Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells, plasma cells and antibody repertoires in the tumour microenvironment

Abstract

Recent data show that B cells and plasma cells located in tumours or in tumour-draining lymph nodes can have important roles in shaping antitumour immune responses. In tumour-associated tertiary lymphoid structures, T cells and B cells interact and undergo cooperative selection, specialization and clonal expansion. Importantly, B cells can present cognate tumour-derived antigens to T cells, with the functional consequences of such interactions being shaped by the B cell phenotype. Furthermore, the isotype and specificity of the antibodies produced by plasma cells can drive distinct immune responses. Here we summarize our current knowledge of the roles of B cells and antibodies in the tumour microenvironment. Moreover, we discuss the potential of using immunoglobulin repertoires as a source of tumour-specific receptors for immunotherapy or as biomarkers to predict the efficacy of immunotherapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antitumour roles of tumour-infiltrating B cells and intratumourally produced antibodies.
Fig. 2: Protumour roles of tumour-infiltrating B cells and intratumourally produced antibodies.
Fig. 3: Potential advantages of IgG1-biased over IgG3-biased humoral response.

Similar content being viewed by others

References

  1. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borst, J., Ahrends, T., Babala, N., Melief, C. J. M. & Kastenmuller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Schoorl, R., Riviere, A. B., Borne, A. E. & Feltkamp-Vroom, T. M. Identification of T and B lymphocytes in human breast cancer with immunohistochemical techniques. Am. J. Pathol. 84, 529–544 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jackson, P. A. et al. Lymphocyte subset infiltration patterns and HLA antigen status in colorectal carcinomas and adenomas. Gut 38, 85–89 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 e718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26, 4410–4417 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Al-Shibli, K. I. et al. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin. Cancer Res. 14, 5220–5227 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Lund, F. E. & Randall, T. D. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 10, 236–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ladanyi, A. et al. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol. Immunother. 60, 1729–1738 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Erdag, G. et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 72, 1070–1080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Germain, C. et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care Med. 189, 832–844 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez-Prieto, S. et al. A 50-gene signature is a novel scoring system for tumor-infiltrating immune cells with strong correlation with clinical outcome of stage I/II non-small cell lung cancer. Clin. Transl. Oncol. 17, 330–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Castino, G. F. et al. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5, e1085147 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Kinoshita, T. et al. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Ann. Oncol. 27, 2117–2123 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Kroeger, D. R., Milne, K. & Nelson, B. H. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin. Cancer Res. 22, 3005–3015 (2016). This study links together the presence of TLS, plasma cells, CD20 + B cells, CD8 + and CD4 + T cells, IgG oligoclonality, tumour-associated antigens and prognostic benefit.

    Article  CAS  PubMed  Google Scholar 

  19. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Dang, V. D., Hilgenberg, E., Ries, S., Shen, P. & Fillatreau, S. From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr. Opin. Immunol. 28, 77–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Gilbert, A. E. et al. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One 6, e19330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurai, J. et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin. Cancer Res. 13, 1552–1561 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Carmi, Y. et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature 521, 99–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rivera, A., Chen, C. C., Ron, N., Dougherty, J. P. & Ron, Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int. Immunol. 13, 1583–1593 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bruno, T. C. et al. Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res. 5, 898–907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rossetti, R. A. M. et al. B lymphocytes can be activated to act as antigen presenting cells to promote anti-tumor responses. PLoS One 13, e0199034 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, W. et al. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality. Oncoimmunology 4, e1051922 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Shi, J. Y. et al. Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin. Cancer Res. 19, 5994–6005 (2013). This study reports tumour-infiltrating antigen-experienced IgG + B cells that produce IFNγ, interleukin-12 subunit p40, granzyme B and TRAIL and cooperate with CD8 + T cells.

    Article  CAS  PubMed  Google Scholar 

  31. Coronella, J. A. et al. Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J. Immunol. 169, 1829–1836 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 18, 3281–3292 (2012). This study described antigen-experienced tumour-infiltrating B cells that express molecules associated with antigen presentation and colocalize with activated CD8 + T cells.

    Article  CAS  PubMed  Google Scholar 

  33. Iglesia, M. D. et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin. Cancer Res. 20, 3818–3829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milne, K. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 4, e6412 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhou, P. et al. Mature B cells are critical to T-cell-mediated tumor immunity induced by an agonist anti-GITR monoclonal antibody. J. Immunother. 33, 789–797 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Forte, G. et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J. Immunol. 189, 2226–2233 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Li, Q. et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin. Cancer Res. 17, 4987–4995 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubtsov, A. V. et al. CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. J. Immunol. 195, 71–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Deola, S. et al. Helper B cells promote cytotoxic T cell survival and proliferation independently of antigen presentation through CD27/CD70 interactions. J. Immunol. 180, 1362–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Nzula, S., Going, J. J. & Stott, D. I. Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res. 63, 3275–3280 (2003).

    CAS  PubMed  Google Scholar 

  41. Cipponi, A. et al. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 72, 3997–4007 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Mose, L. E. et al. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V’DJer. Bioinformatics 32, 3729–3734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017). The work reports an association of high intratumoural IgG1 proportions and clonality with increased survival in human melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iglesia, M. D. et al. Genomic analysis of immune cell infiltrates across 11 tumor types. J. Natl Cancer Inst. 108, djw144 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  45. Isaeva, O. I. et al. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J. Immunother. Cancer 7, 279 (2019). This work reports the association of high intratumoural IgG1 and IgG4 proportions with increased survival in KRAS-mutant and STK11-mutant lung adenocarcinomas, respectively, thereby linking driver mutations and B cell response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lohr, M. et al. The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett. 333, 222–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Mohammed, Z. M., Going, J. J., Edwards, J., Elsberger, B. & McMillan, D. C. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br. J. Cancer 109, 1676–1684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, S. et al. Mapping the high throughput SEREX technology screening for novel tumor antigens. Comb. Chem. High Throughput Screen. 15, 202–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Fischer, E. et al. Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J. Immunol. 185, 3095–3102 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Ishikawa, T. et al. Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res. 63, 5564–5572 (2003).

    CAS  PubMed  Google Scholar 

  52. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA 92, 11810–11813 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stockert, E. et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med. 187, 1349–1354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brichory, F. M. et al. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl Acad. Sci. USA 98, 9824–9829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reuschenbach, M., von Knebel Doeberitz, M. & Wentzensen, N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother. 58, 1535–1544 (2009). This work summarizes data on elevated levels of tumour-associated antigen-specific antibodies in the serum of patients with cancer and their association with prognosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gnjatic, S. et al. Seromic profiling of ovarian and pancreatic cancer. Proc. Natl Acad. Sci. USA 107, 5088–5093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amornsiripanitch, N. et al. Complement factor H autoantibodies are associated with early stage NSCLC. Clin. Cancer Res. 16, 3226–3231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chapman, C. J. et al. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol. 33, 1319–1326 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Macdonald, I. K., Parsy-Kowalska, C. B. & Chapman, C. J. Autoantibodies: opportunities for early cancer detection. Trends Cancer 3, 198–213 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Dai, L. et al. Autoantibodies against tumor-associated antigens in the early detection of lung cancer. Lung Cancer 99, 172–179 (2016).

    Article  PubMed  Google Scholar 

  62. Chen, H., Werner, S., Tao, S., Zornig, I. & Brenner, H. Blood autoantibodies against tumor-associated antigens as biomarkers in early detection of colorectal cancer. Cancer Lett. 346, 178–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Zayakin, P. et al. Tumor-associated autoantibody signature for the early detection of gastric cancer. Int. J. Cancer 132, 137–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Kurtenkov, O. et al. IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, alphaGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp. Oncol. 27, 136–140 (2005).

    CAS  PubMed  Google Scholar 

  65. Kumar, S., Mohan, A. & Guleria, R. Prognostic implications of circulating anti-p53 antibodies in lung cancer–a review. Eur. J. Cancer Care 18, 248–254 (2009).

    Article  CAS  Google Scholar 

  66. Garaud, S. et al. Antigen specificity and clinical significance of IgG and IgA autoantibodies produced in situ by tumor-infiltrating B cells in breast cancer. Front. Immunol. 9, 2660 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hamanaka, Y. et al. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer 103, 97–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Kurtenkov, O. et al. Humoral immune response to MUC1 and to the Thomsen-Friedenreich (TF) glycotope in patients with gastric cancer: relation to survival. Acta Oncol. 46, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Hirasawa, Y. et al. Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 161, 589–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Fremd, C. et al. Mucin 1-specific B cell immune responses and their impact on overall survival in breast cancer patients. Oncoimmunology 5, e1057387 (2016).

    Article  PubMed  CAS  Google Scholar 

  71. Brockhausen, I., Yang, J. M., Burchell, J., Whitehouse, C. & Taylor-Papadimitriou, J. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem. 233, 607–617 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Nath, S. & Mukherjee, P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med. 20, 332–342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haddon, L. & Hugh, J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin. Exp. Metastasis 32, 393–403 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Pimenta, E. M. & Barnes, B. J. Role of tertiary lymphoid structures (TLS) in anti-tumor immunity: potential tumor-induced cytokines/chemokines that regulate TLS formation in epithelial-derived cancers. Cancers 6, 969–997 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Wilmore, J. R. & Allman, D. Here, there, and anywhere? Arguments for and against the physical plasma cell survival niche. J. Immunol. 199, 839–845 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. DeFalco, J. et al. Non-progressing cancer patients have persistent B cell responses expressing shared antibody paratopes that target public tumor antigens. Clin. Immunol. 187, 37–45 (2018). This study reports high levels of blood plasmablasts in patients with cancer, further increasing in response to anti-CTLA4 therapy. Antibodies cloned form these plasmablasts recognized tumour tissues from other patients.

    Article  CAS  PubMed  Google Scholar 

  78. Gerstl, B., Eng, L. F. & Bigbee, J. W. Tumor-associated immunoglobulins in pulmonary carcinoma. Cancer Res. 37, 4449–4455 (1977). This study was one of the first to directly report the presence of IgG, IgA, and IgM in human solid tumour tissues using an immunohistochemical method.

    CAS  PubMed  Google Scholar 

  79. Streets, A. J., Brooks, S. A., Dwek, M. V. & Leathem, A. J. Identification, purification and analysis of a 55 kDa lectin binding glycoprotein present in breast cancer tissue. Clin. Chim. Acta 254, 47–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Pavoni, E. et al. Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells. BMC Biotechnol. 7, 70 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nelson, B. H. CD20+ B cells: the other tumor-infiltrating lymphocytes. J. Immunol. 185, 4977–4982 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Montfort, A. et al. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin. Cancer Res. 23, 250–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Hansen, M. H., Nielsen, H. V. & Ditzel, H. J. Translocation of an intracellular antigen to the surface of medullary breast cancer cells early in apoptosis allows for an antigen-driven antibody response elicited by tumor-infiltrating B cells. J. Immunol. 169, 2701–2711 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Shah, S. et al. Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int. J. Cancer 117, 574–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Inoue, S., Leitner, W. W., Golding, B. & Scott, D. Inhibitory effects of B cells on antitumor immunity. Cancer Res. 66, 7741–7747 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015). This study reveals immunosuppressive tumour-infiltrating IgA + plasma cells that express IL-10 and PDL1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Perricone, M. A. et al. Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J. Immunother. 27, 273–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Oizumi, S. et al. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J. Immunother. 31, 394–401 (2008).

    Article  PubMed  Google Scholar 

  90. Ou, Z. et al. Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget 6, 26065–26078 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Woo, J. R. et al. Tumor infiltrating B-cells are increased in prostate cancer tissue. J. Transl Med. 12, 30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aziz, M., Das, T. K. & Rattan, A. Role of circulating immune complexes in prognostic evaluation and management of genitourinary cancer patients. Indian J. Cancer 34, 111–120 (1997).

    CAS  PubMed  Google Scholar 

  93. Gunderson, A. J. & Coussens, L. M. B cells and their mediators as targets for therapy in solid tumors. Exp. Cell Res. 319, 1644–1649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barbera-Guillem, E., May, K. F. Jr., Nyhus, J. K. & Nelson, M. B. Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia 1, 453–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    Article  PubMed  CAS  Google Scholar 

  96. Tan, T. T. & Coussens, L. M. Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Andreu, P. et al. FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuen, G. J., Demissie, E. & Pillai, S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer 2, 747–757 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hu, X. et al. Landscape of B cell immunity and related immune evasion in human cancers. Nat. Genet. 51, 560–567 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Schroeder, H. W. Jr. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–S52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Baker, K. et al. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity 39, 1095–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rafiq, K., Bergtold, A. & Clynes, R. Immune complex-mediated antigen presentation induces tumor immunity. J. Clin. Invest. 110, 71–79 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Noujaim, A. A., Schultes, B. C., Baum, R. P. & Madiyalakan, R. Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13–evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo. Cancer Biother. Radiopharm. 16, 187–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Platzer, B., Stout, M. & Fiebiger, E. Antigen cross-presentation of immune complexes. Front. Immunol. 5, 140 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Collins, A. M. & Jackson, K. J. A temporal model of human IgE and IgG antibody function. Front. Immunol. 4, 235 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Colbeck, E. J., Ager, A., Gallimore, A. & Jones, G. W. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front. Immunol. 8, 1830 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Shao, Y. et al. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett. 355, 264–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Welinder, C. et al. Intra-tumour IgA1 is common in cancer and is correlated with poor prognosis in bladder cancer. Heliyon 2, e00143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stavnezer, J. & Kang, J. The surprising discovery that TGF beta specifically induces the IgA class switch. J. Immunol. 182, 5–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Park, K.-H., Seo, G.-Y., Jang, Y.-S. & Kim, P.-H. TGF-β and BAFF derived from CD4+CD25+Foxp3+ T cells mediate mouse IgA isotype switching. Genes Genomics 34, 619–625 (2012).

    Article  CAS  Google Scholar 

  113. Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, L. et al. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunol. 8, 1297–1312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bauche, D. & Marie, J. C. Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clin. Transl Immunol. 6, e136 (2017).

    Article  CAS  Google Scholar 

  116. Disis, M. L., Watt, W. C. & Cecil, D. L. Th1 epitope selection for clinically effective cancer vaccines. Oncoimmunology 3, e954971 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen, K. et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol. 10, 889–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shan, M. et al. Secreted IgD amplifies humoral T helper 2 cell responses by binding basophils via galectin-9 and CD44. Immunity 49, 709–724 e708 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harada, K. & Nakanuma, Y. Cholangiocarcinoma with respect to IgG4 reaction. Int. J. Hepatol. 2014, 803876 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Chiaruttini, G. et al. B cells and the humoral response in melanoma: the overlooked players of the tumor microenvironment. Oncoimmunology 6, e1294296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Karagiannis, P. et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J. Clin. Invest. 123, 1457–1474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fujimoto, M. et al. Stromal plasma cells expressing immunoglobulin G4 subclass in non-small cell lung cancer. Hum. Pathol. 44, 1569–1576 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007).

    Article  PubMed  CAS  Google Scholar 

  124. Morell, A., Terry, W. D. & Waldmann, T. A. Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–680 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bruhns, P. et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009). This study shows the high affinity of monomeric IgG3, but not IgG1, for FcγRIIIA receptors expressed on macrophages and NK cells.

    Article  CAS  PubMed  Google Scholar 

  126. Zhao, J., Nussinov, R. & Ma, B. Antigen binding allosterically promotes Fc receptor recognition. MAbs 11, 58–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Bowen, A. & Casadevall, A. Revisiting the immunoglobulin intramolecular signaling hypothesis. Trends Immunol. 37, 721–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saul, L. et al. IgG subclass switching and clonal expansion in cutaneous melanoma and normal skin. Sci. Rep. 6, 29736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vollmers, C., Sit, R. V., Weinstein, J. A., Dekker, C. L. & Quake, S. R. Genetic measurement of memory B-cell recall using antibody repertoire sequencing. Proc. Natl Acad. Sci. USA 110, 13463–13468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang, N. et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl Med. 5, 171ra119 (2013).

    Article  CAS  Google Scholar 

  132. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Laserson, U. et al. High-resolution antibody dynamics of vaccine-induced immune responses. Proc. Natl Acad. Sci. USA 111, 4928–4933 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kaplinsky, J. et al. Antibody repertoire deep sequencing reveals antigen-independent selection in maturing B cells. Proc. Natl Acad. Sci. USA 111, E2622–E2629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Khan, T. A. et al. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting. Sci. Adv. 2, e1501371 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Vander Heiden, J. A. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930–1932 (2014).

    Article  CAS  Google Scholar 

  137. Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Turchaninova, M. A. et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 11, 1599–1616 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Canzar, S., Neu, K. E., Tang, Q., Wilson, P. C. & Khan, A. A. BASIC: BCR assembly from single cells. Bioinformatics 33, 425–427 (2017).

    CAS  PubMed  Google Scholar 

  141. Zhang, W. et al. Characterization of the B cell receptor repertoire in the intestinal mucosa and of tumor-infiltrating lymphocytes in colorectal adenoma and carcinoma. J. Immunol. 198, 3719–3728 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Kardos, J. et al. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight 1, e85902 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Meng, Q., Valentini, D., Rao, M. & Maeurer, M. KRAS RENAISSANCE(S) in tumor infiltrating B cells in pancreatic cancer. Front. Oncol. 8, 384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cafri, G. et al. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat. Commun. 10, 449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Reddy, S. T. et al. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 28, 965–969 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. DeKosky, B. J. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Briggs, A. W. et al. Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion. Preprint at bioRxiv https://doi.org/10.1101/134841 (2017).

    Article  Google Scholar 

  148. Seah, Y. F. S., Hu, H. & Merten, C. A. Microfluidic single-cell technology in immunology and antibody screening. Mol. Asp. Med. 59, 47–61 (2018).

    Article  CAS  Google Scholar 

  149. Busse, C. E., Czogiel, I., Braun, P., Arndt, P. F. & Wardemann, H. Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol. 44, 597–603 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017). This work presents a microfluidic system that allows high-throughput screening for antigen-specific antibody-secreting cells, simultaneously measuring the antibody secretion rate and affinity.

    Article  CAS  PubMed  Google Scholar 

  151. McDaniel, J. R. et al. Identification of tumor-reactive B cells and systemic IgG in breast cancer based on clonal frequency in the sentinel lymph node. Cancer Immunol. Immunother. 67, 729–738 (2018). In this work, paired V H and V L repertoires are obtained from sentinel lymph node B cells, followed by screening for NY-ESO-1-specific antibody variants, the presence of which in the patient serum was confirmed by mass spectrometry of enriched NY-ESO-1-specific IgG antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, S. et al. B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J. Immunother. 31, 446–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Engelhard, V. H. et al. Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J. Immunol. 200, 432–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Hiraoka, N. et al. Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br. J. Cancer 112, 1782–1790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sanchez-Correa, B. et al. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol. Immunother. 68, 861–870 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Cottrell, T. R. et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann. Oncol. 29, 1853–1860 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature https://doi.org/10.1038/s41586-019-1922-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature https://doi.org/10.1038/s41586-019-1914-8 (2020).

    Article  PubMed  Google Scholar 

  162. Petitprez F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature https://doi.org/10.1038/s41586-019-1906-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lutz, E. R. et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2, 616–631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Maldonado, L. et al. Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci. Transl Med. 6, 221ra213 (2014).

    Article  CAS  Google Scholar 

  165. Angelova, M. et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 16, 64 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Senbabaoglu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Becht, E. et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 22, 4057–4066 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Miller, L. D. et al. Immunogenic subtypes of breast cancer delineated by gene classifiers of immune responsiveness. Cancer Immunol. Res. 4, 600–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Biton, J. et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin. Cancer Res. 24, 5710–5723 (2018).

    Article  PubMed  Google Scholar 

  170. Schabath, M. B. et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35, 3209–3216 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Cheng, H. et al. Kras(G12D) mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. Cancer Lett. 446, 103–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 e814 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kuroki, M. & Shirasu, N. Novel treatment strategies for cancer and their tumor-targeting approaches using antibodies against tumor-associated antigens. Anticancer Res. 34, 4481–4488 (2014).

    CAS  PubMed  Google Scholar 

  174. Bacac, M. et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin. Cancer Res. 22, 3286–3297 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Trenevska, I., Li, D. & Banham, A. H. Therapeutic antibodies against intracellular tumor antigens. Front. Immunol. 8, 1001 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74, 705–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Silina, K., Rulle, U., Kalnina, Z. & Line, A. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol. Immunother. 63, 643–662 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Dubey, L. K. et al. Lymphotoxin-dependent B cell-FRC crosstalk promotes de novo follicle formation and antibody production following intestinal helminth infection. Cell Rep. 15, 1527–1541 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Litsiou, E. et al. CXCL13 production in B cells via Toll-like receptor/lymphotoxin receptor signaling is involved in lymphoid neogenesis in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187, 1194–1202 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Bergomas, F. et al. Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers 4, 1–10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Coppola, D. et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am. J. Pathol. 179, 37–45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mahoney, K. M. et al. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol. Immunother. 68, 421–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Balkwill, F., Montfort, A. & Capasso, M. B regulatory cells in cancer. Trends Immunol. 34, 169–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Schwartz, M., Zhang, Y. & Rosenblatt, J. D. B cell regulation of the anti-tumor response and role in carcinogenesis. J. Immunother. Cancer 4, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Sarvaria, A., Madrigal, J. A. & Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell Mol. Immunol. 14, 662–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. Nat. Med. 4, 627–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  190. Carter, N. A. et al. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol. 186, 5569–5579 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 71, 3505–3515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cai, C. et al. Interleukin 10-expressing B cells inhibit tumor-infiltrating T cell function and correlate with T cell Tim-3 expression in renal cell carcinoma. Tumour Biol. 37, 8209–8218 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Pylayeva-Gupta, Y. et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6, 247–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Zhou, X., Su, Y. X., Lao, X. M., Liang, Y. J. & Liao, G. Q. CD19+IL-10+ regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4+ T cells to CD4+Foxp3+ regulatory T cells. Oral. Oncol. 53, 27–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, W. W. et al. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget 6, 33486–33499 (2015).

    PubMed  PubMed Central  Google Scholar 

  196. Shimabukuro-Vornhagen, A. et al. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 5, 4651–4664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Aklilu, M. et al. Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Ann. Oncol. 15, 1109–1114 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Bodogai, M. et al. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res. 73, 2127–2138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bodogai, M. et al. Failure of rituximab in solid tumors is due to its inability to eliminate tumor evoked B regulatory cells. J. Immunol. 188 (Suppl. 1), 165.15 (2012).

    Google Scholar 

  201. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19-CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Krejcik, J. et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128, 384–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Manna, A., Lewis-Tuffin, L. J., Ailawadhi, S., Chanan-Khan, A. A. & Paulus, A. Using anti-CD38 immunotherapy to enhance anti-tumor T-cell immunity in chronic lymphocytic leukemia (CLL). J. Immunol. 200, 58.17 (2018).

    Google Scholar 

  204. Pinto, D. et al. A functional BCR in human IgA and IgM plasma cells. Blood 121, 4110–4114 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Molina-Cerrillo, J., Alonso-Gordoa, T., Gajate, P. & Grande, E. Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat. Rev. 58, 41–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Stiff, A. et al. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment. Cancer Res. 76, 2125–2136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sagiv-Barfi, I. et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc. Natl Acad. Sci. USA 112, E966–E972 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Nakayamada, S. & Tanaka, Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm. Regen. 36, 6 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Funding

The work was supported by grants from the Ministry of Education and Science of the Russian Federation (14.W03.31.0005) and Russian Science Foundation (19-14-00317, in part of antibody repertoire analysis methods).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to researching data for the article, the discussion of content and the writing of the article. D.M.C. and G.V.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Dmitriy M. Chudakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Reviews Immunology thanks K. Willard-Gallo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MiNNN: https://minnn.milaboratory.com

MiXCR: https://mixcr.milaboratory.com

Supplementary information

Glossary

The Cancer Genome Atlas (TCGA) database

The most comprehensive cancer genomics database; it contains multiple types of genomic data with histological information and clinical records for more than 11,000 patients and 33 cancer types.

Cryptic peptide antigens

Antigens that originate from translation of sequences outside annotated open reading frames. They may derive from non-annotated open reading frames, non-coding genomic regions, alternative start codons, frameshift mutations, alternative splicing or ribosomal frameshifting. Protein splicing and post-translational modifications can also be classified as cryptic peptide antigens.

Thomsen–Friedenreich antigen

A tumour-associated carbohydrate antigen highly expressed by approximately 90% of human carcinomas. It is believed to facilitate tumour growth by allowing increased interaction of the tumour cells with carbohydrate-binding lectins.

Immune complexes

Antigen–antibody complexes, may include multiple antigen and antibody molecules, as well as complement proteins. They may modulate activity of myeloid cells, triggering chronic inflammation and tissue remodelling processes, and facilitating formation of myeloid-derived suppressor cells.

Myeloid-derived suppressor cell

An immunosuppressive myeloid cell that develops under chronic inflammatory conditions. These cells can be subdivided into monocytic and polymorphonuclear myeloid-derived suppressor cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharonov, G.V., Serebrovskaya, E.O., Yuzhakova, D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 20, 294–307 (2020). https://doi.org/10.1038/s41577-019-0257-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0257-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer