Mucosal-associated invariant T cells and disease

Abstract

Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MAIT cell activation in bacterial and viral infection.
Fig. 2: MAIT cell alterations and function in immune-mediated diseases.

References

  1. 1.

    Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J. Exp. Med. 178, 1–16 (1993).

    CAS  PubMed  Google Scholar 

  2. 2.

    Tilloy, F. et al. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003). This study describes for the first time MAIT cell restriction to the non-polymorphic MHC class I-like protein MR1.

    CAS  PubMed  Google Scholar 

  4. 4.

    Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLOS Biol. 7, e54 (2009).

    PubMed  Google Scholar 

  5. 5.

    Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLOS Biol. 8, e1000407 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Georgel, P., Radosavljevic, M., Macquin, C. & Bahram, S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol. Immunol. 48, 769–775 (2011).

    CAS  PubMed  Google Scholar 

  7. 7.

    Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010). Gold et al. and Le Bourhis et al. were the first to show human MAIT cell activation by bacteria-infected cells in an MR1-dependent manner.

    PubMed  Google Scholar 

  8. 8.

    Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012). This is the first study to describe that MR1 binds to vitamin B metabolites derived from the vitamin B 2 pathway or from vitamin B 9 photodegradation.

    CAS  PubMed  Google Scholar 

  9. 9.

    Corbett, A. J. et al. T cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014). This study deciphers the mechanisms by which vitamin B 2 -derived activating ligands for MAIT cells are synthetized.

    CAS  PubMed  Google Scholar 

  10. 10.

    Eckle, S. B. et al. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J. Biol. Chem. 290, 30204–30211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    Fergusson, J. R. et al. CD161int CD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol. 9, 401–413 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Gibbs, A. et al. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 10, 35–45 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hinks, T. S. et al. Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung. implications for nontypeable Haemophilus influenzae infection. Am. J. Respir. Crit. Care Med. 194, 1208–1218 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Magalhaes, I. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Invest. 125, 1752–1762 (2015). This is the first study to show that MAIT cells in blood and adipose tissue from obese and/or diabetic patients have an activated phenotype and exhibit a strong IL-17 profile.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schmaler, M. et al. Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunol. 11, 1060–1070 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Serriari, N. E. et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin. Exp. Immunol. 176, 266–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Sobkowiak, M. J. et al. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur. J. Immunol. 49, 133–143 (2019).

    CAS  PubMed  Google Scholar 

  20. 20.

    Reantragoon, R. et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gutierrez-Arcelus, M. et al. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat. Commun. 10, 687 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Salou, M. et al. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 216, 133–151 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Franciszkiewicz, K. et al. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol. Rev. 272, 120–138 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Rouxel, O. & Lehuen, A. Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol. Cell Biol. 96, 618–629 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Salou, M., Franciszkiewicz, K. & Lantz, O. MAIT cells in infectious diseases. Curr. Opin. Immunol. 48, 7–14 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Keller, A. N., Corbett, A. J., Wubben, J. M., McCluskey, J. & Rossjohn, J. MAIT cells and MR1-antigen recognition. Curr. Opin. Immunol. 46, 66–74 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Kurioka, A., Walker, L. J., Klenerman, P. & Willberg, C. B. MAIT cells: new guardians of the liver. Clin. Transl Immunol. 5, e98 (2016).

    Google Scholar 

  28. 28.

    Ussher, J. E., Willberg, C. B. & Klenerman, P. MAIT cells and viruses. Immunol. Cell Biol. 96, 630–641 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Karamooz, E., Harriff, M. J. & Lewinsohn, D. M. MR1-dependent antigen presentation. Semin. Cell Dev. Biol. 84, 58–64 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Gherardin, N. A., McCluskey, J., Rossjohn, J. & Godfrey, D. I. The diverse family of MR1-restricted T cells. J. Immunol. 201, 2862–2871 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Meermeier, E. W., Harriff, M. J., Karamooz, E. & Lewinsohn, D. M. MAIT cells and microbial immunity. Immunol. Cell Biol. 96, 607–617 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Magalhaes, I., Kiaf, B. & Lehuen, A. iNKT and MAIT cell alterations in diabetes. Front. Immunol. 6, 341 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Le Bourhis, L. et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLOS Pathog. 9, e1003681 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kurioka, A. et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 8, 429–440 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Koay, H. F. et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17, 1300–1311 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kwon, Y. S. et al. Mucosal-associated invariant T cells are numerically and functionally deficient in patients with mycobacterial infection and reflect disease activity. Tuberculosis (Edinb.) 95, 267–274 (2015).

    CAS  Google Scholar 

  37. 37.

    Gade, P. et al. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc. Natl Acad. Sci. USA 109, 10316–10321 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Braverman, J. & Stanley, S. A. Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1alpha and repression of NF-kappaB. J. Immunol. 199, 1805–1816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    CAS  PubMed  Google Scholar 

  40. 40.

    Salerno-Goncalves, R. et al. Challenge of humans with wild-type Salmonella enterica serovar typhi elicits changes in the activation and homing characteristics of mucosal-associated invariant T cells. Front. Immunol. 8, 398 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Greene, J. M. et al. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. Mucosal Immunol. 10, 802–813 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Grimaldi, D. et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 40, 192–201 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Chua, W. J. et al. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect. Immun. 80, 3256–3267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cui, Y. et al. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest. 125, 4171–4185 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Meierovics, A., Yankelevich, W. J. & Cowley, S. C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc. Natl Acad. Sci. USA 110, E3119–E3128 (2013).

    CAS  PubMed  Google Scholar 

  46. 46.

    Meierovics, A. I. & Cowley, S. C. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J. Exp. Med. 213, 2793–2809 (2016). This study shows that MAIT cells, by producing GM-CSF, induce monocyte polarization into monocyte-derived dendritic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wang, H. et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun. 9, 3350 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chen, Z. et al. Mucosal-associated invariant T cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol. 10, 58–68 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Jesteadt, E. et al. Interleukin-18 is critical for mucosa-associated invariant T cell gamma interferon responses to francisella species in vitro but not in vivo. Infect. Immun. 86, e00117–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ussher, J. E. et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 44, 195–203 (2014).

    CAS  PubMed  Google Scholar 

  51. 51.

    Barathan, M. et al. Peripheral loss of CD8+ CD161++ TCRValpha7.2+ mucosal-associated invariant T cells in chronic hepatitis C virus-infected patients. Eur. J. Clin. Invest. 46, 170–180 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Billerbeck, E. et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA 107, 3006–3011 (2010).

    PubMed  Google Scholar 

  53. 53.

    Boeijen, L. L. et al. Mucosal-associated invariant T cells are more activated in chronic hepatitis B, but not depleted in blood: reversal by antiviral therapy. J. Infect. Dis. 216, 969–976 (2017).

    CAS  PubMed  Google Scholar 

  54. 54.

    Bolte, F. J. et al. Intra-hepatic depletion of mucosal-associated invariant T cells in hepatitis C virus-induced liver inflammation. Gastroenterology 153, 1392–1403 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Cosgrove, C. et al. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood 121, 951–961 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Eberhard, J. M. et al. Reduced CD161+ MAIT cell frequencies in HCV and HIV/HCV co-infection: is the liver the heart of the matter? J. Hepatol. 65, 1261–1263 (2016).

    PubMed  Google Scholar 

  57. 57.

    Fernandez, C. S. et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol. Cell Biol. 93, 177–188 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Hengst, J. et al. Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy. Eur. J. Immunol. 46, 2204–2210 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLOS Pathog. 10, e1004210 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Leeansyah, E. et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 121, 1124–1135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Leeansyah, E. et al. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLOS Pathog. 11, e1005072 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Loh, L. et al. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl Acad. Sci. USA 113, 10133–10138 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Paquin-Proulx, D. et al. MAIT cells are reduced in frequency and functionally impaired in human T lymphotropic virus type 1 infection: potential clinical implications. PLOS ONE 12, e0175345 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Sereti, I. et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 113, 6304–6314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Sortino, O. et al. IL-7 treatment supports CD8+ mucosa-associated invariant T cell restoration in HIV-1-infected patients on antiretroviral therapy. AIDS 32, 825–828 (2018).

    CAS  PubMed  Google Scholar 

  66. 66.

    van Wilgenburg, B. et al. MAIT cells are activated during human viral infections. Nat. Commun. 7, 11653 (2016). This is the first study to show MAIT cell activation upon virus infection in a manner that is TCR independent but dependent on IL-18, IL-12 and IL-15.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Wilgenburg, B. V. et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat. Commun. 9, 4706 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Yong, Y. K. et al. Decrease of CD69 levels on TCR Valpha7.2+CD4+ innate-like lymphocytes is associated with impaired cytotoxic functions in chronic hepatitis B virus-infected patients. Innate Immun. 23, 459–467 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    Hegde, P. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018). This study shows that MAIT cells are profibrogenic in the liver by promoting macrophage inflammatory properties and myofibroblast activation.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Rouxel, O. et al. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol. 18, 1321–1331 (2017). The study is the first to describe MAIT cell alterations in patients with type 1 diabetes and the regulatory role of these cells through maintaining gut integrity.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Salou, M. et al. Neuropathologic, phenotypic and functional analyses of mucosal associated invariant T cells in multiple sclerosis. Clin. Immunol. 166–167, 1–11 (2016).

    PubMed  Google Scholar 

  72. 72.

    Braudeau, C. et al. Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J. Autoimmun. 70, 73–79 (2016).

    CAS  PubMed  Google Scholar 

  73. 73.

    Carolan, E. et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J. Immunol. 194, 5775–5780 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Dunne, M. R. et al. Persistent changes in circulating and intestinal gammadelta T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLOS ONE 8, e76008 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Fazekas, B. et al. Alterations in circulating lymphoid cell populations in systemic small vessel vasculitis are non-specific manifestations of renal injury. Clin. Exp. Immunol. 191, 180–188 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Gerart, S. et al. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 121, 614–623 (2013).

    CAS  PubMed  Google Scholar 

  77. 77.

    Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    CAS  PubMed  Google Scholar 

  78. 78.

    Guggino, G. et al. IL-17 polarization of MAIT cells is derived from the activation of two different pathways. Eur. J. Immunol. 47, 2002–2003 (2017).

    CAS  PubMed  Google Scholar 

  79. 79.

    Haga, K. et al. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J. Gastroenterol. Hepatol. 31, 965–972 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Hayashi, E. et al. Involvement of mucosal-associated invariant T cells in ankylosing spondylitis. J. Rheumatol 43, 1695–1703 (2016).

    PubMed  Google Scholar 

  81. 81.

    Hiejima, E. et al. Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1529–1540 (2015).

    PubMed  Google Scholar 

  82. 82.

    Renand, A. et al. Immune alterations in patients with type 1 autoimmune hepatitis persist upon standard immunosuppressive treatment. Hepatol. Commun. 2, 968–981 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Riva, A. et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 67, 918–930 (2018). This study shows that in patients with alcoholic liver disease, MAIT cell dysfunction is associated with gut dysbiosis.

    CAS  PubMed  Google Scholar 

  84. 84.

    Toussirot, E., Laheurte, C., Gaugler, B., Gabriel, D. & Saas, P. Increased IL-22- and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front. Immunol. 9, 1610 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    von Seth, E. et al. Primary sclerosing cholangitis leads to dysfunction and loss of MAIT cells. Eur. J. Immunol. 48, 1997–2004 (2018).

    Google Scholar 

  86. 86.

    Wang, J. J., Macardle, C., Weedon, H., Beroukas, D. & Banovic, T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjogren’s syndrome patients. Eur. J. Immunol. 46, 2444–2453 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Bottcher, K. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 68, 172–186 (2018).

    PubMed  Google Scholar 

  88. 88.

    Chiba, A. et al. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res. Ther. 19, 58 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Cho, Y. N. et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 193, 3891–3901 (2014).

    CAS  PubMed  Google Scholar 

  90. 90.

    Hinks, T. S. et al. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J. Allergy Clin. Immunol. 136, 323–333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kim, M. et al. TNFalpha and IL-1beta in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. Cytokine 99, 91–98 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Lezmi, G. et al. Circulating IL-17-producing mucosal-associated invariant T cells (MAIT) are associated with symptoms in children with asthma. Clin. Immunol. 188, 7–11 (2018).

    CAS  PubMed  Google Scholar 

  93. 93.

    Li, Y. et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 9, 1994 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Touch, S. et al. Mucosal-associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB J. 32, fj201800052RR (2018).

    CAS  Google Scholar 

  95. 95.

    Miyazaki, Y., Miyake, S., Chiba, A., Lantz, O. & Yamamura, T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int. Immunol. 23, 529–535 (2011).

    CAS  PubMed  Google Scholar 

  96. 96.

    Illes, Z., Shimamura, M., Newcombe, J., Oka, N. & Yamamura, T. Accumulation of Valpha7.2-Jalpha33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int. Immunol. 16, 223–230 (2004).

    CAS  PubMed  Google Scholar 

  97. 97.

    Li, J. et al. The frequency of mucosal-associated invariant T cells is selectively increased in dermatitis herpetiformis. Australas. J. Dermatol. 58, 200–204 (2017).

    PubMed  Google Scholar 

  98. 98.

    Teunissen, M. B. M. et al. The IL-17A-producing CD8+ T cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J. Invest. Dermatol. 134, 2898–2907 (2014).

    CAS  PubMed  Google Scholar 

  99. 99.

    Willing, A. et al. CD8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur. J. Immunol. 44, 3119–3128 (2014).

    CAS  PubMed  Google Scholar 

  100. 100.

    Abrahamsson, S. V. et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136, 2888–2903 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Nicoletti, F. et al. Increased serum levels of interleukin-18 in patients with multiple sclerosis. Neurology 57, 342–344 (2001).

    CAS  PubMed  Google Scholar 

  102. 102.

    Ifergan, I. et al. Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 134, 3560–3577 (2011).

    PubMed  Google Scholar 

  103. 103.

    Ito, T., Carson, W. F.t., Cavassani, K. A., Connett, J. M. & Kunkel, S. L. CCR6 as a mediator of immunity in the lung and gut. Exp. Cell Res. 317, 613–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    CAS  PubMed  Google Scholar 

  105. 105.

    Miani, M. et al. Gut microbiota-stimulated innate lymphoid cells support beta-defensin 14 expression in pancreatic endocrine cells, preventing autoimmune diabetes. Cell Metab. 28, 557–572 (2018).

    CAS  PubMed  Google Scholar 

  106. 106.

    Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    CAS  PubMed  Google Scholar 

  107. 107.

    Novak, J., Dobrovolny, J., Novakova, L. & Kozak, T. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand. J. Immunol. 80, 271–275 (2014).

    CAS  PubMed  Google Scholar 

  108. 108.

    Walker, L. J., Tharmalingam, H. & Klenerman, P. The rise and fall of MAIT cells with age. Scand. J. Immunol. 80, 462–463 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Hanson, E. D. et al. Exercise increases mucosal-associated invariant T cell cytokine expression but not activation or homing markers. Med. Sci. Sports Exerc. 51, 379–388 (2019).

    CAS  PubMed  Google Scholar 

  110. 110.

    Keller, A. N. et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat. Immunol. 18, 402–411 (2017).

    CAS  PubMed  Google Scholar 

  111. 111.

    Annibali, V. et al. CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134, 542–554 (2011).

    PubMed  Google Scholar 

  112. 112.

    Hinks, T. S. Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, E30 (2015).

    PubMed  Google Scholar 

  113. 113.

    Dias, J., Leeansyah, E. & Sandberg, J. K. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc. Natl Acad. Sci. USA 114, E5434–E5443 (2017).

    CAS  PubMed  Google Scholar 

  114. 114.

    Dias, J. et al. The CD4CD8 MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc. Natl Acad. Sci. USA 115, E11513–E11522 (2018).

    CAS  PubMed  Google Scholar 

  115. 115.

    Rahimpour, A. et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095–1108 (2015). This is the first study to provide exhaustive MAIT cell phenotypes and cytokine production in different tissues of C57BL/6 and BALB/c mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Marwaha, A. K., Leung, N. J., McMurchy, A. N. & Levings, M. K. TH17 cells in autoimmunity and immunodeficiency: protective or pathogenic? Front. Immunol. 3, 129 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Chiba, A. et al. Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis. Arthritis Rheum. 64, 153–161 (2012).

    CAS  PubMed  Google Scholar 

  118. 118.

    Willing, A., Jager, J., Reinhardt, S., Kursawe, N. & Friese, M. A. Production of IL-17 by MAIT cells is increased in multiple sclerosis and is associated with IL-7 receptor expression. J. Immunol. 200, 974–982 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    CAS  PubMed  Google Scholar 

  120. 120.

    Rihl, M. et al. Identification of interleukin-7 as a candidate disease mediator in spondylarthritis. Arthritis Rheum. 58, 3430–3435 (2008).

    CAS  PubMed  Google Scholar 

  121. 121.

    International Genetics of Ankylosing Spondylitis Consortium (IGAS). Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

    Google Scholar 

  122. 122.

    Fabbrini, E. et al. Association between specific adipose tissue CD4+ T cell populations and insulin resistance in obese individuals. Gastroenterology 145, 366–374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Zuniga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol. 185, 6947–6959 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Kuric, E. et al. No evidence for presence of mucosal-associated invariant T cells in the insulitic lesions in patients recently diagnosed with type 1 diabetes. Am. J. Pathol. 188, 1744–1748 (2018).

    CAS  PubMed  Google Scholar 

  125. 125.

    Ruijing, X. et al. Jα33+ MAIT cells play a protective role in TNBS induced intestinal inflammation. Hepatogastroenterology 59, 762–767 (2012).

    PubMed  Google Scholar 

  126. 126.

    Croxford, J. L., Miyake, S., Huang, Y. Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006). This is the first report to describe MAIT cell inhibition of autoimmune disease in the context of experimental autoimmune encephalomyelitis.

    CAS  PubMed  Google Scholar 

  127. 127.

    Song, F. et al. Expression of the neutrophil chemokine KC in the colon of mice with enterocolitis and by intestinal epithelial cell lines: effects of flora and proinflammatory cytokines. J. Immunol. 162, 2275–2280 (1999).

    CAS  PubMed  Google Scholar 

  128. 128.

    Kaneko, M., Akiyama, Y., Takimoto, H. & Kumazawa, Y. Mechanism of up-regulation of immunoglobulin A production in the intestine of mice unresponsive to lipopolysaccharide. Immunology 116, 64–70 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Chandra, S. et al. Development of asthma in inner-city children: possible roles of MAIT cells and variation in the home environment. J. Immunol. 200, 1995–2003 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Bach, J. F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat. Rev. Immunol. 18, 105–120 (2018).

    CAS  PubMed  Google Scholar 

  131. 131.

    Shimamura, M. et al. Regulation of immunological disorders by invariant Valpha19-Jalpha33 TCR-bearing cells. Immunobiology 216, 374–378 (2011).

    CAS  PubMed  Google Scholar 

  132. 132.

    Harley, I. T. et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 59, 1830–1839 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Marra, F. & Lotersztajn, S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr. Pharm. Des. 19, 5250–5269 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Ling, L. et al. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci. Rep. 6, 20358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Zabijak, L. et al. Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol. Immunother. 64, 1601–1608 (2015).

    CAS  PubMed  Google Scholar 

  136. 136.

    Won, E. J. et al. Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 7, 76274–76290 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Duan, M. et al. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin. Cancer Res. 25, 3304–3316 (2019). This study describes major MAIT cell alterations in hepatocellular carcinoma and the poor clinical outcome associated with high tumour MAIT cell infiltration.

    PubMed  Google Scholar 

  138. 138.

    Sundstrom, P. et al. Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-gamma. J. Immunol. 195, 3472–3481 (2015).

    PubMed  Google Scholar 

  139. 139.

    Shaler, C. R. et al. Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol. Immunother. 66, 1563–1575 (2017).

    CAS  PubMed  Google Scholar 

  140. 140.

    Kawaguchi, K. et al. Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation. Int. J. Hematol. 108, 66–75 (2018).

    PubMed  Google Scholar 

  141. 141.

    Bhattacharyya, A. et al. Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 24, 242–251 (2018).

    CAS  PubMed  Google Scholar 

  142. 142.

    Varelias, A. et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J. Clin. Invest. 128, 1919–1936 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Mondot, S., Boudinot, P. & Lantz, O. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules? Immunogenetics 68, 537–548 (2016).

    CAS  PubMed  Google Scholar 

  144. 144.

    Garner, L. C., Klenerman, P. & Provine, N. M. Insights into mucosal-associated invariant T cell biology from studies of invariant natural killer T cells. Front. Immunol. 9, 1478 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Seino, K. & Taniguchi, M. Functionally distinct NKT cell subsets and subtypes. J. Exp. Med. 202, 1623–1626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Kain, L. et al. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41, 543–554 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Tastan, C. et al. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T cell presentation. Mucosal Immunol. 11, 1591–1605 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Lepore, M. et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. eLife 6, e24476 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Opazo, M. C. et al. Intestinal microbiota influences non-intestinal related autoimmune diseases. Front. Microbiol. 9, 432 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    CAS  PubMed  Google Scholar 

  151. 151.

    Kho, Z. Y. & Lal, S. K. The human gut microbiome - a potential controller of wellness and disease. Front. Microbiol. 9, 1835 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Voillet, V. et al. Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions. JCI Insight 3, 98487 (2018).

    PubMed  Google Scholar 

  153. 153.

    Sugimoto, C. et al. Mucosal-associated invariant T cell is a potential marker to distinguish fibromyalgia syndrome from arthritis. PLOS ONE 10, e0121124 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Gherardin, N. A. et al. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 96, 507–525 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Nicol, B. et al. An intermediate level of CD161 expression defines a novel activated, inflammatory, and pathogenic subset of CD8+ T cells involved in multiple sclerosis. J. Autoimmun. 88, 61–74 (2018).

    CAS  PubMed  Google Scholar 

  156. 156.

    Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Jiang, J. et al. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J. Infect. 72, 338–352 (2016).

    PubMed  Google Scholar 

  158. 158.

    Cliff, J. M. et al. Cellular immune function in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front. Immunol. 10, 796 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Ishimori, A. et al. Circulating activated innate lymphoid cells and mucosal-associated invariant T cells are associated with airflow limitation in patients with asthma. Allergol. Int. 66, 302–309 (2017).

    CAS  PubMed  Google Scholar 

  160. 160.

    Peterfalvi, A. et al. Invariant Vα7.2-Jα33 TCR is expressed in human kidney and brain tumors indicating infiltration by mucosal-associated invariant T (MAIT) cells. Int. Immunol. 20, 1517–1525 (2008).

    CAS  PubMed  Google Scholar 

  161. 161.

    Zumwalde, N. A., Haag, J. D., Gould, M. N. & Gumperz, J. E. Mucosal associated invariant T cells from human breast ducts mediate a Th17-skewed response to bacterially exposed breast carcinoma cells. Breast Cancer Res. 20, 111 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to U. Rogner for critical reading of the manuscript. This work was supported by grants from INSERM, CNRS, Laboratoire d’Excellence consortium Inflamex (grant number ANR-11-IDEX-0005-02) and the Fondation pour la Recherche Médicale (FRM grant numbers DEQ20140329520, to A.L., and DEQ20150331726, to S.L.), EFSD/JDRF/Lilly and EFSD/Lilly (to A.L. and A.T.), Fondation Francophone pour la recherche sur le Diabète (to A.L.), an Aide aux Jeunes Diabétiques fellowship to I.N., and Agence Nationale de la Recherche (ANR OBEMAIT, Provide and Diab1MAIT grants to A.L.).

Reviewer information

Nature Reviews Immunology thanks P. Klenerman and J. Sandberg for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors contributed to writing the review. A.T. and I.N. contributed equally.

Corresponding author

Correspondence to Agnès Lehuen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toubal, A., Nel, I., Lotersztajn, S. et al. Mucosal-associated invariant T cells and disease. Nat Rev Immunol 19, 643–657 (2019). https://doi.org/10.1038/s41577-019-0191-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing