine layer as the nucleation center of MOF deposition on “inert” polymer surfaces to fabricate hierarchically structured porous films. Chem. Commun. 51, 2706–2709 (2015).

    Article  CAS  Google Scholar 

  140. Li, P. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 10, 2177 (2019).

    Article  CAS  Google Scholar 

  141. Gao, M., Zeng, L., Nie, J. & Ma, G. Polymer–metal–organic framework core–shell framework nanofibers via electrospinning and their gas adsorption activities. RSC Adv. 6, 7078–7085 (2016).

    Article  CAS  Google Scholar 

  142. Lu, A. X., Ploskonka, A. M., Tovar, T. M., Peterson, G. W. & DeCoste, J. B. Direct surface growth of UIO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Ind. Eng. Chem. Res. 56, 14502–14506 (2017).

    Article  CAS  Google Scholar 

  143. Chen, Y. M., Yu, L. & Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55, 5990–5993 (2016).

    Article  CAS  Google Scholar 

  144. Chen, Y. M. et al. Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3, 152–163 (2017).

    Article  CAS  Google Scholar 

  145. Li, W. B. et al. Ultrathin metal–organic framework membrane production by gel-vapour deposition. Nat. Commun. 8, 406 (2017).

    Article  Google Scholar 

  146. Zhao, J. J. et al. Facile conversion of hydroxy double salts to metal–organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J. Am. Chem. Soc. 137, 13756–13759 (2015).

    Article  CAS  Google Scholar 

  147. Liang, H. X., Jiao, X. L., Li, C. & Chen, D. R. Flexible self-supported metal–organic framework mats with exceptionally high porosity for enhanced separation and catalysis. J. Mater. Chem. A 6, 334–341 (2018).

    Article  CAS  Google Scholar 

  148. Cremers, V., Puurunen, R. L. & Dendooven, J. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl. Phys. Rev. 6, 021302 (2019).

    Article  Google Scholar 

  149. Miikkulainen, V., Leskela, M., Ritala, M. & Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).

    Article  Google Scholar 

  150. Marichy, C., Bechelany, M. & Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 24, 1017–1032 (2012).

    Article  CAS  Google Scholar 

  151. Lu, J. L., Elam, J. W. & Stair, P. C. Atomic layer deposition — Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 71, 410–472 (2016).

    Article  CAS  Google Scholar 

  152. Brozena, A. H., Oldham, C. J. & Parsons, G. N. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles. J. Vac. Sci. Technol. 34, 010801 (2016).

    Article  Google Scholar 

  153. Zhao, J. et al. Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J. Mater. Chem. A 3, 1458–1464 (2015).

    Article  CAS  Google Scholar 

  154. Lee, D. T., Zhao, J. J., Oldham, C. J., Peterson, G. W. & Parsons, G. N. UiO-66-NH2 metal–organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: Role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 9, 44847–44855 (2017).

    Article  CAS  Google Scholar 

  155. Dwyer, D. B. et al. Toxic organophosphate hydrolysis using nanofiber-templated UiO-66-NH2 metal–organic framework polycrystalline cylinders. ACS Appl. Mater. Interfaces 10, 25794–25803 (2018).

    Article  CAS  Google Scholar 

  156. Khaletskaya, K. et al. Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers. Adv. Funct. Mater. 24, 4804–4811 (2014).

    Article  CAS  Google Scholar 

  157. Stassen, I. et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 15, 304–310 (2016).

    Article  CAS  Google Scholar 

  158. Bechelany, M. et al. Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale 7, 5794–5802 (2015).

    Article  CAS  Google Scholar 

  159. Meyn, M., Beneke, K. & Lagaly, G. Anion-exchange reactions of hydroxy double salts. Inorg. Chem. 32, 1209–1215 (1993).

    Article  CAS  Google Scholar 

  160. Lee, D. T., Jamir, J. D., Peterson, G. W. & Parsons, G. N. Water-stable chemical-protective textiles via euhedral surface-oriented 2D Cu–TCPP metal-organic frameworks. Small 15, 1805133 (2019).

    Article  Google Scholar 

  161. DeCoste, J. B., Browe, M. A., Wagner, G. W., Rossin, J. A. & Peterson, G. W. Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. Chem. Commun. 51, 12474–12477 (2015).

    Article  CAS  Google Scholar 

  162. Peterson, G. W., Mahle, J. J., DeCoste, J. B., Gordon, W. O. & Rossin, J. A. Extraordinary NO2 removal by the metal–organic framework UiO-66-NH2. Angew. Chem. Int. Ed. 55, 6235–6238 (2016).

    Article  CAS  Google Scholar 

  163. Jung, H., Kim, M. K. & Jang, S. Liquid-repellent textile surfaces using zirconium (Zr)-based porous materials and a polyhedral oligomeric silsesquioxane coating. J. Colloid Interface Sci. 563, 363–369 (2020).

    Article  CAS  Google Scholar 

  164. Jones, S. T. et al. Modified cyclodextrins as broad-spectrum antivirals. Sci. Adv. 6, eaax9318 (2020).

    Article  CAS  Google Scholar 

  165. Qi, X. L. et al. Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl. Mater. Interfaces 11, 20325–20332 (2019).

    Article  CAS  Google Scholar 

  166. Blumbach, K., Pahler, A., Deger, H. M. & Dekant, W. Biotransformation and male rat-specific renal toxicity of diethyl ethyl- and dimethyl methylphosphonate. Toxicol. Sci. 53, 24–32 (2000).

    Article  CAS  Google Scholar 

  167. Xu, W., Chen, R., Du, Y. & Wang, G. Design water-soluble phenolic/zeolitic imidazolate framework-67 flame retardant coating via layer-by-layer assembly technology: Enhanced flame retardancy and smoke suppression of flexible polyurethane foam. Polym. Degrad. Stab. 176, 109152 (2020).

    Article  CAS  Google Scholar 

  168. Meirer, F. & Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 3, 324–340 (2018).

    Article  Google Scholar 

  169. Chen, S. S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  170. Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  CAS  Google Scholar 

  171. Garcia-Garcia, P., Muller, M. & Corma, A. MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chem. Sci. 5, 2979–3007 (2014).

    Article  CAS  Google Scholar 

  172. Zhang, C. L. & Yu, S. H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 43, 4423–4448 (2014).

    Article  CAS  Google Scholar 

  173. Fang, X. et al. Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J. Mater. Chem. 21, 4493–4501 (2011).

    Article  CAS  Google Scholar 

  174. Tang, H. J. et al. Electrocatalytic N-doped graphitic nanofiber–metal/metal oxide nanoparticle composites. Small 14, 1703459 (2018).

    Article  Google Scholar 

  175. Niu, Q. J. et al. Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon 114, 250–260 (2017).

    Article  CAS  Google Scholar 

  176. Niu, Q. J. et al. Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano Micro Lett. 11, 8 (2019).

    Article  CAS  Google Scholar 

  177. Ye, T. T., Li, L. H. & Zhang, Y. Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30, 2000077 (2020).

    Article  CAS  Google Scholar 

  178. Moyer, K., Boucherbil, N., Zohair, M., Eaves-Rathert, J. & Pint, C. L. Polymer reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries. Sustain. Energy Fuels 4, 2661–2668 (2020).

    Article  CAS  Google Scholar 

  179. Zhang, K. Q. et al. Extended metal–organic frameworks on diverse supports as electrode nanomaterials for electrochemical energy storage. ACS Appl. Nano Mater. 3, 3964–3990 (2020).

    Article  CAS  Google Scholar 

  180. Hwang, T. H., Lee, Y. M., Kong, B. S., Seo, J. S. & Choi, J. W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012).

    Article  CAS  Google Scholar 

  181. Long, J., Yang, Z., Yang, F., Cuan, J. & Wu, J. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochim. Acta 344, 136155 (2020).

    Article  CAS  Google Scholar 

  182. Qi, P. F. et al. MOF derived composites for cathode protection: coatings of LiCoO2 from UiO-66 and MIL-53 as ultra-stable cathodes. Chem. Commun. 51, 12391–12394 (2015).

    Article  CAS  Google Scholar 

  183. Li, S. W. et al. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J. Mater. Chem. A 4, 5823–5827 (2016).

    Article  CAS  Google Scholar 

  184. Sawangphruk, M. et al. High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J. Mater. Chem. A 1, 9630–9636 (2013).

    Article  CAS  Google Scholar 

  185. Zacher, D., Shekhah, O., Woll, C. & Fischer, R. A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    Article  CAS  Google Scholar 

  186. Yu, X. W. et al. Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017).

    Article  CAS  Google Scholar 

  187. Cui, X. Y. et al. In situ hydrothermal growth of metal–organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal. Chem. 81, 9771–9777 (2009).

    Article  CAS  Google Scholar 

  188. Li, Y. A., Yang, F., Liu, Z. C., Liu, Q. K. & Dong, Y. B. A porous Cd(II)-MOF-coated quartz fiber for solid-phase microextraction of BTEX. J. Mater. Chem. A 2, 13868–13872 (2014).

    Article  CAS  Google Scholar 

  189. Elosua, C. et al. Micro and nanostructured materials for the development of optical fibre sensors. Sensors 17, 2312 (2017).

    Article  Google Scholar 

  190. Kim, K. J., Lu, P., Culp, J. T. & Ohodnicki, P. R. Metal–organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform. ACS Sen. 3, 386–394 (2018).

    Article  CAS  Google Scholar 

  191. Ohira, S. I. et al. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases. Anal. Chim. Acta 886, 188–193 (2015).

    Article  CAS  Google Scholar 

  192. Lee, J. S. et al. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano 5, 7992–8001 (2011).

    Article  CAS  Google Scholar 

  193. Torres-Martinez, E. J., Bravo, J. M. C., Medina, A. S., Gonzalez, G. L. P. & Gomez, L. J. V. A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices. Curr. Drug Deliv. 15, 1360–1374 (2018).

    Article  CAS  Google Scholar 

  194. Lazaro, I. A., Wells, C. J. R. & Forgan, R. S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 59, 5211–5217 (2020).

    Article  Google Scholar 

  195. Lazaro, I. A. & Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 380, 230–259 (2019).

    Article  Google Scholar 

  196. Suresh, K. & Matzger, A. J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF). Angew. Chem. Int. Ed. 58, 16790–16794 (2019).

    Article  CAS  Google Scholar 

  197. Agarwal, S., Wendorff, J. H. & Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 49, 5603–5621 (2008).

    Article  CAS  Google Scholar 

  198. Agarwal, S., Wendorff, J. H. & Greiner, A. Progress in the field of electrospinning for tissue engineering applications. Adv. Mater. 21, 3343–3351 (2009).

    Article  CAS  Google Scholar 

  199. Yuan, Y. et al. ZIF nano-dagger coated gauze for antibiotic-free wound dressing. Chem. Commun. 55, 699–702 (2019).

    Article  CAS  Google Scholar 

  200. Yu, Y. R. et al. Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Mater. Horiz. 5, 1137–1142 (2018).

    Article  CAS  Google Scholar 

  201. Zhang, P. et al. Copper-based metal–organic framework as a controllable nitric oxide-releasing vehicle for enhanced diabetic wound healing. ACS Appl. Mater. Interfaces 12, 18319–18331 (2020).

    Article  CAS  Google Scholar 

  202. Zhou, W. C. et al. High antimicrobial activity of metal–organic framework-templated porphyrin polymer thin films. ACS Appl. Mater. Interfaces 10, 1528–1533 (2018).

    Article  CAS  Google Scholar 

  203. Liu, M., Wang, L., Zheng, X. H. & Xie, Z. G. Zirconium-based nanoscale metal–organic framework/poly(ε-caprolactone) mixed-matrix membranes as effective antimicrobials. ACS Appl. Mater. Interfaces 9, 41512–41520 (2017).

    Article  CAS  Google Scholar 

  204. Rivero, P. J., Urrutia, A., Goicoechea, J. & Arregui, F. J. Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 10, 501 (2015).

    Article  Google Scholar 

  205. Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).

    Article  CAS  Google Scholar 

  206. Yang, J. & Yang, Y. W. Metal–organic frameworks for biomedical applications. Small 16, 1906846 (2020).

    Article  CAS  Google Scholar 

  207. Perelshtein, I. et al. Ultrasound radiation as a “throwing stones” technique for the production of antibacterial nanocomposite textiles. ACS Appl. Mater. Interfaces 2, 1999–2004 (2010).

    Article  CAS  Google Scholar 

  208. Perelshtein, I. et al. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 8, 695–707 (2015).

    Article  CAS  Google Scholar 

  209. Semino, R., Ramsahye, N. A., Ghoufi, A. & Maurin, G. Microscopic model of the metal–organic framework/polymer interface: a first step toward understanding the compatibility in mixed matrix membranes. ACS Appl. Mater. Interfaces 8, 809–819 (2016).

    Article  CAS  Google Scholar 

  210. Tavares, S. R. et al. Computationally assisted assessment of the metal-organic framework/polymer compatibility in composites integrating a rigid polymer. Adv. Theory Simul. 2, 1900116 (2019).

    Article  CAS  Google Scholar 

  211. Ma, K. et al. Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber. J. Am. Chem. Soc. 141, 15626–15633 (2019).

    Article  CAS  Google Scholar 

  212. Kumar, S. et al. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 420, 213407 (2020).

    Article  CAS  Google Scholar 

  213. Stassin, T. et al. Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chem. Commun. 55, 10056–10059 (2019).

    Article  CAS  Google Scholar 

  214. Krishtab, M. et al. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nat. Commun. 10, 3729 (2019).

    Article  Google Scholar 

  215. Lausund, K. B., Petrovic, V. & Nilsen, O. All-gas-phase synthesis of amino-functionalized UiO-66 thin films. Dalton Trans. 46, 16983–16992 (2017).

    Article  CAS  Google Scholar 

  216. Poodt, P. et al. High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010).

    Article  CAS  Google Scholar 

  217. Illiberi, A., Roozeboom, F. & Poodt, P. Spatial atomic layer deposition of zinc oxide thin films. ACS Appl. Mater. Interfaces 4, 268–272 (2012).

    Article  CAS  Google Scholar 

  218. Munoz-Rojas, D. & MacManus-Driscoll, J. Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics. Mater. Horiz. 1, 314–320 (2014).

    Article  CAS  Google Scholar 

  219. Plonka, A. M. et al. In situ probes of capture and decomposition of chemical warfare agent simulants by Zr-based metal organic frameworks. J. Am. Chem. Soc. 139, 599–602 (2017).

    Article  CAS  Google Scholar 

  220. Chen, Z. et al. Integration of metal–organic frameworks on protective layers for destruction of nerve agents under relevant conditions. J. Am. Chem. Soc. 141, 20016–20021 (2019).

    Article  CAS  Google Scholar 

  221. Engel, E. R. & Scott, J. L. Advances in the green chemistry of coordination polymer materials. Green. Chem. 22, 3693–3715 (2020).

    Article  CAS  Google Scholar 

  222. Maguire-Boyle, S. J., Liga, M. V., Li, Q. L. & Barron, A. R. Alumoxane/ferroxane nanoparticles for the removal of viral pathogens: the importance of surface functionality to nanoparticle activity. Nanoscale 4, 5627–5632 (2012).

    Article  CAS  Google Scholar 

  223. Hou, Y. B., Hu, W. Z., Gui, Z. & Hu, Y. Preparation of metal–organic frameworks and their application as flame retardants for polystyrene. Ind. Eng. Chem. Res. 56, 2036–2045 (2017).

    Article  CAS  Google Scholar 

  224. Zhang, L. et al. Nickel metal–organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain. Chem. Eng. 7, 9272–9280 (2019).

    Article  CAS  Google Scholar 

  225. Lee, G., Seo, Y. D. & Jang, J. ZnO quantum dot-decorated carbon nanofibers derived from electrospun ZIF-8/PVA nanofibers for high-performance energy storage electrodes. Chem. Commun. 53, 11441–11444 (2017).

    Article  CAS  Google Scholar 

  226. Stavila, V., Talin, A. A. & Allendorf, M. D. MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014).

    Article  CAS  Google Scholar 

  227. Chen, G., Koros, W. J., & Jones, C. W. Hybrid polymer/UiO-66(Zr) and polymer/NaY fiber sorbents for mercaptan removal from natural gas. ACS Appl. Mater. Interfaces 8, 9700–9709 (2016).

    Article  CAS  Google Scholar 

  228. Mu, X. L., Chen, Y. P., Lester, E. & Wu, T. Optimized synthesis of nano-scale high quality HKUST-1 under mild conditions and its application in CO2 capture. Micropor. Mesopor. Mater. 270, 249–257 (2018).

    Article  CAS  Google Scholar 

  229. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    Article  CAS  Google Scholar 

  230. Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A. & Zhou, H. C. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 47, 8611–8638 (2018).

    Article  CAS  Google Scholar 

  231. Xiao, X., Zou, L. L., Pang, H. & Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49, 301–331 (2020).

    Article  CAS  Google Scholar 

  232. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  233. Son, F. et al. Uncovering the role of metal–organic framework topology on the capture and reactivity of chemical warfare agents. Chem. Mater. 32, 4609–4617 (2020).

    Article  Google Scholar 

  234. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the US Army Combat Capabilities Development Command (CCDC) Chemical Biological Center (CBC) Individual Laboratory Independent Research program (PE 0601101A 91A), the Joint Science and Technology Office for Chemical and Biological Defense (CB3934), the US Defense Threat Reduction Agency through the US Army Research Office (W911NF-19-2-0154) to G.N.P., the US Army Research Office and CCDC CBC (W911NF1820167) to T.H.E. and the Thomas & Kipp Gutshall Professorship at the University of Delaware (to T.H.E.).

Author information

Authors and Affiliations

Authors

Contributions

G.W.P., T.H.E. and G.N.P. planned and outlined the manuscript. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Gregory W. Peterson, Thomas H. Epps III or Gregory N. Parsons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, G.W., Lee, D.T., Barton, H.F. et al. Fibre-based composites from the integration of metal–organic frameworks and polymers. Nat Rev Mater 6, 605–621 (2021). https://doi.org/10.1038/s41578-021-00291-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00291-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing