Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging family of RORγt+ antigen-presenting cells

Abstract

Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host–microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of research leading to the characterization of RORγt+ APCs.
Fig. 2: The phenotype and function of RORγt+ APCs in mice.

Similar content being viewed by others

References

  1. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 22, 751–764 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat. Rev. Immunol. 14, 719–730 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Hirose, T., Smith, R. J. & Jetten, A. M. ROR-γ: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem. Biophys. Res. Commun. 205, 1976–1983 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Medvedev, A., Yan, Z. H., Hirose, T., Giguère, V. & Jetten, A. M. Cloning of a cDNA encoding the murine orphan receptor RZR/RORγ and characterization of its response element. Gene 181, 199–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Eberl, G. RORγt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol. 10, 27–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. He, Y. W., Deftos, M. L., Ojala, E. W. & Bevan, M. J. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 9, 797–806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl Acad. Sci. USA 97, 10132–10137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada, S. et al. Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Mebius, R. E., Streeter, P. R., Michie, S., Butcher, E. C. & Weissman, I. L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes. Proc. Natl Acad. Sci. USA 93, 11019–11024 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adachi, S., Yoshida, H., Kataoka, H. & Nishikawa, S. Three distinctive steps in Peyer’s patch formation of murine embryo. Int. Immunol. 9, 507–514 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3- LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohnmacht, C. et al. Mucosal Immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Grigg, J. B. et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 600, 707–712 (2021). This publication defines a circulating ILC3 subset in mice and humans, termed inflammatory ILC3s, that promotes inflammatory T cell responses through MHC-II and is essential for autoimmune neuroinflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013). This publication defines MHC-II+ LTi-like ILC3s in mice and humans as the first described RORγt+ APC subset and identifies unexpected roles for these cells in enforcing CD4+ T cell tolerance to the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamano, T. et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 216, 1027–1037 (2019). This publication is the first to define RORγt+ eTACs in mouse lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863.e24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. et al. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci. Immunol. 6, eabl5053 (2021). This publication provides the first single-cell analysis focusing on Aire-expressing cells in the mouse peripheral immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dobeš, J. et al. Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans. Nat. Immunol. 23, 1098–1108 (2022). This publication is the first to define that RORγt+ eTACs promote TH17 cell responses to Candida albicans in mice.

    Article  PubMed  Google Scholar 

  41. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022). This publication further defines RORγt+ APCs and their ability to migrate to the mesenteric lymph nodes to promote microbiota-specific RORγt+ Treg cells in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022). This publication defines all RORγt+ APCs in the mesenteric lymph nodes of mice, identifies that MHC-II+ LTi-like ILC3s instruct RORγt+ Treg cells and immune tolerance to the microbiota in mice, and finds that this pathway is altered in human IBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022). This publication characterizes Rorc+ DC-like cells in mice and shows that RORγt+ APCs promote the induction of RORγt+ Treg cells in early life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40, 594–607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Withers, D. R. et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22, 319–323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fiancette, R. et al. Reciprocal transcription factor networks govern tissue-resident ILC3 subset function and identity. Nat. Immunol. 22, 1245–1255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826.e23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goc, J. et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184, 5015–5030.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teng, F. et al. ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Rep. 37, 110051 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008). This publication is the first to identify Aire-reporter-positive cells and AIRE protein in mouse lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

    Article  Google Scholar 

  56. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Gardner, J. M. et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells. Immunity 39, 560–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lyu, M. et al. ILC3s select for RORγt+ Tregs and establish tolerance to intestinal microbiota. Preprint at bioRxiv https://doi.org/10.1101/2022.04.25.489463 (2022).

    Article  Google Scholar 

  60. Wang, X. et al. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front. Immunol. 3, 19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salvermoser, J. et al. Mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells. Front. Immunol. 9, 699 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou, W. et al. ZBTB46 defines and regulates ILC3s that protect the intestine. Nature 609, 159–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schlenner, S. M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Leung, G. A. et al. The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage development. Development 146, dev176180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ghaedi, M. et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J. Exp. Med. 217, jem.20182293 (2020).

    Article  PubMed  Google Scholar 

  68. Fergusson, J. R. et al. Maturing human CD127+CCR7+PDL1+ dendritic cells express AIRE in the absence of tissue restricted antigens. Front. Immunol. 9, 2902 (2018). This publication is the first single-cell analysis identifying human cells expressing AIRE in the peripheral immune system.

    Article  CAS  PubMed  Google Scholar 

  69. Poliani, P. L. et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am. J. Pathol. 176, 1104–1112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Melo-Gonzalez, F. et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J. Exp. Med. 216, 728–742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, W. et al. The interaction between lymphoid tissue inducer-like cells and T cells in the mesenteric lymph node restrains intestinal humoral immunity. Cell Rep. 32, 107936 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Probst, H. C., Lagnel, J., Kollias, G. & van den Broek, M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18, 713–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840 (2014).

    Article  Google Scholar 

  80. Lehmann, F. M. et al. Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation. Nat. Commun. 11, 1794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Castellanos, J. G. et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077–1089.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rao, A. et al. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat. Commun. 11, 2049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lill, C. M. et al. MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain 136, 1778–1782 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis e Sousa, C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gillis-Buck, E. et al. Extrathymic Aire-expressing cells support maternal-fetal tolerance. Sci. Immunol. 6, eabf1968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Russler-Germain, E. V. et al. Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. eLife 10, e54792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chai, J. N. et al. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. 2, eaal5068 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mackley, E. C. et al. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6, 5862 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Husebye, E. S., Anderson, M. S. & Kämpe, O. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 378, 2543–2544 (2018).

    Article  PubMed  Google Scholar 

  101. Husebye, E. S., Perheentupa, J., Rautemaa, R. & Kämpe, O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J. Intern. Med. 265, 514–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Abramson, J. & Husebye, E. S. Autoimmune regulator and self-tolerance — molecular and clinical aspects. Immunol. Rev. 271, 127–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bruserud, Ø. et al. Altered immune activation and IL-23 signaling in response to. Front. Immunol. 8, 1074 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mathä, L. et al. Migration of lung resident group 2 innate lymphoid cells link allergic lung inflammation and liver immunity. Front. Immunol. 12, 679509 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Abramson, Dobeš and Sonnenberg laboratories for discussions and critical reading of the manuscript. G.F.S. is kindly supported by the National Institutes of Health (R01AI143842, R01AI123368, R01AI145989, U01AI095608, R01AI162936, R37AI174468 and R01CA274534), the NIAID Mucosal Immunology Studies Team (MIST), an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund, the Cancer Research Institute, Linda and Glenn Greenberg, the Dalton Family Foundation, and the Roberts Institute for Research in IBD. G.F.S. is a CRI Lloyd J. Old STAR. M.L. is supported by a Crohn’s and Colitis Foundation Research Fellowship Award (#935259). J.A. is kindly supported by the Eugene and Marcia Applebaum Professorial Chair, European Research Council (ERC-2016-CoG-724821), IOCB fellowship for sabbatical visit program (RVO 61388963) and Bill and Marika Glied and Family Fund. J.D. is kindly supported by the Czech Science Foundation JUNIOR STAR grant (21-22435M), Czech Science Foundation grant (22-30879S) and by the Charles University PRIMUS grant (Primus/21/MED/003).

Author information

Authors and Affiliations

Authors

Contributions

All authors are equal contributors and collectively conceived the concepts, wrote the manuscript and prepared the figure drafts.

Corresponding authors

Correspondence to Jakub Abramson or Gregory F. Sonnenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. Gardner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autoimmune regulator

(AIRE). A transcriptional regulator initially reported to be expressed by medullary thymic epithelial cells, where it has a role in central immune tolerance by inducing the expression of tissue-restricted antigens.

Non-professional APCs

A subset of antigen-presenting cells (APCs), such as thymic epithelial cells, endothelial cells and granulocytes, that modulate the quality of the CD4+ T cell response in peripheral tissues through antigen presentation on MHC class II.

Professional APCs

A subset of antigen-presenting cells (APCs), including conventional dendritic cells, macrophages and B cells, that are specialized in activating naive CD4+ T cell responses through phagocytosis of exogenous antigens and through processing and presentation of antigenic peptides on their MHC class II molecules, together with co-stimulatory signals.

RORγt+ APCs

A newly defined family of antigen-presenting cells (APCs) that express retinoic acid receptor-related orphan receptor-γt (RORγt) and can present antigens to CD4+ T cells through MHC class II.

Tissue-restricted antigens

(TRAs). Self-antigens whose coding genes are expressed in less than five different parenchymal tissues (out of approximately 60) based on currently available expression atlases. Expression of these genes may also be restricted to a particular developmental period, be sex specific or be regulated by complex biochemical pathways.

Type 3 immune responses

Type 3 immune responses involve RORγt+ lymphocytes, including T helper 17 cells, that produce the cytokines IL-17 and IL-22 to mediate antimicrobial responses and neutrophil recruitment. Type 3 immune responses are protective in the case of extracellular bacterial or fungal infections but, if dysregulated, can drive chronic inflammation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramson, J., Dobeš, J., Lyu, M. et al. The emerging family of RORγt+ antigen-presenting cells. Nat Rev Immunol 24, 64–77 (2024). https://doi.org/10.1038/s41577-023-00906-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00906-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing