Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome

Abstract

B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.

Key points

  • B cells are a major component of the tumour microenvironment (TME) in many cancers; all major B cell subsets, from naive B cells to plasma cells, can be found in the TME.

  • The abundance, functional state and distribution of B cells within the TME are all highly dependent on the presence, location and maturity of tertiary lymphoid structures (TLS).

  • In immature TLS, B cells might acquire immunosuppressive activities, whereas those in mature TLS can undergo maturation, selection, amplification, somatic hypermutation and affinity maturation, and immunoglobulin class switching, leading to the production of plasma cells that secrete IgG or IgA.

  • Plasma cells generated in situ within intratumoural TLS can produce antibodies that target specific tumour-associated antigens; depending on their isotype and the immune contexture of the tumour, these antibodies can have anti-tumour or pro-tumour effects.

  • Intratumoural B cells and TLS are potential biomarkers of patient prognosis and response to immunotherapies; novel transcriptomic and imaging technologies will enable the correlations of particular B cell subsets with clinical outcomes to be better defined.

  • The development of interventions to induce intratumoural TLS, which facilitate B cell maturation towards antibody-producing plasma cells, as well as the characterization of anti-tumour antibodies generated in patients who respond to immunotherapy, will open promising therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B cell subtypes in cancer.
Fig. 2: Spatial organization of T cells and B cells the TME.
Fig. 3: Roles of B cells and TLS in cancer.
Fig. 4: Induction of intratumoural TLS in mouse models and patients with cancer.

Similar content being viewed by others

References

  1. Thomas, L. in Cellular and Humoral Aspects of Hypersensitivity 529–532 (Hoeber-Harper, 1959).

  2. Burnet, F. M. Immunological aspects of malignant disease. Lancet 289, 1171–1174 (1967).

    Article  Google Scholar 

  3. Ribatti, D. The concept of immune surveillance against tumors. The first theories. Oncotarget 8, 7175–7180 (2017).

    Article  PubMed  Google Scholar 

  4. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Fridman, W. H., Zitvogel, L., Sautès–Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Becht, E. et al. Immune contexture, immunoscore, and malignant cell molecular subgroups for prognostic and theranostic classifications of cancers. Adv. Immunol. 130, 95–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mantovani, A., Marchesi, F., Jaillon, S., Garlanda, C. & Allavena, P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol. Immunol. 18, 566–578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Galon, J. & Bruni, D. Tumor immunology and tumor evolution: intertwined histories. Immunity 52, 55–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Jass, J. R. Lymphocytic infiltration and survival in rectal cancer. J. Clin. Pathol. 39, 585–589 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Remark, R. et al. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am. J. Respir. Crit. Care Med. 191, 377–390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Petitprez, F. et al. Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol. Immunother. 67, 981–988 (2018).

    Article  PubMed  Google Scholar 

  22. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cortese, N., Carriero, R., Laghi, L., Mantovani, A. & Marchesi, F. Prognostic significance of tumor-associated macrophages: past, present and future. Semin. Immunol. 48, 101408 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Petitprez, F., Meylan, M., de Reyniès, A., Sautès-Fridman, C. & Fridman, W. H. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front. Immunol. 11, 784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russick, J. et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J. Immunother. Cancer 8, e001054 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. DeNardo, D. G., Andreu, P. & Coussens, L. M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 29, 309–316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. DiLillo, D. J., Yanaba, K. & Tedder, T. F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J. Immunol. 184, 4006–4016 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  PubMed  CAS  Google Scholar 

  40. Fridman, W. H. et al. B cells and cancer: to B or not to B? J. Exp. Med. 218, e2000851 (2020).

    Google Scholar 

  41. Wouters, M. C. A. & Nelson, B. H. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin. Cancer Res. 24, 6125–6135 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Germain, C. et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care Med. 189, 832–844 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, J. et al. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer. Genome Biol. 21, 152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hu, Q. et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, J. et al. Tumour-infiltrating immune cell-based subtyping and signature gene analysis in breast cancer based on gene expression profiles. J. Cancer 11, 1568–1583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Ruffin, A. T. et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Montfort, A. et al. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin. Cancer Res. 23, 250–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Weiner, A. B. et al. Plasma cells are enriched in localized prostate cancer in black men and are associated with improved outcomes. Nat. Commun. 12, 935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Inoue, S., Leitner, W. W., Golding, B. & Scott, D. Inhibitory effects of B cells on antitumor immunity. Cancer Res. 66, 7741–7747 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Lee-Chang, C. et al. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J. Immunol. 191, 4141–4151 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Shao, Y. et al. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett. 355, 264–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Zhou, X., Su, Y.-X., Lao, X.-M., Liang, Y.-J. & Liao, G.-Q. CD19+IL-10+ regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4+ T cells to CD4+Foxp3+ regulatory T cells. Oral. Oncol. 53, 27–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, W. et al. CD19+CD24hiCD38hi Bregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget 6, 33486–33499 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roya, N. et al. Frequency of IL-10+CD19+ B cells in patients with prostate cancer compared to patients with benign prostatic hyperplasia. Afr. Health Sci. 20, 1264–1272 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Siliņa, K. et al. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 78, 1308–1320 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Posch, F. et al. Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. Oncoimmunology 7, e1378844 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wishnie, A. J., Chwat-Edelstein, T., Attaway, M. & Vuong, B. Q. BCR affinity influences T-B interactions and B cell development in secondary lymphoid organs. Front. Immunol. 12, 703918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gu-Trantien, C. et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123, 2873–2892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. Nat. Med. 4, 627–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Shah, S. et al. Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int. J. Cancer 117, 574–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Brodt, P. & Gordon, J. Anti-tumor immunity in B lymphocyte-deprived mice. I. Immunity to a chemically induced tumor. J. Immunol. 121, 359–362 (1978).

    CAS  PubMed  Google Scholar 

  67. Barbera-Guillem, E. et al. B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol. Immunother. 48, 541–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz, M., Zhang, Y. & Rosenblatt, J. D. B cell regulation of the anti-tumor response and role in carcinogenesis. J. Immunother. Cancer 4, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sarvaria, A., Madrigal, J. A. & Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell Mol. Immunol. 14, 662–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0257-x (2020).

    Article  PubMed  Google Scholar 

  72. Kinker, G. S. et al. B cell orchestration of anti-tumor immune responses: a matter of cell localization and communication. Front. Cell Dev. Biol. 9, 678127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yoshizaki, A. et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491, 264–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, R.-X. et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat. Med. 20, 633–641 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dambuza, I. M. et al. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat. Commun. 8, 719 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Menon, M., Blair, P. A., Isenberg, D. A. & Mauri, C. A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 44, 683–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ran, Z., Yue-Bei, L., Qiu-Ming, Z. & Huan, Y. Regulatory B cells and its role in central nervous system inflammatory demyelinating diseases. Front. Immunol. 11, 1884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ishigami, E. et al. Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer. Breast Cancer 26, 180–189 (2019).

    Article  PubMed  Google Scholar 

  81. Wei, X. et al. Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients. Tumor Biol. 37, 6581–6588 (2016).

    Article  CAS  Google Scholar 

  82. Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 71, 3505–3515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Wu, H. et al. PD-L1+ regulatory B cells act as a T cell suppressor in a PD-L1-dependent manner in melanoma patients with bone metastasis. Mol. Immunol. 119, 83–91 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, C. et al. B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS ONE 8, e64159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meylan, M. et al. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-2929 (2020).

    Article  PubMed  Google Scholar 

  87. de Jonge, K. et al. Inflammatory B cells correlate with failure to checkpoint blockade in melanoma patients. OncoImmunology 10, 1873585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kwak, J. W. et al. Complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression. Cancer Res. 78, 143–156 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Roumenina, L. T., Daugan, M. V., Petitprez, F., Sautès-Fridman, C. & Fridman, W. H. Context-dependent roles of complement in cancer. Nat. Rev. Cancer 19, 698–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Tan, T.-T. & Coussens, L. M. Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Murphy, T. L. & Murphy, K. M. Dendritic cells in cancer immunology. Cell Mol. Immunol. https://doi.org/10.1038/s41423-021-00741-5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bruno, T. C. et al. Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res. 5, 898–907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wennhold, K. et al. CD86+ antigen-presenting B cells are increased in cancer, localize in tertiary lymphoid structures, and induce specific T-cell responses. Cancer Immunol. Res. 9, 1098–1108 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Nielsen, J. S. et al. CD20+ Tumor-infiltrating lymphocytes have an atypical CD27 memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 18, 3281–3292 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kroeger, D. R., Milne, K. & Nelson, B. H. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin. Cancer Res. 22, 3005–3015 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Nielsen, J. S. & Nelson, B. H. Tumor-infiltrating B cells and T cells: working together to promote patient survival. Oncoimmunology 1, 1623–1625 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. von Bergwelt-Baildon, M. S. et al. Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood 99, 3319–3325 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Gnjatic, S. et al. Cross-presentation of HLA class I epitopes from exogenous NY-ESO-1 polypeptides by nonprofessional APCs. J. Immunol. 170, 1191–1196 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Willsmore, Z. N. et al. B cells in patients with melanoma: implications for treatment with checkpoint inhibitor antibodies. Front. Immunol. 11, 622442 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Iglesia, M. D. et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin. Cancer Res. 20, 3818–3829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Iglesia, M. D. et al. Genomic analysis of immune cell infiltrates across 11 tumor types. J. Natl Cancer Inst. 108, djw144 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  103. Selitsky, S. R. et al. Prognostic value of B cells in cutaneous melanoma. Genome Med. 11, 36 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Garaud, S. et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight 5, e129641 (2019).

    Article  Google Scholar 

  105. Biswas, S. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature https://doi.org/10.1038/s41586-020-03144-0 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Shalapour, S. & Karin, M. The neglected brothers come of age: B cells and cancer. Semin. Immunol. https://doi.org/10.1016/j.smim.2021.101479 (2021).

    Article  PubMed  Google Scholar 

  107. Ito, T. et al. Class distribution of immunoglobulin-containing plasma cells in the stroma of medullary carcinoma of breast. Breast Cancer Res. Treat. 7, 97–103 (1986).

    Article  CAS  PubMed  Google Scholar 

  108. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saul, L. et al. IgG subclass switching and clonal expansion in cutaneous melanoma and normal skin. Sci. Rep. 6, 29736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74, 705–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. de Chaisemartin, L. et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res. 71, 6391–6399 (2011).

    Article  PubMed  CAS  Google Scholar 

  112. Cipponi, A. et al. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 72, 3997–4007 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Wieland, A. et al. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature https://doi.org/10.1038/s41586-020-2931-3 (2020).

    Article  PubMed  Google Scholar 

  114. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pilette, C., Detry, B., Guisset, A., Gabriels, J. & Sibille, Y. Induction of interleukin-10 expression through Fcalpha receptor in human monocytes and monocyte-derived dendritic cells: role of p38 MAPKinase. Immunol. Cell Biol. 88, 486–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Saha, C. et al. Monomeric immunoglobulin A from plasma inhibits human Th17 responses in vitro independent of FcαRI and DC-SIGN. Front. Immunol. 8, 275 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Peppas, I. et al. Association of serum immunoglobulin levels with solid cancer: a systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 29, 527–538 (2020).

    Article  CAS  Google Scholar 

  119. Kalergis, A. M. & Ravetch, J. V. Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J. Exp. Med. 195, 1653–1659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roumenina, L. T. et al. Tumor cells hijack macrophage-produced complement C1q to promote tumor growth. Cancer Immunol. Res. 7, 1091–1105 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Bulla, R. et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat. Commun. 7, 10346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Karagiannis, P. et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J. Clin. Invest. 123, 1457–1474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fujimoto, M. et al. Stromal plasma cells expressing immunoglobulin G4 subclass in non-small cell lung cancer. Hum. Pathol. 44, 1569–1576 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA 92, 11810–11813 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stockert, E. et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med. 187, 1349–1354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brichory, F. M. et al. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl Acad. Sci. USA 98, 9824–9829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Reuschenbach, M., von Knebel Doeberitz, M. & Wentzensen, N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother. 58, 1535–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Amornsiripanitch, N. et al. Complement factor H autoantibodies are associated with early stage NSCLC. Clin. Cancer Res. 16, 3226–3231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garaud, S. et al. Antigen specificity and clinical significance of IgG and IgA autoantibodies produced in situ by tumor-infiltrating B cells in breast cancer. Front. Immunol. 9, 2660 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Gnjatic, S. et al. Seromic profiling of ovarian and pancreatic cancer. Proc. Natl Acad. Sci. USA 107, 5088–5093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mazor, R. D. et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell, https://doi.org/10.1016/j.cell.2022.02.012 (2022).

  132. Schmidt, M. et al. A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin κ C as a compatible prognostic marker in human solid tumors. Clin. Cancer Res. 18, 2695–2703 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Horeweg, N. et al. Tertiary lymphoid structures critical for prognosis in endometrial cancer patients. Nat. Commun. 13, 1373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, S. S. et al. B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade. Clin. Cancer Res. 26, 3345–3359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lundgren, S., Berntsson, J., Nodin, B., Micke, P. & Jirström, K. Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J. Ovarian Res. 9, 21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zirakzadeh, A. A. et al. Tumour-associated B cells in urothelial urinary bladder cancer. Scand. J. Immunol. 91, e12830 (2020).

    Article  PubMed  Google Scholar 

  137. Murakami, Y. et al. Increased regulatory B cells are involved in immune evasion in patients with gastric cancer. Sci. Rep. 9, 13083 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Calderaro, J. et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).

    Article  PubMed  Google Scholar 

  139. Li, H. et al. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging 12, 3451–3472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nault, J. C. et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 60, 1983–1992 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16, 1235–1244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Di Caro, G. et al. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin. Cancer Res. 20, 2147–2158 (2014).

    Article  PubMed  CAS  Google Scholar 

  143. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Patil, N. S. et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell https://doi.org/10.1016/j.ccell.2022.02.002 (2022).

    Article  PubMed  Google Scholar 

  146. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gao, J. et al. Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat. Med. 26, 1845–1851 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Italiano, A. et al. PD1 inhibition in soft-tissue sarcomas with tertiary lymphoid structures: a multicentre phase II trial. J. Clin. Oncol. 39 (Suppl. 15), 11507 (2021).

    Article  Google Scholar 

  149. Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lu, Y. et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell https://doi.org/10.1016/j.cell.2020.02.015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. DuPage, M., Mazumdar, C., Schmidt, L. M., Cheung, A. F. & Jacks, T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Delvecchio, F. R. et al. Pancreatic cancer chemotherapy is potentiated by induction of tertiary lymphoid structures in mice. Cell Mol. Gastroenterol. Hepatol. https://doi.org/10.1016/j.jcmgh.2021.06.023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Peske, J. D., Woods, A. B. & Engelhard, V. H. Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment. Adv. Cancer Res. 128, 263–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rodriguez, A. B. et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep. 36, 109422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Onder, L. & Ludewig, B. Redefining the nature of lymphoid tissue organizer cells: response to ‘Complexity of Lymphoid Tissue Organizers’ by Koning and Mebius. Trends Immunol. 39, 952–953 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Drayton, D. L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N. H. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 197, 1153–1163 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Lu, T. T. & Browning, J. L. Role of the lymphotoxin/LIGHT system in the development and maintenance of reticular networks and vasculature in lymphoid tissues. Front. Immunol. 5, 47 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chelvanambi, M., Fecek, R. J., Taylor, J. L. & Storkus, W. J. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J. Immunother. Cancer 9, e001906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Teillaud, J.-L., Regard, L., Martin, C., Sibéril, S. & Burgel, P.-R. Exploring the role of tertiary lymphoid structures using a mouse model of bacteria-infected lungs. Methods Mol. Biol. 1845, 223–239 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Chen, L. et al. Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells. Cancer Gene Ther. 20, 469–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. van Hooren, L. et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat. Commun. 12, 4127 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Boivin, G. et al. Cellular composition and contribution of tertiary lymphoid structures to tumor immune infiltration and modulation by radiation therapy. Front. Oncol. https://doi.org/10.3389/fonc.2018.00256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sánchez-Alonso, S. et al. A new role for circulating T follicular helper cells in humoral response to anti-PD-1 therapy. J. Immunother. Cancer 8, e001187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hollern, D. P. et al. B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179, 1191–1206.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    Article  PubMed  Google Scholar 

  172. Kuwabara, S. et al. Prognostic relevance of tertiary lymphoid organs following neoadjuvant chemoradiotherapy in pancreatic ductal adenocarcinoma. Cancer Sci. 110, 1853–1862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Morcrette, G. et al. APC germline hepatoblastomas demonstrate cisplatin-induced intratumor tertiary lymphoid structures. Oncoimmunology 8, e1583547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Benzerdjeb, N. et al. Tertiary lymphoid structures in epithelioid malignant peritoneal mesothelioma are associated with neoadjuvant chemotherapy, but not with prognosis. Virchows Arch. https://doi.org/10.1007/s00428-021-03099-1 (2021).

    Article  PubMed  Google Scholar 

  175. Rückert, M., Flohr, A.-S., Hecht, M. & Gaipl, U. S. Radiotherapy and the immune system: more than just immune suppression. Stem Cell 39, 1155–1165 (2021).

    Article  Google Scholar 

  176. Di Giacomo, A. M. et al. Guadecitabine plus ipilimumab in unresectable melanoma: the NIBIT-M4 clinical trial. Clin. Cancer Res. 25, 7351–7362 (2019).

    Article  PubMed  Google Scholar 

  177. Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Cindy Yang, S. Y. et al. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat. Commun. 12, 5137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lutz, E. R. et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2, 616–631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zheng, L. et al. Vaccine-induced intratumoral lymphoid aggregates correlate with survival following treatment with a neoadjuvant and adjuvant vaccine in patients with resectable pancreatic adenocarcinoma. Clin. Cancer Res. 27, 1278–1286 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Maldonado, L. et al. Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci. Transl. Med. 6, 221ra13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Coppola, D. et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am. J. Pathol. 179, 37–45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mahmoud, S. M. A. et al. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res. Treat. 132, 545–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Yeong, J. et al. High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front. Immunol. 9, 1209 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Garg, K. et al. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum. Pathol. 54, 157–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Sorbye, S. W. et al. High expression of CD20+ lymphocytes in soft tissue sarcomas is a positive prognostic indicator. Oncoimmunology 1, 75–77 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yamakoshi, Y. et al. Immunological potential of tertiary lymphoid structures surrounding the primary tumor in gastric cancer. Int. J. Oncol. 57, 171–182 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Goeppert, B. et al. Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. Br. J. Cancer 109, 2665–2674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shi, J.-Y. et al. Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin. Cancer Res. 19, 5994–6005 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Garnelo, M. et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 66, 342–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. van Herpen, C. M. L. et al. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int. J. Cancer 123, 2354–2361 (2008).

    Article  PubMed  CAS  Google Scholar 

  192. Milne, K. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS ONE 4, e6412 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Santoiemma, P. P. et al. Systematic evaluation of multiple immune markers reveals prognostic factors in ovarian cancer. Gynecol. Oncol. 143, 120–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Berntsson, J., Nodin, B., Eberhard, J., Micke, P. & Jirström, K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int. J. Cancer 139, 1129–1139 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Edin, S. et al. The prognostic importance of CD20+B lymphocytes in colorectal cancer and the relation to other immune cell subsets. Sci. Rep. 9, 19997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hiraoka, N. et al. Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br. J. Cancer 112, 1782–1790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gu-Trantien, C. et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2, e91487 (2017).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Bougoüin and G. Pupier for their help in preparing Fig. 2 and C.-A. Reynaud for her help in defining the markers of B cell subsets. The work of the authors is supported by INSERM, Sorbonne Université, Université Paris Cité, La Ligue contre le Cancer (W.H.F.), the CARPEM (Cancer Research for Personalized Medicine) programme of the Sites Integrés de Recherche sur le Cancer (SIRIC) (C.S.-F.), LabeX Immunooncology (C.S.-F.), the Association pour la recherche en thérapeutiques innovantes en cancérologie (ARTIC; BioniKK contract (R17169DD) (C.S.-F.), the Fondation pour la recherche sur le cancer (ARC SIGN’IT) (A.I. and W.H.F.), the Institut du cancer (INCa; P-RTK 20-106) (A.I. and W.H.F.), the Cancéropole Ile de France (R18105DD INCA PL Bio) (C.M.S.), and the Recherche Hospitalo-Universitaire en santé (RHU) CONDOR programme (A.I. and W.H.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussions of content and writing the manuscript. W.H.F., M.M. and C.S.-F. reviewed/edited the manuscript before submission

Corresponding author

Correspondence to Wolf H. Fridman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks K. Willard-Gallo, who co-reviewed with S. Garaud; S. Pillai; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fridman, W.H., Meylan, M., Petitprez, F. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 19, 441–457 (2022). https://doi.org/10.1038/s41571-022-00619-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00619-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer