Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations

Abstract

The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roadmap to rational combinations.

Similar content being viewed by others

References

  1. Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnaik, A. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diab, A. et al. Bempegaldesleukin plus nivolumab in first-line metastatic melanoma. J. Clin. Oncol. 39, 2914–2925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Freidlin, B. & Korn, E. L. Two-by-two factorial cancer treatment trials: is sufficient attention being paid to possible interactions? J. Natl Cancer Inst. 10.1093/jnci/djx146 (2017).

  5. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Talukdar, S. et al. Defining immune infiltrate heterogeneity by immunophenotyping of tumor micro-environment at single cell level: a step towards more effective personalized immunotherapy in ovarian cancer. Gynecol. Oncol. 162, S52 (2021).

    Article  Google Scholar 

  7. Qian, J. & Rankin, E. B. Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv. Exp. Med. Biol. 1136, 43–55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butterfield, L. H. The society for immunotherapy of cancer biomarkers task force recommendations review. Semin. Cancer Biol. 52, 12–15 (2018).

    Article  PubMed  Google Scholar 

  9. CLIA. CLIA regulations and federal register documents. Center for Medicare and Medicaid Services https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/CLIA_Regulations_and_Federal_Register_Documents (2023).

  10. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eggermont, A. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Robert, C. L. et al. Long-term outcomes in patients (pts) with ipilimumab (ipi)-naïve advanced melanoma in the phase 3. J. Clin. Oncol. 15, 391–402 (2017).

    Google Scholar 

  19. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  22. Zhu, S. et al. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 14, 156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu, Y. T. & Sun, Z. J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 11, 5365–5386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. 5, 200ra116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mouw, K. W., Goldberg, M. S., Konstantinopoulos, P. A. & D’Andrea, A. D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7, 675–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ready, N. et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 37, 992–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Butterfield, L. H. et al. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma. J. Immunother. Cancer 7, 113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Santos, P. M. et al. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J. Exp. Med. 217, e20191369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dummer, R., Hoeller, C., Gruter, I. P. & Michielin, O. Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors. Cancer Immunol. Immunother. 66, 683–695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front. Pharmacol. 9, 185 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Patel, S. A. & Minn, A. J. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48, 417–433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gravett, A. M., Trautwein N, Stevanovic, S., Dalgleish, A. G. & Copier, J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 7, e1438107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan, S. et al. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-β signaling in breast cancer cells. PLoS ONE 7, e32542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Dimeloe, S. et al. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur. J. Immunol. 44, 3614–3620 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Ge, Y. et al. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol. Immunother. 61, 353–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Buhtoiarov, I. N. et al. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132, 226–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Baird, J. D. G. et al. MV-626, a potent and selective inhibitor of ENPP1 enhances STING activation and augments T-cell mediated anti-tumor activity in vivo. Providence St. Joseph Health Commons https://digitalcommons.psjhealth.org/sitc2018/ (2018).

  47. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Williamson, C. W. et al. Immunotherapy and radiation therapy sequencing: state of the data on timing, efficacy, and safety. Cancer 127, 1553–1567 (2021).

    Article  PubMed  Google Scholar 

  49. Huard, B., Gaulard, P., Faure, F., Hercend, T. & Triebel, F. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39, 213–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Kisielow, M., Kisielow, J., Capoferri-Sollami, G. & Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 35, 2081–2088 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Workman, C. J. et al. LAG-3 regulates plasmacytoid dendritic cell homeostasis. J. Immunol. 182, 1885–1891 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, J. et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176, 334–347.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, F. et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 74, 3418–3428 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Liang, B. et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916–5926 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ascierto, P. A. et al. Nivolumab and relatlimab in patients with advanced melanoma that had progressed on anti-programmed death-1/programmed death ligand 1 therapy: results from the phase I/IIa RELATIVITY-020 trial. J. Clin. Oncol. 41, 2724–2735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chauvin, J. M. & Zarour, H. M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 8, e000957 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rudin, C. M. et al. SKYSCRAPER-02: primary results of a phase III, randomized, double-blind, placebo-controlled study of atezolizumab (atezo) + carboplatin + etoposide (CE) with or without tiragolumab (tira) in patients (pts) with untreated extensive-stage small cell lung cancer (ES-SCLC). J. Clin. Oncol. 40, LBA8507 (2022).

    Article  Google Scholar 

  63. Fourcade, J. et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 10.1172/jci.insight.121157 (2018).

  64. Cho, B. C. et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Dummer, R. et al. Abstract CT002: KEYMAKER-U02 substudy 02C: neoadjuvant pembrolizumab (pembro) + vibostolimab (vibo) or gebasaxturev (geba) or pembro alone followed by adjuvant pembro for stage IIIB-D melanoma. Cancer Res. 83, CT002 (2023).

    Article  Google Scholar 

  66. Solinas, C., De Silva, P., Bron, D., Willard-Gallo, K. & Sangiolo, D. Significance of TIM3 expression in cancer: from biology to the clinic. Semin. Oncol. 46, 372–379 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Anderson, A. C. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res. 2, 393–398 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Kato, R. et al. Increased Tim-3+ T cells in PBMCs during nivolumab therapy correlate with responses and prognosis of advanced esophageal squamous cell carcinoma patients. Cancer Immunol. Immunother. 67, 1673–1683 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Han, G., Chen, G., Shen, B. & Li, Y. Tim-3: an activation marker and activation limiter of innate immune cells. Front. Immunol. 4, 449 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Curigliano, G. et al. Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin. Cancer Res. 27, 3620–3629 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Chow, A. et al. Tim-4+ cavity-resident macrophages impair anti-tumor CD8+ T cell immunity. Cancer Cell 39, 973–988.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Milhem, M. et al. O85 durable responses in anti-PD-1 refractory melanoma following intratumoral injection of a toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab. J. Immunother. Cancer 8, A2–A3 (2020).

    Google Scholar 

  73. Yap, T. A. et al. First-in-human phase I/II ICONIC trial of the ICOS agonist vopratelimab alone and with nivolumab: ICOS-high CD4 T-cell populations and predictors of response. Clin. Cancer Res. 28, 3695–3708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Byrne, K. T. et al. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin. Cancer Res. 27, 4574–4586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leblond, M. M. et al. CD40 agonist restores the antitumor efficacy of anti-PD1 therapy in muscle-invasive bladder cancer in an IFN I/II-mediated manner. Cancer Immunol. Res. 8, 1180–1192 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Ma, H. S. et al. A CD40 agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell-mediated anticancer activity. Cancer Immunol. Res. 7, 428–442 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weiss, S. et al. 389 Phase II of CD40 agonistic antibody sotigalimab (APX005M) in combination with nivolumab in subjects with metastatic melanoma with confirmed disease progression on anti-PD-1 therapy. J. Immunother. Cancer 9, A422 (2021).

    Article  Google Scholar 

  78. Kim, T. W. et al. First-in-human phase I study of the OX40 agonist MOXR0916 in patients with advanced solid tumors. Clin. Cancer Res. 28, 3452–3463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma, Y. et al. Combination of PD-1 inhibitor and OX40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer. Gastroenterology 159, 306–319.e12 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Gutierrez, M. et al. OX40 agonist BMS-986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors. Clin. Cancer Res. 27, 460–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Macedo, N., Miller, D. M., Haq, R. & Kaufman, H. L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer 8, e001486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hamid, O., Ismail, R. & Puzanov, I. Intratumoral immunotherapy—update 2019. Oncologist 25, e423–e438 (2020).

    Article  PubMed  Google Scholar 

  83. Puzanov, I. et al. 433 Talimogene laherparepvec (T-VEC) in combination with ipilimumab (IPI) versus IPI alone for advanced melanoma: 4-year interim analysis of a randomized, open-label, phase 2 trial. J. Immunother. Cancer 8, A263 (2020).

    Google Scholar 

  84. Dummer, R. et al. Randomized phase III trial evaluating spartalizumab plus dabrafenib and trametinib for BRAF V600-mutant unresectable or metastatic melanoma. J. Clin. Oncol. 40, 1428–1438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chesney, J. A. et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. 41, 528–540 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Middleton, M. et al. 422 An open-label, multicenter, phase 1/2 clinical trial of RP1, an enhanced potency oncolytic HSV, combined with nivolumab: updated results from the skin cancer cohorts. J. Immunother. Cancer 8, A257 (2020).

    Google Scholar 

  87. Milhem, M. M. et al. Updated results from the skin cancer cohorts from an ongoing phase 1/2 multicohort study of RP1, an enhanced potency oncolytic HSV, combined with nivolumab (IGNYTE). J. Clin. Oncol. 40, 9553 (2022).

    Article  Google Scholar 

  88. Najjar, Y. G., Puligandla, M., Lee, S. J. & Kirkwood, J. M. An updated analysis of 4 randomized ECOG trials of high-dose interferon in the adjuvant treatment of melanoma. Cancer 125, 3013–3024 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Vaishampayan, U. N. et al. Nemvaleukin alfa monotherapy and in combination with pembrolizumab in patients (pts) with advanced solid tumors: ARTISTRY-1. J. Clin. Oncol. 40, 2500 (2022).

    Article  Google Scholar 

  90. Qiu, Y. et al. Clinical application of cytokines in cancer immunotherapy. Drug. Des. Devel. Ther. 15, 2269–2287 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Butterfield, L. H. et al. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin. Cancer Res. 23, 5034–5043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Algazi, A. P. et al. Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin. Cancer Res. 26, 2827–2837 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chapuis, A. G. et al. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression. J. Clin. Oncol. 34, 3787–3795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Melisi, D. et al. Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J. Immunother. Cancer 9, e002068 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Escos, A., Risco, A., Alsina-Beauchamp, D. & Cuenda, A. p38γ and p38δ Mitogen activated protein kinases (MAPKs), new stars in the MAPK galaxy. Front. Cell Dev. Biol. 4, 31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liang, X. et al. miR-128 enhances dendritic cell-mediated anti-tumor immunity via targeting of p38. Mol. Med. Rep. 16, 1307–1313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ryan, A. et al. 588 Phase Ib study of the p38 inhibitor ARRY-614 with nivolumab, ipilimumab or nivolumab+ipilimumab in advanced solid tumors. J. Immunother. Cancer 10, A615 (2022).

    Google Scholar 

  100. Clancy-Thompson, E. et al. Peptide vaccination in montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen-specific CD8 T cells. Cancer Immunol. Res. 1, 332–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Sarnaik, A. A. et al. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J. Clin. Oncol. 39, 2656–2666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jason, C. et al. Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: pooled analysis of consecutive cohorts of the C-144-01 study. J. Immunother. Cancer 10, e005755 (2022).

    Article  Google Scholar 

  103. O’Malley, D. Phase 2 efficacy and safety of autologous tumor-infiltrating lymphocyte (TIL) cell therapy in combination with pembrolizumab in immune checkpoint inhibitor-naïve patients with advanced cancers. J. Immunother. Cancer 10.1136/jitc-2021-SITC2021.492 (2021).

  104. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. John, L. B., Kershaw, M. H. & Darcy, P. K. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2, e26286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Arina, A. & Bronte, V. Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Curr. Opin. Immunol. 33, 120–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Long, A. H. et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ostrand-Rosenberg, S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol. Immunother. 59, 1593–1600 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Heczey, A. et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824–2833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goebeler, M. E. & Bargou, R. C. T cell-engaging therapies — BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  112. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ribas, A. et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin. Cancer Res. 15, 6267–6276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. McNeel, D. G. et al. Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-004198 (2022).

  120. Mueller, S. et al. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. J. Clin. Invest. https://doi.org/10.1172/JCI162283 (2022).

  121. Brightman, S. E., Naradikian, M. S., Miller, A. M. & Schoenberger, S. P. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy. J. Leukoc. Biol. 107, 625–633 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Martin, J. D., Fukumura, D., Duda, D. G., Boucher, Y. & Jain, R. K. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a027094 (2016).

  124. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schiffmann, L. M. et al. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition. Br. J. Cancer 116, 600–608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Najjar, Y. G. et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight https://doi.org/10.1172/jci.insight.124989 (2019).

  129. Yang, J., Yan, J. & Liu, B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol. 9, 978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Roland, C. L. et al. Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS ONE 4, e7669 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aak9679 (2017).

  132. Ott, P. A., Hodi, F. S. & Buchbinder, E. I. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front. Oncol. 5, 202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yasuda, S. et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 172, 500–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cui, C. et al. Toripalimab plus axitinib versus toripalimab or axitinib alone in patients with treatment-naive unresectable or metastatic mucosal melanoma: interim results from a randomized, controlled, phase II trial. J. Clin. Oncol. 40, 9512 (2022).

    Article  Google Scholar 

  135. Cui, C. et al. A phase 2 clinical trial of neoadjuvant anti-PD-1 Ab (toripalimab) plus axitinib in resectable mucosal melanoma. J. Clin. Oncol. 39, 9512 (2021).

    Article  Google Scholar 

  136. Sheng, X. et al. Axitinib in combination with toripalimab, a humanized immunoglobulin G4 monoclonal antibody against programmed cell death-1, in patients with metastatic mucosal melanoma: an open-label phase IB trial. J. Clin. Oncol. 37, 2987–2999 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, X. et al. Apatinib combined with camrelizumab in advanced acral melanoma patients: an open-label, single-arm phase 2 trial. Eur. J. Cancer 182, 57–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Choueiri, T. K. et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 19, 451–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Kimura, T. et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 109, 3993–4002 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kato, Y. et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 14, e0212513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Taylor, M. H. et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J. Clin. Oncol. 38, 1154–1163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Makker, V. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 386, 437–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Arance, A. et al. Phase II LEAP-004 study of lenvatinib plus pembrolizumab for melanoma with confirmed progression on a programmed cell death protein-1 or programmed death ligand 1 inhibitor given as monotherapy or in combination. J. Clin. Oncol. https://doi.org/10.1200/JCO.22.00221 (2023).

  146. Vano, Y. A. et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 23, 612–624 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Callahan, M. K. & Chapman, P. B. PD-1 or PD-L1 blockade adds little to combination of BRAF and MEK inhibition in the treatment of BRAF V600-mutated melanoma. J. Clin. Oncol. 40, 1393–1395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wilmott, J. S. et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res. 18, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schilling, B. & Paschen, A. Immunological consequences of selective BRAF inhibitors in malignant melanoma: neutralization of myeloid-derived suppressor cells. Oncoimmunology 2, e25218 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ott, P. A. et al. Inhibition of both BRAF and MEK in BRAF(V600E) mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties. Cancer Immunol. Immunother. 62, 811–822 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Callahan, M. K. et al. Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol. Res. 2, 70–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Hoyer, S. et al. BRAF and MEK inhibitors affect dendritic-cell maturation and T-cell stimulation. Int. J. Mol. Sci. 22, 11951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Minor, D. R., Puzanov, I., Callahan, M. K., Hug, B. A. & Hoos, A. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment. Cell Melanoma Res. 28, 611–612 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ribas, A., Hodi, F. S., Callahan, M., Konto, C. & Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368, 1365–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Ferrucci, P. F. et al. KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J. Immunother. Cancer 8, e001806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Storkus, W. J. et al. Dendritic cell vaccines targeting tumor blood vessel antigens in combination with dasatinib induce therapeutic immune responses in patients with checkpoint-refractory advanced melanoma. J. Immunother. Cancer 9, e003675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bollard, C. M. et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Dummer, R. et al. Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 23, 1145–1155 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Padron, L. J. et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28, 1167–1177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Farah, A. et al. 587 AMADEUS trial: tumor agnostic pre- and on-treatment biomarkers of response to nivolumab plus ipilimumab correlate with on-treatment tumoral T cell infiltration. J. Immunother. Cancer 10, A614 (2022).

    Google Scholar 

  162. Inman, S. CLDN18.2-directed CAR T-cell therapy effective, safe in gastrointestinal cancers. Cancer Network www.cancernetwork.com/view/cldn18-2-directed-car-t-cell-therapy-effective-safe-in-gastrointestinal-cancers (2022).

  163. Adamik, J. et al. Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nat. Commun. 13, 5184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wolchok, J. D. et al. CheckMate 067: 6.5-year outcomes in patients (pts) with advanced melanoma. J. Clin. Oncol. 39, 9506 (2021).

    Article  Google Scholar 

  165. Lebbe, C. et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J. Clin. Oncol. 37, 867–875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Doki, Y. et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N. Engl. J. Med. 386, 449–462 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lenz, H. J. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J. Clin. Oncol. 40, 161–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Yau, T. et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 6, e204564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Finn, R. S. et al. LBA34 — primary results from the phase III LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC). Ann. Oncol. https://doi.org/10.1016/j.annonc.2022.08.031 (2022).

  174. Gutzmer, R. et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF(V600) mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 395, 1835–1844 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Eng, C. et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 20, 849–861 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. US National Library of Science. ClinicalTrials.gov clinicaltrials.gov/ct2/show/NCT04511013 (2023).

  177. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Merino, D. M. et al. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J. Immunother. Cancer 8, e000147 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Vega, D. M. et al. Aligning tumor mutational burden (TMB) quantification across diagnostic platforms: phase II of the Friends of Cancer Research TMB Harmonization Project. Ann. Oncol. 32, 1626–1636 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Kulangara, K. et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch. Pathol. Lab. Med. 143, 330–337 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Muro, K. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 17, 717–726 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. De Marchi, P. et al. PD-L1 expression by tumor proportion score (TPS) and combined positive score (CPS) are similar in non-small cell lung cancer (NSCLC). J. Clin. Pathol. 74, 735–740 (2021).

    Article  PubMed  Google Scholar 

  186. Davis, A. A. & Patel, V. G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 7, 278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kim, E. S. et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial. Nat. Med. 28, 939–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. FDA. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. FDA https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  190. FDA. FDA grants nivolumab accelerated approval for MSI-H or dMMR colorectal cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approval-msi-h-or-dmmr-colorectal-cancer (2017).

  191. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Marcus, L. et al. FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin. Cancer Res. 27, 4685–4689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Valero, C. et al. Response rates to anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 7, 739–743 (2021).

    Article  PubMed  Google Scholar 

  195. Yarchoan, M. et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 4, e126908 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hellmann, M. D. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33, 843–852.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. From the American Association of Neurological Surgeons (AANS)et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke 13, 612–632 (2018).

    Google Scholar 

  198. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Goodman, A. M., Sokol, E. S., Frampton, G. M., Lippman, S. M. & Kurzrock, R. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol. Res. 7, 1570–1573 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. DiGuardo, M. A. et al. RNA-seq reveals differences in expressed tumor mutation burden in colorectal and endometrial cancers with and without defective DNA-mismatch repair. J. Mol. Diagn. 23, 555–564 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Vega, D. M. et al. Changes in circulating tumor DNA reflect clinical benefit across multiple studies of patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol. 6, e2100372 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Davar, D. et al. A phase 2/3 trial in progress on tebentafusp as monotherapy and in combination with pembrolizumab in HLA-A*02:01+ patients with previously treated advanced non-uveal melanoma (TEBE-AM). J. Clin. Oncol. 41, TPS9594 (2023).

    Article  Google Scholar 

  205. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Conde, E. et al. Epitope spreading driven by the joint action of CART cells and pharmacological STING stimulation counteracts tumor escape via antigen-loss variants. J. Immunother. Cancer 9, e003351 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ruffin, A. T. et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Campbell, M. T. et al. Pilot study of tremelimumab with and without cryoablation in patients with metastatic renal cell carcinoma. Nat. Commun. 12, 6375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Taube, J. M. et al. Multi-institutional TSA-amplified Multiplexed Immunofluorescence Reproducibility Evaluation (MITRE) study. J. Immunother. Cancer 9, e002197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Zhang, W. et al. Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA. Nat. Methods 19, 759–769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Parker Institute for Cancer Immunotherapy (L.H.B.). This work was supported by the University of Pittsburgh UPMC Hillman Cancer Center Award P30CA04904 (Y.G.N.). The authors thank D. Gilmartin for assistance with the references in this paper.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Lisa H. Butterfield or Yana G. Najjar.

Ethics declarations

Competing interests

L.H.B. declares the following unrelated advisory activities: Calidi Scientific and Medical Advisory Board, 6 April 2017–2023; KaliVir, Scientific Advisory Board, 2018–2023; Torque Therapeutics, Scientific Advisory Board, 2018–2020; Khloris, Scientific Advisory Board, 2019–2023; Pyxis, Scientific Advisory Board, 2019–2023; CytomX, Scientific Advisory Board, 2019–2023; DCprime, Scientific Advisory Board meeting, November 2020; RAPT, Scientific Advisory Board, 2020–2023; Takeda, scientific advisor, 2020–2023; EnaraBio scientific adviser, February 2021; Federation Bio, scientific adviser, 2022; and Pfizer, scientific adviser, 2022. Current contact: lisa.butterfield@merck.com. Y.G.N. declares the following unrelated advisory activities: Scientific Advisory Board/consulting: Merck, InterVenn Bio, Novartis, BMS, Pfizer and Immunocore. Non-continuing education honoraria: Immunocore. Travel cost/accommodations: Istari Oncology. Research funding (to institution): Merck, Pfizer, BMS and Replimune.

Peer review

Peer review information

Nature Reviews Immunology thanks Taha Merghoub, Brent Hanks and Dirk Jaeger for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abscopal effect

The observation that a local treatment delivered to one anatomical site (for example, the tumour) leads to an effect at a distant anatomical site (for example, a metastatic tumour deposit), suggesting circulating systemic immunity.

Antigenic breadth

The number of different tumour antigens (or epitopes therein) that the immune system reacts to.

Epitope spreading

The phenomenon identified in autoimmunity in which an immune response to one tissue antigen leads to cell death, additional antigen release in inflammatory conditions and subsequent rounds of immune response to new antigens.

Hypothesis-generating biomarkers

Broad testing of immune response that is not directed towards a specific scientific hypothesis, but which instead is designed to provide data to be mined to identify unanticipated hypotheses.

Immune monitoring of patients

Immune response testing performed in clinical trials on patient blood and other tissue samples to determine the effects of a therapy.

ImmunoPET

PET using labels that detect immune cells (for example, CD8+ T cells).

Immunophenotype

The observable characteristics that relate to the immune system and immune reactivity.

M1-polarized

Myeloid cells (macrophages) whose functions are aligned with antitumour functions, so called in reference to the ‘type 1’ T cell paradigm.

M2-polarized

Myeloid cells (macrophages) whose functions are in opposition to antitumour functions, so called in reference to the ‘type 2’ T cell paradigm.

Tertiary lymphoid structures

Organized immune structures that can be detected in different diseased tissues that resemble a secondary lymphoid structure containing T and B cells, antibodies and antigen-presenting cells.

T cell engagers

Chimeric molecules, commonly with antibody structures, which simultaneously bind to the CD3 molecule on the T cell surface and a cell-surface tumour protein to connect T cells with tumour cells directly.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butterfield, L.H., Najjar, Y.G. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol (2023). https://doi.org/10.1038/s41577-023-00973-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-023-00973-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research