Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel insights into double-stranded RNA-mediated immunopathology

Abstract

Recent progress in human and mouse genetics has transformed our understanding of the molecular mechanisms by which recognition of self double-stranded RNA (self-dsRNA) causes immunopathology. Novel mouse models recapitulate loss-of-function mutations in the RNA editing enzyme ADAR1 that are found in patients with Aicardi–Goutières syndrome (AGS) — a monogenic inflammatory disease associated with increased levels of type I interferon. Extensive analyses of the genotype–phenotype relationships in these mice have now firmly established a causal relationship between increased intracellular concentrations of endogenous immunostimulatory dsRNA and type I interferon-driven immunopathology. Activation of the dsRNA-specific immune sensor MDA5 perpetuates the overproduction of type I interferons, and chronic engagement of the interferon-inducible innate immune receptors PKR and ZBP1 by dsRNA drives immunopathology by activating an integrated stress response or by inducing excessive cell death. Biochemical and genetic data support a role for the p150 isoform of ADAR1 in the cytosol in suppressing the spontaneous, pathological response to self-dsRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ADAR1 mutations in Aicardi–Goutières syndrome.
Fig. 2: ADAR1-p150 regulates the double-stranded RNA response.
Fig. 3: Negative feedback by ADAR1-p150 and positive feedback through interferon signalling set a threshold for double-stranded RNA-induced autoinflammation.

Similar content being viewed by others

References

  1. Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80, 5059–5064 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Son, K. N., Liang, Z. & Lipton, H. L. Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses. J. Virol. 89, 9383–9392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hur, S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37, 349–375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012). This study provides clinical evidence that the detection of self-dsRNA by the innate immune system may be causal to human immunopathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Bartok, E. & Hartmann, G. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity 53, 54–77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aicardi, J. & Goutieres, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Crow, Y. J. & Stetson, D. B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22, 471–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Livingston, J. H. et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Crow, Y. J. et al. Mutations in ADAR1, IFIH1, and RNASEH2B presenting as spastic paraplegia. Neuropediatrics 45, 386–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. La Piana, R. et al. Bilateral striatal necrosis in two subjects with Aicardi–Goutières syndrome due to mutations in ADAR1 (AGS6). Am. J. Med. Genet. A 164A, 815–819 (2014).

    Article  PubMed  Google Scholar 

  12. Rice, G. I. et al. Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics 48, 166–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyamura, Y. et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 73, 693–699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi, M. & Suzuki, T. Dyschromatosis symmetrica hereditaria. J. Dermatol. 40, 336–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Walkley, C. R. & Li, J. B. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 18, 205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gallo, A., Vukic, D., Michalik, D., O’Connell, M. A. & Keegan, L. P. ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265–1278 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Jain, M., Jantsch, M. F. & Licht, K. The editor’s I on disease development. Trends Genet 35, 903–913 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Samuel, C. E. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J. Biol. Chem. 294, 1710–1720 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Wagner, R. W., Smith, J. E., Cooperman, B. S. & Nishikura, K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl Acad. Sci. USA 86, 2647–2651 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. George, C. X. & Samuel, C. E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl Acad. Sci. USA 96, 4621–4626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawakubo, K. & Samuel, C. E. Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene 258, 165–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. George, C. X., Wagner, M. V. & Samuel, C. E. Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing. J. Biol. Chem. 280, 15020–15028 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, T. et al. Decoupling expression and editing preferences of ADAR1 p150 and p110 isoforms. Proc. Natl Acad. Sci. USA 118, e2021757118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, Z., Goradia, A., Walkley, C. R. & Heraud-Farlow, J. E. Generation of a new Adar1p150–/– mouse demonstrates isoform-specific roles in embryonic development and adult homeostasis. RNA 29, 1325–1338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, B., Bevilacqua, P. C., Diegelman-Parente, A. & Mathews, M. B. The double-stranded-RNA-binding motif: interference and much more. Nat. Rev. Mol. Cell Biol. 5, 1013–1023 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gleghorn, M. L. & Maquat, L. E. ‘Black sheep’ that don’t leave the double-stranded RNA-binding domain fold. Trends Biochem. Sci. 39, 328–340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poulsen, H., Nilsson, J., Damgaard, C. K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell. Biol. 21, 7862–7871 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strehblow, A., Hallegger, M. & Jantsch, M. F. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol. Biol. Cell 13, 3822–3835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patterson, J. B. & Samuel, C. E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 15, 5376–5388 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slavov, D., Crnogorac-Jurcevic, T., Clark, M. & Gardiner, K. Comparative analysis of the DRADA A-to-I RNA editing gene from mammals, pufferfish and zebrafish. Gene 250, 53–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, Y. G. et al. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc. Natl Acad. Sci. USA 100, 6974–6979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Athanasiadis, A. et al. The crystal structure of the Zβ domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J. Mol. Biol. 351, 496–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Inoue, M. et al. An Aicardi–Goutières syndrome-causative point mutation in Adar1 gene invokes multiorgan inflammation and late-onset encephalopathy in mice. J. Immunol. 207, 3016–3027 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Guo, X. et al. Aicardi–Goutières syndrome-associated mutation at ADAR1 gene locus activates innate immune response in mouse brain. J. Neuroinflammation 18, 169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, X. et al. An AGS-associated mutation in ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the brain. J. Neuroinflammation 19, 285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matthews, M. M. et al. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat. Struct. Mol. Biol. 23, 426–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fisher, A. J. & Beal, P. A. Effects of Aicardi–Goutières syndrome mutations predicted from ADAR–RNA structures. RNA Biol. 14, 164–170 (2017).

    Article  PubMed  Google Scholar 

  41. Cho, D. S. et al. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278, 17093–17102 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Valente, L. & Nishikura, K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 282, 16054–16061 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014). This study shows that the MAVS signalling pathway causes the embryonic lethality of Adar-knockout mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Hartner, J. C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004). Together with Wang et al. (2004), this study describes the original (conditional) Adar-knockout mouse models, which have been extensively used in genetic studies.

    Article  CAS  PubMed  Google Scholar 

  46. Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim, D. D. et al. Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blow, M., Futreal, P. A., Wooster, R. & Stratton, M. R. A survey of RNA editing in human brain. Genome Res. 14, 2379–2387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bazak, L., Levanon, E. Y. & Eisenberg, E. Genome-wide analysis of Alu editability. Nucleic Acids Res. 42, 6876–6884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. O., Pratt, H. & Weng, Z. Investigating the potential roles of SINEs in the human genome. Annu. Rev. Genomics Hum. Genet. 22, 199–218 (2021).

    Article  PubMed  Google Scholar 

  52. Bahn, J. H. et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat. Commun. 6, 6355 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Neeman, Y., Levanon, E. Y., Jantsch, M. F. & Eisenberg, E. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12, 1802–1809 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Licht, K. et al. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res. 29, 1453–1463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Porath, H. T., Knisbacher, B. A., Eisenberg, E. & Levanon, E. Y. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 18, 185 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song, Y. et al. irCLASH reveals RNA substrates recognized by human ADARs. Nat. Struct. Mol. Biol. 27, 351–362 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Solomon, O. et al. RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat. Commun. 8, 1440 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Uzonyi, A. et al. Deciphering the principles of the RNA editing code via large-scale systematic probing. Mol. Cell 81, 2374–2387.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Scadden, A. D. & O’Connell, M. A. Cleavage of dsRNAs hyper-edited by ADARs occurs at preferred editing sites. Nucleic Acids Res. 33, 5954–5964 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scadden, A. D. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Morita, Y. et al. Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat. Commun. 4, 2273 (2013).

    Article  PubMed  Google Scholar 

  63. Vitali, P. & Scadden, A. D. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 17, 1043–1050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009). This study shows that ADAR1 functions as a negative regulator of type I interferon signalling.

    Article  CAS  PubMed  Google Scholar 

  65. Pestal, K. et al. Isoforms of RNA-editing enzyme adar1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015). This study shows that ADAR1-p150 prevents MDA5-mediated immunopathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heraud-Farlow, J. E. et al. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol. 18, 166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Berke, I. C. & Modis, Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 31, 1714–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peisley, A. et al. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc. Natl Acad. Sci. USA 109, E3340–E3349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, S. et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2, e00785 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fang, R. et al. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. PLoS Pathog. 13, e1006720 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rehwinkel, J. & Gack, M. U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20, 537–551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lei, Y. et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS ONE 4, e5466 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huang, Y. et al. MAVS–MKK7–JNK2 defines a novel apoptotic signaling pathway during viral infection. PLoS Pathog. 10, e1004020 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. El Maadidi, S. et al. A novel mitochondrial MAVS/caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J. Immunol. 192, 1171–1183 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Liddicoat, B. J. et al. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Exp. Hematol. 44, 947–963 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Philips, R. L. et al. The JAK–STAT pathway at 30: much learned, much more to do. Cell 185, 3857–3876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ourthiague, D. R. et al. Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. J. Leukoc. Biol. 98, 119–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bajad, P. et al. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype. Nucleic Acids Res. 48, 3286–3303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garcia-Gonzalez, C. et al. ADAR1 prevents autoinflammatory processes in the heart mediated by IRF7. Circ. Res. 131, 580–597 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Maurano, M. et al. Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1. Immunity 54, 1948–1960.e5 (2021). This study provides in vivo evidence that PKR activation contributes to the immunopathology of mice with hemizygous Zα domain P195A-mutant ADAR1 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015). This study reports the generation of an ADAR1 editing-deficient knock-in mouse, showing that A-to-I editing is crucial to prevent spontaneous MDA5 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goodman, R. A., Macbeth, M. R. & Beal, P. A. ADAR proteins: structure and catalytic mechanism. Curr. Top. Microbiol. Immunol. 353, 1–33 (2012).

    CAS  PubMed  Google Scholar 

  86. Lai, F., Drakas, R. & Nishikura, K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J. Biol. Chem. 270, 17098–17105 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Ahmad, S. et al. Breaching self-tolerance to alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barak, M. et al. Purifying selection of long dsRNA is the first line of defense against false activation of innate immunity. Genome Biol. 21, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oda, H. et al. Aicardi–Goutières syndrome is caused by IFIH1 mutations. Am. J. Hum. Genet. 95, 121–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, J., Sun, M., Hurst, L. D., Carmichael, G. G. & Rowley, J. D. Genome-wide analysis of coordinate expression and evolution of human cis-encoded sense–antisense transcripts. Trends Genet. 21, 326–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bruns, A. M., Leser, G. P., Lamb, R. A. & Horvath, C. M. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5–RNA interaction and filament assembly. Mol. Cell 55, 771–781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stok, J. E. et al. RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency. EMBO J. 41, e109760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schmelzer, L. et al. Variable clinical phenotype in two siblings with Aicardi–Goutières syndrome type 6 and a novel mutation in the ADAR gene. Eur. J. Paediatr. Neurol. 22, 186–189 (2018).

    Article  PubMed  Google Scholar 

  97. Wang, W. et al. Analysis of clinical characteristics of children with Aicardi–Goutières syndrome in China. World J. Pediatr. 18, 490–497 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ward, S. V. et al. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc. Natl Acad. Sci. USA 108, 331–336 (2011). This study reports the generation of Adar-p150-specific knockout mice, which phenocopy the embryonic lethality of full Adar-knockout mice.

    Article  CAS  PubMed  Google Scholar 

  99. Hu, S.-B. et al. ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation. Preprint at bioRxiv https://doi.org/10.1101/2023.01.25.525475 (2023).

  100. Kim, J. I. et al. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain. PLoS Genet. 17, e1009516 (2021). This study reports the generation of Adar-p110-specific knockout mice, which in contrast to p150-knockout mice do not develop MDA5-mediated embryonic lethality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barraud, P., Banerjee, S., Mohamed, W. I., Jantsch, M. F. & Allain, F. H. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc. Natl Acad. Sci. USA 111, E1852–E1861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eckmann, C. R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M. F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kleinova, R. et al. The ADAR1 editome reveals drivers of editing-specificity for ADAR1-isoforms. Nucleic Acids Res. 51, 4191–4207 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun, T. et al. A small subset of cytosolic dsRNAs must be edited by ADAR1 to evade MDA5-mediated autoimmunity. Preprint at bioRxiv https://doi.org/10.1101/2022.08.29.505707 (2022).

  105. Yang, J. H. et al. Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109, 15–23 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. George, C. X., Ramaswami, G., Li, J. B. & Samuel, C. E. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J. Biol. Chem. 291, 6158–6168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, T. et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606, 594–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krall, J. B., Nichols, P. J., Henen, M. A., Vicens, Q. & Vogeli, B. Structure and formation of Z-DNA and Z-RNA. Molecules 28, 843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nichols, P. J., Krall, J. B., Henen, M. A., Vogeli, B. & Vicens, Q. Z-RNA biology: a central role in the innate immune response? RNA 29, 273–281 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sathishkumar, D. et al. Co-occurrence of Aicardi–Goutières syndrome type 6 and dyschromatosis symmetrica hereditaria due to compound heterozygous pathogenic variants in ADAR1: a case series from India. Clin. Exp. Dermatol. 46, 704–709 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Schwartz, T., Rould, M. A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Placido, D., Brown, B. A. 2nd, Lowenhaupt, K., Rich, A. & Athanasiadis, A. A left-handed RNA double helix bound by the Zα domain of the RNA-editing enzyme ADAR1. Structure 15, 395–404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schade, M., Turner, C. J., Lowenhaupt, K., Rich, A. & Herbert, A. Structure-function analysis of the Z-DNA-binding domain Zα of dsRNA adenosine deaminase type I reveals similarity to the (α + β) family of helix–turn–helix proteins. EMBO J. 18, 470–479 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Reuver, R. et al. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep. 36, 109500 (2021).

    Article  PubMed  Google Scholar 

  116. Tang, Q. et al. Adenosine-to-inosine editing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent type I interferon responses. Immunity 54, 1961–1975 e1965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakahama, T. et al. Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi–Goutières-syndrome-like encephalopathy. Immunity 54, 1976–1988.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liang, Z. et al. The phenotype of the most common human ADAR1p150 Zα mutation P193A in mice is partially penetrant. EMBO Rep. 24, e55835 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Guo, X. et al. ADAR1 Zα domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep. 42, 112733 (2023). Together with Maurano et al. (2021), de Reuver et al. (2021), Tang et al. (2021), Nakahama et al. (2021), Jiao et al. (2022) and Liang et al. (EMBO Rep., 2023), this work shows that Zα domain mutation of ADAR1 causes spontaneous MDA5 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feng, S. et al. Alternate rRNA secondary structures as regulators of translation. Nat. Struct. Mol. Biol. 18, 169–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. de Reuver, R. et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607, 784–789 (2022).

    Article  PubMed  Google Scholar 

  123. Koeris, M., Funke, L., Shrestha, J., Rich, A. & Maas, S. Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res. 33, 5362–5370 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nichols, P. J. et al. Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat. Commun. 12, 793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nie, Y., Hammond, G. L. & Yang, J. H. Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. J. Virol. 81, 917–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hubbard, N. W. et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607, 769–775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peng, R. et al. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep. 23, e55839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thapa, R. J. et al. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20, 674–681 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lei, X., Chen, Y., Lien, E. & Fitzgerald, K. A. MLKL-driven inflammasome activation and caspase-8 mediate inflammatory cell death in influenza a virus infection. mBio 14, e0011023 (2023).

    Article  PubMed  Google Scholar 

  135. Zheng, M., Karki, R., Vogel, P. & Kanneganti, T. D. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181, 674–687.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Karki, R. et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37, 109858 (2021). Together with Zhang et al. (2022), Jiao et al. (2022), de Reuver et al. (2022) and Hubbard et al. (2022), this work identifies ADAR1 as a negative regulator of ZBP1 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nassour, J. et al. Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature 614, 767–773 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lei, Y. et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell 186, 3013–3032.e22 (2023).

    Article  PubMed  Google Scholar 

  140. Li, Y. et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife 6, e25687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Peisley, A., Wu, B., Yao, H., Walz, T. & Hur, S. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 51, 573–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Patel, J. R. et al. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep. 14, 780–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  144. Goubau, D. et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514, 372–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Peisley, A. et al. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl Acad. Sci. USA 108, 21010–21015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Uchikawa, E. et al. Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. Mol. Cell 62, 586–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Lind, N. A., Rael, V. E., Pestal, K., Liu, B. & Barton, G. M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 22, 224–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Sadler, A. J. & Williams, B. R. Structure and function of the protein kinase R. Curr. Top. Microbiol. Immunol. 316, 253–292 (2007).

    CAS  PubMed  Google Scholar 

  151. Donnelly, N., Gorman, A. M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493–3511 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Hornung, V., Hartmann, R., Ablasser, A. & Hopfner, K. P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Karki, R. & Kanneganti, T. D. ADAR1 and ZBP1 in innate immunity, cell death, and disease. Trends Immunol. 44, 201–216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Maelfait, J. & Rehwinkel, J. The Z-nucleic acid sensor ZBP1 in health and disease. J. Exp. Med. 220, e20221156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. DeAntoneo, C., Herbert, A. & Balachandran, S. Z-Form nucleic acid-binding protein 1 (ZBP1) as a sensor of viral and cellular Z-RNAs: walking the razor’s edge. Curr. Opin. Immunol. 83, 102347 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Bauernfried, S., Scherr, M. J., Pichlmair, A., Duderstadt, K. E. & Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 371, eabd0811 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, P. et al. Nlrp6 regulates intestinal antiviral innate immunity. Science 350, 826–830 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shen, C. et al. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759–5774.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hong, X. X. & Carmichael, G. G. Innate immunity in pluripotent human cells: attenuated response to interferon-β. J. Biol. Chem. 288, 16196–16205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Poirier, E. Z. et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim, U., Wang, Y., Sanford, T., Zeng, Y. & Nishikura, K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl Acad. Sci. USA 91, 11457–11461 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, C. X. et al. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6, 755–767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Oakes, E., Anderson, A., Cohen-Gadol, A. & Hundley, H. A. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J. Biol. Chem. 292, 4326–4335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Raghava Kurup, R. et al. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J. Biol. Chem. 298, 102267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  168. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron–exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  PubMed  Google Scholar 

  169. Greger, I. H., Watson, J. F. & Cull-Candy, S. G. Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94, 713–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Barbon, A., Vallini, I., La Via, L., Marchina, E. & Barlati, S. Glutamate receptor RNA editing: a molecular analysis of GluR2, GluR5 and GluR6 in human brain tissues and in NT2 cells following in vitro neural differentiation. Brain Res. Mol. Brain Res. 117, 168–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  172. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Gajiwala, K. S. & Burley, S. K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Herbert, A. et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl Acad. Sci. USA 94, 8421–8426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schwartz, T., Behlke, J., Lowenhaupt, K., Heinemann, U. & Rich, A. Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Biol. 8, 761–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Rothenburg, S. et al. A PKR-like eukaryotic initiation factor 2α kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc. Natl Acad. Sci. USA 102, 1602–1607 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nikpour, N. & Salavati, R. The RNA binding activity of the first identified trypanosome protein with Z-DNA-binding domains. Sci. Rep. 9, 5904 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Tome, A. R. et al. Crystal structure of a poxvirus-like Zα domain from cyprinid herpesvirus 3. J. Virol. 87, 3998–4004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rich, A., Nordheim, A. & Wang, A. H. The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem. 53, 791–846 (1984).

    Article  CAS  PubMed  Google Scholar 

  180. Klysik, J., Stirdivant, S. M., Singleton, C. K., Zacharias, W. & Wells, R. D. Effects of 5 cytosine methylation on the B–Z transition in DNA restriction fragments and recombinant plasmids. J. Mol. Biol. 168, 51–71 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The group of J.M. is supported by an Odysseus II Grant (G0H8618N), EOS INFLADIS (G0I5722N) and a junior research grant (G031022N) from the Research Foundation Flanders (FWO). R.d.R. is supported by a Ghent University BOF PhD fellowship. The authors thank the reviewers for their constructive criticism and important insight. Finally, the authors apologize to the scientists who moved the field of double-stranded RNA (dsRNA)-mediated immunity forward and whose important work we were not able to cite.

Author information

Authors and Affiliations

Authors

Contributions

R.d.R. and J.M. researched and discussed the cited literature. R.d.R. and J.M. wrote the main text. R.d.R. and J.M. generated the figures and supplementary tables.

Corresponding author

Correspondence to Jonathan Maelfait.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks C. Walkley, who co-reviewed with J. Heraud-Farlow; A. van der Veen; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Protein Data Bank: https://www.rcsb.org/

Supplementary information

Glossary

Aicardi–Goutières syndrome

(AGS). Severe autoinflammatory childhood-onset encephalopathy, resulting from the activation of the nucleic acid receptors melanoma differentiation-associated protein 5 (MDA5) or cGAS by endogenous nucleic acids owing to mutations in one of the following genes involved in nucleic acid sensing or metabolism: ADAR, IFIH1, TREX1, SAMHD1, RNASEH2A, RNASEH2B, RNASEH2C, LSM11 or RNU7-1.

cis-Natural antisense transcripts

(cis-NATs). RNA molecules transcribed from (partially) overlapping sequences on opposing DNA strands within the same genomic locus containing regions of perfect complementarity, enabling the formation of double-stranded RNA (dsRNA) helices.

Integrated stress response

(ISR). An evolutionarily conserved cellular stress response induced by the eukaryotic translation initiation factor 2α (eIF2α) kinases, HRI, protein kinase R (PKR), PERK or GCN2, resulting in a global translational shutdown while increasing activating transcription factor 4 (ATF4)-dependent gene expression.

Short interspersed nuclear elements

(SINEs). A subclass of short (<1,000 bp), interspersed (non-tandem), non-autonomous retrotransposon-type repeat elements, containing sequences derived from RNA polymerase III-dependent transcripts including 7SL RNA, tRNA and 5S ribosomal RNA.

Z-Nucleic acid

Left-handed double-stranded DNA (dsDNA), double-stranded RNA (dsRNA) or hybrid DNA–RNA structures, characterized by a zig-zag-shaped (hence the name ‘Z’-nucleic acid) phosphodiester backbone containing purine–pyrimidine dinucleotide repeat sequences, which adopt alternating syn-conformations and anti-nucleobase conformations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Reuver, R., Maelfait, J. Novel insights into double-stranded RNA-mediated immunopathology. Nat Rev Immunol 24, 235–249 (2024). https://doi.org/10.1038/s41577-023-00940-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00940-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing