Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular origins of dsRNA, their recognition and consequences

Abstract

Double-stranded RNA (dsRNA) is associated with most viral infections — it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi–Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: dsRNA sensors and their signalling.
Fig. 2: RNA modifications affect the RNA’s secondary structures and interaction with immune sensors.
Fig. 3: Endogenous sources of dsRNA and cellular regulatory processes.
Fig. 4: Consequences of dsRNA recognition.

Similar content being viewed by others

References

  1. Gesteland, R. F., Cech, T. R. & Atkins, J. F. The RNA World (Cold Springer Harbor Laboratory Press, 1999).

  2. Hur, S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37, 349–375 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kato, H., Takahasi, K. & Fujita, T. RIG-I-like receptors: cytoplasmic sensors for non-self. RNA. Immuno Rev. 243, 91–98 (2011).

    Google Scholar 

  4. Cadena, C. & Hur, S. Filament-like assemblies of intracellular nucleic acid sensors: commonalities and differences. Mol. Cell 76, 243–254 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444–6455 (2007).

    CAS  PubMed  Google Scholar 

  6. Childs, K. S., Randall, R. E. & Goodbourn, S. LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS ONE 8, e64202 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Satoh, T. et al. LGP2 is a positive regulator of RIG-I– and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 107, 1512–1517 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cadena, C. et al. Ubiquitin-dependent and -independent roles of E3 ligase RIPLET in innate immunity. Cell 177, 1187–1200.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kato, K. et al. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol. Cell 81, 599–613.e8 (2021).

    CAS  PubMed  Google Scholar 

  10. Jiang, X. et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959–973 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Peisley, A., Wu, B., Xu, H., Chen, Z. J. & Hur, S. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509, 110 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peisley, A. et al. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl Acad. Sci. USA 108, 21010–21015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Peisley, A. et al. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc. Natl Acad. Sci. USA 109, E3340–E3349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, B. et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276–289 (2013).

    CAS  PubMed  Google Scholar 

  15. Berke, I. C. & Modis, Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 7, 1714–1726 (2012).

    Google Scholar 

  16. Feng, Q. et al. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 29, 1187–1196 (2012).

    Google Scholar 

  17. Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810 (2018). This study reveals that constitutive activation of MDA5 under pathologic conditions is caused by MDA5 misrecognition of dsRNA formed by IR-Alus.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mu, X., Greenwald, E., Ahmad, S. & Hur, S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic acids Res. 46, 5239–5249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Peisley, A., Wu, B., Yao, H., Walz, T. & Hur, S. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 51, 573–583 (2013).

    CAS  PubMed  Google Scholar 

  20. Patel, J. R. et al. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep. 14, 780–787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goubau, D. et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514, 372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Myong, S. et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate–dependent translocase on double-stranded RNA. Science 323, 1070–1074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohlway, A., Luo, D., Rawling, D. C., Ding, S. C. & Pyle, A. M. Defining the functional determinants for RNA surveillance by RIG-I. EMBO Rep. 14, 772–779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinicke, L. A. et al. RNA dimerization promotes PKR dimerization and activation. J. Mol. Biol. 390, 319–338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pohar, J., Pirher, N., Bencina, M., Mancek-Keber, M. & Jerala, R. The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists. J. Biol. Chem. 288, 442–454 (2013).

    CAS  PubMed  Google Scholar 

  26. Leonard, J. N. et al. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc. Natl Acad. Sci. USA 105, 258–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Oshiumi, H. et al. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J. Immunol. 187, 5320–5327 (2011).

    CAS  PubMed  Google Scholar 

  28. Davey, G. M. et al. Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J. Immunol. 184, 2243–2246 (2010).

    CAS  PubMed  Google Scholar 

  29. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    CAS  PubMed  Google Scholar 

  30. Liu, L. et al. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005). This study is the first to report that the modified nucleosides 5-methylcytidine, m6A, 5-methyluridine, 2-thiouridine and pseudouridine on RNAs suppress the stimulation of TLR3, TLR7 and TLR8 and decrease the potential of RNA to activate dendritic cells.

    CAS  PubMed  Google Scholar 

  32. Tatematsu, M., Nishikawa, F., Seya, T. & Matsumoto, M. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat. Commun. 4, 1833 (2013).

    PubMed  Google Scholar 

  33. Liu, Y. et al. The role of host eIF2alpha in viral infection. Virol. J. 17, 112 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh, S. W. et al. Leader-containing uncapped viral transcript activates RIG-I in antiviral stress granules. PLoS Pathog. 12, e1005444 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Onomoto, K. et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE 7, e43031 (2013).

    Google Scholar 

  36. Cadena, C. et al. Stress granules are shock absorbers that prevent excessive innate immune responses to dsRNA. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441141 (2021).

    Article  Google Scholar 

  37. Schulz, O. et al. Protein kinase R contributes to immunity against specific viruses by regulating interferon mRNA integrity. Cell Host Microbe 7, 354–361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McAllister, C. S., Taghavi, N. & Samuel, C. E. Protein kinase PKR amplification of interferon beta induction occurs through initiation factor eIF-2alpha-mediated translational control. J. Biol. Chem. 287, 36384–36392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dalet, A. et al. Protein synthesis inhibition and GADD34 control IFN-beta heterogeneous expression in response to dsRNA. EMBO J. 36, 761–782 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nanduri, S., Carpick, B. W., Yang, Y., Williams, B. R. & Qin, J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dey, M. et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 122, 901–913 (2005).

    CAS  PubMed  Google Scholar 

  42. Dar, A. C., Dever, T. E. & Sicheri, F. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122, 887–900 (2005).

    CAS  PubMed  Google Scholar 

  43. Mayo, C. B. et al. Structural basis of protein kinase R autophosphorylation. Biochemistry 58, 2967–2977 (2019).

    CAS  PubMed  Google Scholar 

  44. Dey, M., Mann, B. R., Anshu, A. & Mannan, M. A. Activation of protein kinase PKR requires dimerization-induced cis-phosphorylation within the activation loop. J. Biol. Chem. 289, 5747–5757 (2014).

    CAS  PubMed  Google Scholar 

  45. Husain, B., Mukerji, I. & Cole, J. L. Analysis of high-affinity binding of protein kinase R to double-stranded RNA. Biochemistry 51, 8764–8770 (2012).

    CAS  PubMed  Google Scholar 

  46. Nallagatla, S. R. et al. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318, 1455–1458 (2007).

    CAS  PubMed  Google Scholar 

  47. Launer-Felty, K., Wong, C. J. & Cole, J. L. Structural analysis of adenovirus VAI RNA defines the mechanism of inhibition of PKR. Biophys. J. 108, 748–757 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kristiansen, H., Gad, H. H., Eskildsen-Larsen, S., Despres, P. & Hartmann, R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J. Interferon Cytokine Res. 31, 41–47 (2011).

    CAS  PubMed  Google Scholar 

  49. Hovanessian, A. G. & Justesen, J. The human 2′-5′ oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89, 779–788 (2007).

    CAS  PubMed  Google Scholar 

  50. Han, Y. et al. Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 343, 1244–1248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Donovan, J., Rath, S., Kolet-Mandrikov, D. & Korennykh, A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA 23, 1660–1671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hornung, V., Hartmann, R., Ablasser, A. & Hopfner, K. P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, J. et al. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 40, 936–948 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, M. S., Kim, B., Oh, G. T. & Kim, Y.-J. OASL1 inhibits translation of the type I interferon–regulating transcription factor IRF7. Nat. Immunol. 14, 346–355 (2013).

    CAS  PubMed  Google Scholar 

  55. Donovan, J., Whitney, G., Rath, S. & Korennykh, A. Structural mechanism of sensing long dsRNA via a noncatalytic domain in human oligoadenylate synthetase 3. Proc. Natl Acad. Sci. USA 112, 3949–3954 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarkar, S. N., Ghosh, A., Wang, H. W., Sung, S. S. & Sen, G. C. The nature of the catalytic domain of 2′-5′-oligoadenylate synthetases. J. Biol. Chem. 274, 25535–25542 (1999).

    CAS  PubMed  Google Scholar 

  57. Ilson, D. H., Torrence, P. F. & Vilcek, J. Two molecular weight forms of human 2′,5′-oligoadenylate synthetase have different activation requirements. J. Interferon Res. 6, 5–12 (1986).

    CAS  PubMed  Google Scholar 

  58. Ibsen, M. S. et al. The 2′-5′-oligoadenylate synthetase 3 enzyme potently synthesizes the 2′-5′-oligoadenylates required for RNase L activation. J. Virol. 88, 14222–14231 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Li, Y. et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc. Natl Acad. Sci. USA 113, 2241–2246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  61. Bauernfried, S., Scherr, M. J., Pichlmair, A., Duderstadt, K. E. & Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 371, eabd0811 (2021). This article demonstrates that human NLRP1 directly binds dsRNA, which activates the inflammasome pathway; this is the first example of an inflammasome that directly senses foreign RNA.

    CAS  PubMed  Google Scholar 

  62. Maharana, J., Panda, D. & De, S. Deciphering the ATP-binding mechanism(s) in NLRP-NACHT 3D models using structural bioinformatics approaches. PLoS ONE 13, e0209420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mehdipour, P. et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169–173 (2020). This study is one of several studies reporting that chemotherapeutic agents (such as 5-aza-CdR) induce aberrant synthesis and accumulation of cellular dsRNAs, resulting in activation of MDA5.

    CAS  PubMed  Google Scholar 

  66. Banerjee, S. et al. OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cuellar, T. L. et al. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J. Cell Biol. 216, 3535–3549 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tunbak, H. et al. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 11, 5387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kozub, M. M., Carr, R. M., Lomberk, G. L. & Fernandez-Zapico, M. E. LSD1, a double-edged sword, confers dynamic chromatin regulation but commonly promotes aberrant cell growth. F1000Res 6, 2016 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Walkley, C. R. & Li, J. B. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 18, 205 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Slotkin, W. & Nishikura, K. Adenosine-to-inosine RNA editing and human disease. Genome Med. 5, 105 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. George, C. X., John, L. & Samuel, C. E. An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1). J. Interferon Cytokine Res. 34, 437–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Samuel, C. E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411, 180–193 (2011).

    CAS  PubMed  Google Scholar 

  77. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988). This is the first study that revealed the presence of dsRNA-modifying activity, which partially unwinds dsRNA and increases the single-strandedness of the RNAs.

    CAS  PubMed  Google Scholar 

  79. Wagner, R. W., Smith, J. E., Cooperman, B. S. & Nishikura, K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl Acad. Sci. USA 86, 2647–2651 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Y. et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife 6, e25687 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    PubMed  PubMed Central  Google Scholar 

  85. Carmi, S., Borukhov, I. & Levanon, E. Y. Identification of widespread ultra-edited human RNAs. PLoS Genet. 7, e1002317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Meyer, K. D. & Jaffrey, S. R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  88. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X. et al. m6A-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014). This study shows that the m6A modification on RNA is selectively recognized by the protein YTHDF2, which recruits the RNA to cellular RNA decay sites; this reveals that m6A can affect the lifetime of RNA.

    PubMed  Google Scholar 

  90. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015). This study reveals that YTHDF1 recognizes and promotes the translation of selective m6A-modified RNAs by interacting with protein synthesis machinery.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015). This study provides evidence that the m6A modification can alter the structure of the modified RNA to change the binding affinity for proteins, which can affect splicing, gene expression and RNA maturation.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao, Y. et al. m6A modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development. Immunity 52, 1007–1021.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, J. et al. N-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, M. et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol. 5, 584–598 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kane, S. E. & Beemon, K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell. Biol. 5, 2298–2306 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kennedy, EdwardM. et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19, 675–685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gokhale, N. S. & Horner, S. M. RNA modifications go viral. PLoS Pathog. 13, e1006188 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2017).

    PubMed Central  Google Scholar 

  100. Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bowling, E. A. et al. Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell 184, 384–403.e21 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Blango, M. G. & Bass, B. L. Identification of the long, edited dsRNAome of LPS-stimulated immune cells. Genome Res. 26, 852–862 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lybecker, M., Zimmermann, B., Bilusic, I., Tukhtubaeva, N. & Schroeder, R. The double-stranded transcriptome of Escherichia coli. Proc. Natl Acad. Sci. USA 111, 3134–3139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, L.-L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol .Cell Biol. 17, 205–211 (2016).

    CAS  PubMed  Google Scholar 

  105. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e9 (2019). This study demonstrates that the m6A modification on human endogenous circRNAs binds the protein YTHDF2 to block innate immunity, whereas unmodified circRNAs activate RIG-I in the presence of a K63-linked polyubiquitin chain to cause MAVS filamentation, IRF3 dimerization and interferon production.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, C.-X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019). This study finds that endogenous circRNAs have short dsRNA regions that bind and inhibit PKR to prevent its activity in sterile conditions; upon viral infection, RNase L degrades circRNAs to release PKR for innate immune responses.

    CAS  PubMed  Google Scholar 

  108. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    CAS  PubMed  Google Scholar 

  111. Chen, L., Dahlstrom, J. E., Lee, S. H. & Rangasamy, D. Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics 7, 758–771 (2012).

    CAS  PubMed  Google Scholar 

  112. Yang, N. & Kazazian, H. H. Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763–771 (2006).

    CAS  PubMed  Google Scholar 

  113. Heras, S. R. et al. The Microprocessor controls the activity of mammalian retrotransposons. Nat. Struct. Mol. Biol. 20, 1173–1181 (2013).

    CAS  PubMed  Google Scholar 

  114. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kerur, N. et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24, 50–61 (2018).

    CAS  PubMed  Google Scholar 

  117. Krol, J. et al. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell 25, 575–586 (2007).

    CAS  PubMed  Google Scholar 

  118. Zhang, N. & Ashizawa, T. RNA toxicity and foci formation in microsatellite expansion diseases. Curr. Opin. Genet. Dev. 44, 17–29 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Halbach, F., Reichelt, P., Rode, M. & Conti, E. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814–826 (2013).

    CAS  PubMed  Google Scholar 

  120. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Aizawa, S. et al. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy 12, 565–578 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Nguyen, T. A. et al. SIDT2 transports extracellular dsRNA into the cytoplasm for innate immune recognition. Immunity 47, 498–509.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Dieci, G., Conti, A., Pagano, A. & Carnevali, D. Identification of RNA polymerase III-transcribed genes in eukaryotic genomes. Biochim. Biophys. Acta 1829, 296–305 (2013).

    CAS  PubMed  Google Scholar 

  124. Singh, R. & Reddy, R. Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc. Natl Acad. Sci. USA 86, 8280–8283 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nabet, B. Y. et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170, 352–366.e13 (2017). This study shows that the imbalanced upregulation of the RNA component (without the corresponding upregulation of the protein component) of the SRP leads to activation of RIG-I, which then promotes breast cancer progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chiang, J. J. et al. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 19, 53–62 (2018).

    CAS  PubMed  Google Scholar 

  127. Karijolich, J., Abernathy, E. & Glaunsinger, B. A. Infection-induced retrotransposon-derived noncoding RNAs enhance herpesviral gene expression via the NF-kappaB pathway. PLoS Pathog. 11, e1005260 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Zhao, Y., Ye, X., Dunker, W., Song, Y. & Karijolich, J. RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nat. Commun. 9, 4841 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Choi, J. H. et al. DUSP11-mediated control of 5′-triphosphate RNA regulates RIG-I sensitivity. Genes Dev. 34, 1697–1712 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Feng, X. et al. ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways. EMBO J. 39, e104036 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, J. et al. Cell cycle checkpoints cooperate to suppress DNA- and RNA-associated molecular pattern recognition and anti-tumor immune responses. Cell Rep. 32, 108080 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ranoa, D. R. et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 7, 26496–26515 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Widau, R. C. et al. RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation. Proc. Natl Acad. Sci. USA 111, E484–E491 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Grazioli, S. & Pugin, J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front. Immunol. 9, 832 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Huang, L. S. et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52, 475–486.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Guo, X. et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 579, 427–432 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. D’Souza, A. R. & Minczuk, M. Mitochondrial transcription and translation: overview. Essays Biochem. 62, 309–320 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Murphy, W. I., Attardi, B., Tu, C. & Attardi, G. Evidence for complete symmetrical transcription in vivo of mitochondrial DNA in HeLa cells. J. Mol. Biol. 99, 809–814 (1975).

    CAS  PubMed  Google Scholar 

  143. Harel, L., Riou, G. & Montagnier, L. Nuclear and mitochondrial origin of rat liver double-stranded RNA. Biochimie 57, 227–233 (1975).

    CAS  PubMed  Google Scholar 

  144. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018). This study reveals that mitochondria can be a potent source of immunostimulatory dsRNA and that deficiency of the mitochondrial protein PNPase can lead to both accumulation of mitochondrial dsRNAs and their leakage into the cytoplasm, leading to the pathologic activation of MDA5.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, Y. et al. PKR senses nuclear and mitochondrial signals by interacting with endogenous double-stranded RNAs. Mol. Cell 71, 1051–1063.e6 (2018). This study shows that both nuclear transcripts (IR-Alus) and mitochondrial transcripts (mitochondrial sense–antisense hybrids) can activate PKR in homeostatic conditions.

    CAS  PubMed  Google Scholar 

  146. Chen, H. W. et al. Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol. Cell Biol. 26, 8475–8487 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, G. et al. PNPASE regulates RNA import into mitochondria. Cell 142, 456–467 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, Y. et al. PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator. Genes Dev. 28, 1310–1322 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Tigano, M., Vargas, D. C., Tremblay-Belzile, S., Fu, Y. & Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591, 477–481 (2021).

    CAS  PubMed  Google Scholar 

  150. Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-gamma-mediated disinhibition. Cell 147, 1384–1396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Nelson, A. M. et al. dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17, 139–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lefkopoulos, S. et al. Repetitive elements trigger RIG-I-like receptor signaling that regulates the emergence of hematopoietic stem and progenitor cells. Immunity 53, 934–951.e9 (2020).

    CAS  PubMed  Google Scholar 

  153. Funabiki, M. et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40, 199–212 (2014).

    CAS  PubMed  Google Scholar 

  154. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014). This study identifies mutations in IFIH1 (the gene encoding MDA5) as a cause of the inflammatory disorder Aicardi-Goutières syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Van Eyck, L. et al. IFIH1 mutation causes systemic lupus erythematosus with selective IgA deficiency. Arthritis Rheumtol 67, 1592–1597 (2015).

    Google Scholar 

  156. Bursztejn, A. C. et al. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: overlap between Aicardi-Goutieres and Singleton-Merten syndromes. Br. J. Dermatol. 173, 1505–1513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jang, M.-A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ferreira, C. R. et al. DDX58 and classic Singleton-Merten syndrome. J. Clin. Immunol. 39, 75–80 (2019).

    PubMed  Google Scholar 

  159. Rice, G. I. et al. Genetic and phenotypic spectrum associated with IFIH1 gain-of-function. Hum. Mutat. 41, 837–849 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Louber, J., Brunel, J., Uchikawa, E., Cusack, S. & Gerlier, D. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol. 13, 54 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Lassig, C. et al. Unified mechanisms for self-RNA recognition by RIG-I Singleton-Merten syndrome variants. eLife 7, e38958 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Devarkar, S. C., Schweibenz, B., Wang, C., Marcotrigiano, J. & Patel, S. S. RIG-I uses an ATPase-powered translocation-throttling mechanism for kinetic proofreading of RNAs and pligomerization. Mol. Cell 72, 355–368.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chistiakov, D. A., Voronova, N. V., Savost’Anov, K. V. & Turakulov, R. I. Loss-of-function mutations E627X and I923V of IFIH1 are associated with lower poly(I:C)–induced interferon-a production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum. Immunol. 71, 1128–1134 (2010).

    CAS  PubMed  Google Scholar 

  164. Smyth, D. J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38, 617–619 (2006).

    CAS  PubMed  Google Scholar 

  165. Molineros, J. E. et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 9, e1003222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Robinson, T. et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J. Immunol. 187, 1298–1303 (2011).

    CAS  PubMed  Google Scholar 

  167. Burnett, S. B., Vaughn, L. S., Sharma, N., Kulkarni, R. & Patel, R. C. Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2alpha signaling leading to a compromised stress response. Neurobiol. Dis. 146, 105135 (2020).

    CAS  PubMed  Google Scholar 

  168. Kuipers, D. J. S. et al. EIF2AK2 missense variants associated with early onset generalized dystonia. Ann. Neurol. 89, 485–497 (2021).

    CAS  PubMed  Google Scholar 

  169. Reimer, L. et al. PKR kinase directly regulates tau expression and Alzheimer’s disease-related tau phosphorylation. Brain Pathol. 31, 103–119 (2021).

    CAS  PubMed  Google Scholar 

  170. Hugon, J., Mouton-Liger, F., Dumurgier, J. & Paquet, C. PKR involvement in Alzheimer’s disease. Alzheimers Res. Ther. 9, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  171. Lee, H. et al. Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation. Neuron 107, 891–908.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yu, C.-H., Moecking, J., Geyer, M. & Masters, S. L. Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J. Mol. Biol. 430, 142–152 (2018).

    CAS  PubMed  Google Scholar 

  174. Drutman, S. B. et al. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc. Natl Acad. Sci. USA 116, 19055–19063 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2010). This study identifies mutations in ADAR1 as a cause of Aicardi–Goutières syndrome, thereby linking for the first time misregulated cellular RNA to immunological disorders.

    Google Scholar 

  176. van den Boorn, J. G. & Hartmann, G. Turning tumors into vaccines: co-opting the innate immune system. Immunity 39, 27–37 (2013).

    PubMed  Google Scholar 

  177. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    CAS  PubMed  Google Scholar 

  178. Gannon, H. S. et al. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun. 9, 5450 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Liu, H. et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25, 95–102 (2019).

    CAS  PubMed  Google Scholar 

  180. Iurescia, S., Fioretti, D. & Rinaldi, M. The innate immune signalling pathways: turning RIG-I sensor activation against cancer. Cancers 12, 3158 (2020).

    CAS  PubMed Central  Google Scholar 

  181. Maelfait, J. et al. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 36, 2529–2543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Aktas, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119 (2017).

    PubMed  Google Scholar 

  184. Lemay, G. Synthesis and translation of viral mRNA in reovirus-infected cells: progress and remaining questions. Viruses 10, 671 (2018).

    CAS  PubMed Central  Google Scholar 

  185. Abad, A. T. & Danthi, P. Recognition of reovirus RNAs by the innate immune system. Viruses 12, 667 (2020).

    CAS  PubMed Central  Google Scholar 

  186. Goody, R. J., Beckham, J. D., Rubtsova, K. & Tyler, K. L. JAK-STAT signaling pathways are activated in the brain following reovirus infection. J. Neurovirol. 13, 373–383 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Connolly, J. L. et al. Reovirus-induced apoptosis requires activation of transcription factor NF-κB. J. Virol. 74, 2981–2989 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kowal, K. J. & Youngner, J. S. Induction of interferon by temperature-sensitive mutants of Newcastle disease virus. Virology 90, 90–102 (1978).

    CAS  PubMed  Google Scholar 

  189. Long, W. F. & Burke, D. C. Interferon production by double-stranded RNA: a comparison of induction by reovirus to that by a synthetic double-stranded polynucleotide. J. Gen. Virol. 12, 1–11 (1971).

    CAS  PubMed  Google Scholar 

  190. Nagy, P. D., Strating, J. R. & van Kuppeveld, F. J. Building viral replication organelles: close encounters of the membrane types. PLoS Pathog. 12, e1005912 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Romero-Brey, I. & Bartenschlager, R. Membranous replication factories induced by plus-strand RNA viruses. Viruses 6, 2826–2857 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Triantafilou, K. et al. Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses. J. Cell Sci. 125, 4761–4769 (2012).

    CAS  PubMed  Google Scholar 

  193. Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80, 5059–5064 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Son, K. N., Liang, Z. & Lipton, H. L. Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses. J. Virol. 89, 9383–9392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ziegler, C. M. & Botten, J. W. Defective interfering particles of negative-strand RNA viruses. Trends Microbiol. 28, 554–565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Vignuzzi, M. & Lopez, C. B. Defective viral genomes are key drivers of the virus-host interaction. Nat. Microbiol. 4, 1075–1087 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Strahle, L., Garcin, D. & Kolakofsky, D. Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology 351, 101–111 (2006).

    CAS  PubMed  Google Scholar 

  198. Tapia, K. et al. Defective viral genomes arising in vivo provide critical danger signals for the triggering of lung antiviral immunity. PLoS Pathog. 9, e1003703 (2013).

    PubMed  PubMed Central  Google Scholar 

  199. Xu, J. et al. Identification of a natural viral RNA motif that optimizes sensing of viral RNA by RIG-I. mBio 6, e01265-01215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Weber, M. et al. Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13, 336–346 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Rehwinkel, J. et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397–408 (2010).

    CAS  PubMed  Google Scholar 

  202. Davis, W. G. et al. The 3′ untranslated regions of influenza genomic sequences are 5′PPP-independent ligands for RIG-I. PLoS ONE 7, e32661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Te Velthuis, A. J. W. et al. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat. Microbiol. 3, 1234–1242 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Baum, A., Sachidanandam, R. & Garcia-Sastre, A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl Acad. Sci. USA 107, 16303–16308 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Vasilijevic, J. et al. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog. 13, e1006650 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Boone, R. F., Parr, R. P. & Moss, B. Intermolecular duplexes formed from polyadenylylated vaccinia virus RNA. J. Virol. 30, 365–374 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Colby, C., Jurale, C. & Kates, J. R. Mechanism of synthesis of vaccinia virus double-stranded ribonucleic acid in vivo and in vitro. J. Virol. 7, 71–76 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T. & Takada, K. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 25, 4207–4214 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Samanta, M., Iwakiri, D. & Takada, K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene 27, 4150–4160 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.H. was supported by the NIH (R01AI154653, R01AI111784 and DP1AI152074). Y.G.C. was supported by the NIH (R35GM142687 and 5K12CA215110), the Rita Allen Foundation and the Yale Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Y. Grace Chen or Sun Hur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Y. Modis, who co-refereed with A. Herrero del Valle, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Type I interferons

A large subgroup of secreted proteins that bind to interferon receptors and stimulate the expression of antiviral genes.

Caspase activation and recruitment domains

(CARDs). Interaction motifs found in a wide array of proteins, typically those involved in processes relating to inflammation and apoptosis.

Pathogen-associated molecular patterns

(PAMPs). Conserved motifs that are associated with pathogen infection that serve as ligands for host pattern recognition receptors.

Stress granules

Molecular condensates that form in response to various cellular stresses. They often result from accumulation of stalled translation initiation complexes that expose mRNAs.

2′-5′-linked oligomers of adenosines

The polymerized form of ATP with the general formula pppA(2′p5′A)n that is catalysed by 2′-5′-oligoadenylate synthase. The oligomers activate ribonuclease L (RNase L), which mediates RNA degradation.

Ribonuclease L

(RNase L). An interferon-induced endoribonuclease that degrades RNA when activated.

Cyclic GMP–AMP synthase

(cGAS). A cytosolic DNA sensor that activates a type I interferon response, part of the cGAS–STING DNA sensing pathway.

Inflammasome

A multiprotein complex that forms in response to a variety of inflammatory triggers (both pathogen derived and host derived). Assembly of the inflammasome often leads to activation of caspase 1, which then processes inflammatory cytokines into their mature forms and induces gasdermin pore formation.

Gasdermin D

A member of the gasdermin family, which form pores in response to inflammasome activation. Gasdermin D pore formation leads to release of inflammatory cytokines and causes a highly inflammatory form of programmed cell death known as pyroptosis

Transposable elements

(TEs). DNA sequences that can change their position within a genome, sometimes creating or reversing mutations and altering the cell’s genetic identity and genome size.

Endogenous retroviruses

(ERVs). Endogenous viral elements in the genome that closely resemble and can be derived from retroviruses. These elements constitute up to 8% of the human genome.

Long interspersed nuclear elements

(LINEs). A group of retrotransposons that are not long terminal repeats. LINEs constitute ~21% of the human genome. They are transcribed into mRNA and translated into a protein that acts as a reverse transcriptase, which makes a DNA copy of the LINE RNA, which then can be integrated into the genome at a new site.

Short interspersed nuclear elements

Non-autonomous, non-coding retrotransposons that are capable of copying and pasting themselves into another region of the genome via an RNA intermediate and the action of reverse transcriptase. They constitute ~15% of the human genome.

Alu repeats

A clustered arrangement of Alu (a kind of short interspersed nuclear element), which can often be transcribed within a single transcript.

Circular RNAs

(circRNAs). Single-stranded RNAs where the 5′ and 3′ ends are joined through a phosphodiester bond.

MYC

A family of regulatory genes and proto-oncogenes that code for transcription factors. Many types of cancers have dysregulated MYC levels and activity.

Anti-J2 enrichment

Use of the anti-double-stranded RNA (dsRNA) J2 antibody to capture dsRNAs that are longer than 40 bp.

Nonsense-mediated decay

An evolutionarily conserved mechanism of degradation of mRNA species with a premature termination codon.

Systemic lupus erythematosus

(SLE). An autoimmune disease that causes widespread inflammation and tissue damage in the affected organs. It can affect the joints, skin, brain, lungs, kidneys and blood vessels.

Peripheral blood mononuclear cells

Any peripheral blood cell having a round nucleus, which includes lymphocytes and monocytes.

Dicer

An endoribonuclease specialized in processing double-stranded RNA. It is typically involved in biogenesis of small regulatory RNAs such as microRNAs and small interfering RNAs.

Pseudogenes

DNA sequences that resemble functional genes, but are inactive due to mutations.

RNA exosome

A multisubunit protein complex that catalyses 3′-to-5′ processing or degradation of cellular RNAs

Trichohepatoenteric syndrome

An inherited autosomal recessive condition that affects the hair, liver and intestines. Can be caused by mutations in SKIV2L or TTC37.

Signal recognition particle (SRP) ribonucleoprotein complex

A ribonucleoprotein complex that recognizes the signal sequence of a nascent peptide and targets it to the endoplasmic reticulum in eukaryotes and the plasma membrane in prokaryotes.

Cell cycle checkpoint

A checkpoint in the eukaryotic cell cycle at which the cell monitors the progression of cell division and decides whether or not to move forward.

Unfolded protein response

An evolutionarily conserved adaptive reaction that reduces unfolded protein load to maintain cell viability and function. Depending on the cell type involved and the nature of the stress stimuli, unfolded protein response signalling has different consequences and kinetics.

Integrated stress response

An evolutionarily conserved cellular stress response that downregulates protein synthesis and upregulates specific genes in response to internal or environmental stresses.

JNK

JUN N-terminal kinase (JNK) that plays key roles in many cellular stress and inflammatory signalling pathways.

Aicardi–Goutières syndrome

An inherited encephalopathy that affects newborns and usually results in severe mental and physical handicap. It can be caused by gain-of-function mutations in IFIH1 (the gene encoding MDA5). Loss-of-function mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1 and ADAR1 were also shown to cause Aicardi–Goutières syndrome.

Singleton–Merten syndrome

A rare autoimmune disorder characterized by tooth abnormalities, calcifications in the aorta and certain valves of the heart, and osteoporosis in the hands and feet. It can be caused by a gain-of-function mutation in IFIH1 (the gene encoding MDA5) or DDX58 (the gene encoding RIG-I).

Single-nucleotide polymorphisms

Germline substitutions of a single nucleotide at a specific position in the genome, the most common type of genetic variation among people.

Vitiligo

An autoimmune disease where the immune system attacks the melanocytes in the skin.

Psoriasis

An autoimmune disease that speeds up the growth cycle of skin cells and causes red, itchy scaly patches over the body.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.G., Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 23, 286–301 (2022). https://doi.org/10.1038/s41580-021-00430-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00430-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing