Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MR1 antigen presentation to MAIT cells and other MR1-restricted T cells

Abstract

MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1–antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed immune outcomes for MR1 presentation of metabolite antigens in vivo.
Fig. 2: Major classes of ligands presented by MR1.
Fig. 3: The MR1 trafficking pathway and associated cellular machinery.
Fig. 4: An intracellular pool of ligand-receptive MR1 molecules enables a strong antigen presentation signal.

Similar content being viewed by others

References

  1. Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 22, 751–764 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barral, D. C. & Brenner, M. B. CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7, 929–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    Article  PubMed  Google Scholar 

  6. Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. McWilliam, H. E. et al. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat. Immunol. 17, 531–537 (2016). This study outlines the trafficking pathway followed by MR1 from its synthesis in the ER to its degradation in endosomes and the role of VitBAg in regulation of MR1 expression.

    Article  CAS  PubMed  Google Scholar 

  8. Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012). This study reveals that MR1 binds and presents VitBAgs to MAIT cells.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014). This study identifies the most potent MR1 antigens, the 5-A-RU-derived pyrimidines such as 5-OP-RU.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. García-Angulo, V. A. Overlapping riboflavin supply pathways in bacteria. Crit. Rev. Microbiol. 43, 196–209 (2017).

    Article  PubMed  Google Scholar 

  12. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003). This study outlines the discovery that MAIT cells are restricted by MR1.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Kjer-Nielsen, L. et al. An overview on the identification of MAIT cell antigens. Immunol. Cell Biol. 96, 573–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Gherardin, N. A., McCluskey, J., Rossjohn, J. & Godfrey, D. I. The diverse family of MR1-restricted T cells. J. Immunol. 201, 2862–2871 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Godfrey, D. I., Koay, H.-F., McCluskey, J. & Gherardin, N. A. The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Lantz, O. & Legoux, F. MAIT cells: an historical and evolutionary perspective. Immunol. Cell Biol. 96, 564–572 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Koay, H.-F. et al. Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10, 2243 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 7, e54 (2009).

    Article  PubMed  Google Scholar 

  21. Koay, H. F. et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17, 1300–1311 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Gold, M. C. et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 6, 35–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019). This study shows that MR1 expressed in the thymus presents antigen from peripheral tissues for MAIT cell development.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reantragoon, R. et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gherardin, N. A. et al. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 96, 507–525 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meierovics, A., Yankelevich, W. J. & Cowley, S. C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc. Natl Acad. Sci. USA 110, E3119–E3128 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Le Bourhis, L. et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 9, e1003681 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang, H. et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun. 9, 3350 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Leng, T. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep. 28, 3077–3091.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du Halgouet, A. et al. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. Immunity 56, 78–92.e6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smith, A. D. et al. Microbiota of MR1 deficient mice confer resistance against Clostridium difficile infection. PLoS ONE 14, e0223025 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varelias, A. et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J. Clin. Invest. 128, 1919–1936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Crowther, M. D. & Sewell, A. K. The burgeoning role of MR1-restricted T-cells in infection, cancer and autoimmune disease. Curr. Opin. Immunol. 69, 10–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Shibata, K. et al. Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b. Nat. Commun. 13, 6948 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gherardin, N. A. et al. Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity 44, 32–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Vacchini, A., Chancellor, A., Spagnuolo, J., Mori, L. & De Libero, G. MR1-restricted T cells are unprecedented cancer fighters. Front. Immunol. 11, 751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Crowther, M. D. et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat. Immunol. 21, 178–185 (2020). This study finds an MR1T cell clone that appears to recognize cancer antigens presented by MR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lepore, M. et al. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. eLife 6, e24476 (2017). This study provides evidence of distinct types of MR1-presented cancer antigens recognized by MR1T cells.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Seneviratna, R. et al. Differential antigenic requirements by diverse MR1-restricted T cells. Immunol. Cell Biol. 100, 112–126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rock, K. L., Reits, E. & Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 37, 724–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Villadangos, J. A. & Ploegh, H. L. Proteolysis in MHC class II antigen presentation. Immunity 12, 233–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. van de Weijer, M. L., Luteijn, R. D. & Wiertz, E. J. Viral immune evasion: lessons in MHC class I antigen presentation. Semin. Immunol. 27, 125–137 (2015).

    Article  PubMed  Google Scholar 

  45. Awad, W. et al. The molecular basis underpinning the potency and specificity of MAIT cell antigens. Nat. Immunol. 21, 400–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Mak, J. Y. et al. Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells. Nat. Commun. 8, 14599 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Tastan, C. et al. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol. 11, 1591–1605 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mondot, S., Boudinot, P. & Lantz, O. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules? Immunogenetics 68, 537–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Schmaler, M. et al. Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunol. 11, 1060–1070 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Georgel, P., Radosavljevic, M., Macquin, C. & Bahram, S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol. Immunol. 48, 769–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Howson, L. J. et al. Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1. Sci. Immunol. 5, eabc9492 (2020). This study examines a patient lacking MAIT cells who had a homozygous mutation in MR1 preventing presentation of VitBAg.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klebanoff, C. A., Rosenberg, S. A. & Restifo, N. P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22, 26–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McWilliam, H. E., Birkinshaw, R. W., Villadangos, J. A., McCluskey, J. & Rossjohn, J. MR1 presentation of vitamin B-based metabolite ligands. Curr. Opin. Immunol. 34, 28–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Jin, H. et al. Deaza-modification of MR1 ligands modulates recognition by MR1-restricted T cells. Sci. Rep. 12, 22539 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Corbett, A. J., Awad, W., Wang, H. & Chen, Z. Antigen recognition by MR1-reactive T cells; MAIT cells, metabolites, and remaining mysteries. Front. Immunol. 11, 1961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eckle, S. B. et al. A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med. 211, 1585–1600 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keller, A. N. et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat. Immunol. 18, 402–411 (2017). This study reveals that MR1 can present a diverse range of metabolites and drug-like molecules with functional consequences for MAIT cells.

    Article  CAS  PubMed  Google Scholar 

  58. Naidoo, K. et al. MR1‐dependent immune surveillance of the skin contributes to pathogenesis and is a photobiological target of UV light therapy in a mouse model of atopic dermatitis. Allergy 76, 3155–3170 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Harriff, M. J. et al. MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. Sci. Immunol. 3, eaao2556 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meermeier, E. W. et al. Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens. Nat. Commun. 7, 12506 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Souter, M. N. T. et al. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J. Exp. Med. 219, e20210828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ler, G. J. M. et al. Computer modelling and synthesis of deoxy and monohydroxy analogues of a ribitylaminouracil bacterial metabolite that potently activates human T cells. Chemistry 25, 15594–15608 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Mak, J. Y. W., Liu, L. & Fairlie, D. P. Chemical modulators of mucosal associated invariant T cells. Acc. Chem. Res. 54, 3462–3475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lange, J. et al. The chemical synthesis, stability, and activity of MAIT cell prodrug agonists that access MR1 in recycling endosomes. ACS Chem. Biol. 15, 437–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Harriff, M. J. et al. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells. PLoS ONE 9, e97515 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Z. et al. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol. 10, 58–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Lim, H. J. et al. A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells. J. Cell Biol. 221, e202110125 (2022). This study reveals the molecular mechanism of MR1 cell surface display and endocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao, T. et al. MAIT cells accumulate in ovarian cancer-elicited ascites where they retain their capacity to respond to MR1 ligands and cytokine cues. Cancer Immunol. Immunother. 71, 1259–1273 (2021).

    Article  PubMed  Google Scholar 

  69. Harriff, M. J. et al. Endosomal mr1 trafficking plays a key role in presentation of Mycobacterium tuberculosis ligands to MAIT cells. PLoS Pathog. 12, e1005524 (2016). This study finds several secretory pathway regulators that are required for MR1 antigen presentation.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Le Nours, J. et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science 366, 1522–1527 (2019).

    Article  ADS  PubMed  Google Scholar 

  71. Wilson, N. S., El-Sukkari, D. & Villadangos, J. A. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103, 2187–2195 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Salio, M. et al. Ligand-dependent downregulation of MR1 cell surface expression. Proc. Natl Acad. Sci. USA 117, 10465–10475 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Villadangos, J. A., Schnorrer, P. & Wilson, N. S. Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces. Immunol. Rev. 207, 191–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Huang, S. et al. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J. Exp. Med. 205, 1201–1211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McWilliam, H. E. G. et al. Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens. Proc. Natl Acad. Sci. USA 117, 24974–24985 (2020). This study describes a tagged MR1 ligand and uses it to show that MR1 binds extracellular ligands directly in the ER and is stabilized in this compartment by tapasin or TAPBPR.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abós, B. et al. Human MR1 expression on the cell surface is acid sensitive, proteasome independent and increases after culturing at 26 °C. Biochem. Biophys. Res. Commun. 411, 632–636 (2011).

    Article  PubMed  Google Scholar 

  77. Yamaguchi, H. & Hashimoto, K. Association of MR1 protein, an MHC class I-related molecule, with β2-microglobulin. Biochem. Biophys. Res. Commun. 290, 722–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Miley, M. J. et al. Biochemical features of the MHC-related protein 1 consistent with an immunological function. J. Immunol. 170, 6090–6098 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Ljunggren, H. G. et al. Empty MHC class I molecules come out in the cold. Nature 346, 476–480 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Nelson, C. A., Petzold, S. J. & Unanue, E. R. Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature 371, 250–252 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Sadegh-Nasseri, S., Stern, L. J., Wiley, D. C. & Germain, R. N. MHC class II function preserved by low-affinity peptide interactions preceding stable binding. Nature 370, 647–650 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Hill, A. et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Kulicke, C. A. et al. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J. Biol. Chem. 298, 101542 (2021). This study uses a genome-wide screen to reveal that MR1 levels and antigen presentation are modulated by the loss of the P5-type ATPase ATP13A1.

    Article  PubMed  PubMed Central  Google Scholar 

  84. McKenna, M. J. et al. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 369, eabc5809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blees, A. et al. Structure of the human MHC-I peptide-loading complex. Nature 551, 525–528 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Wearsch, P. A. & Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin–ERp57 heterodimer. Nat. Immunol. 8, 873–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Jiang, J. et al. Crystal structure of a TAPBPR–MHC-I complex reveals the mechanism of peptide editing in antigen presentation. Science 358, 1064–1068 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boyle, L. H. et al. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc. Natl Acad. Sci. USA 110, 3465–3470 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Neerincx, A. & Boyle, L. H. Properties of the tapasin homologue TAPBPR. Curr. Opin. Immunol. 46, 97–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Thomas, C. & Tampe, R. Proofreading of peptide–MHC complexes through dynamic multivalent interactions. Front. Immunol. 8, 65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dong, G., Wearsch, P. A., Peaper, D. R., Cresswell, P. & Reinisch, K. M. Insights into MHC class I peptide loading from the structure of the tapasin–ERp57 thiol oxidoreductase heterodimer. Immunity 30, 21–32 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Thomas, C. & Tampe, R. MHC I assembly and peptide editing—chaperones, clients, and molecular plasticity in immunity. Curr. Opin. Immunol. 70, 48–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Purcell, A. W. et al. Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J. Immunol. 166, 1016–1027 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. McShan, A. C. et al. TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules. Nat. Chem. Biol. 18, 859–868 (2022). This study provides the structural basis for how TAPBPR chaperones MR1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bashirova, A. A. et al. HLA tapasin independence: broader peptide repertoire and HIV control. Proc. Natl Acad. Sci. USA 117, 28232–28238 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peh, C. A., Laham, N., Burrows, S. R., Zhu, Y. & McCluskey, J. Distinct functions of tapasin revealed by polymorphism in MHC class I peptide loading. J. Immunol. 164, 292–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ussher, J. E. et al. TLR signalling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur. J. Immunol. 46, 1600–1614 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, J. & Brutkiewicz, R. R. The Toll-like receptor 9 signalling pathway regulates MR1-mediated bacterial antigen presentation in B cells. Immunol 152, 232–242 (2017).

    Article  CAS  Google Scholar 

  99. Villadangos, J. A. et al. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity 14, 739–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Purohit, S. K. et al. Varicella zoster virus impairs expression of the non-classical major histocompatibility complex class I-related gene protein (MR1). J. Infect. Dis. 227, 391–401 (2021).

    Article  PubMed Central  Google Scholar 

  102. McSharry, B. P. et al. Virus-mediated suppression of the antigen presentation molecule MR1. Cell Rep. 30, 2948–2962.e4 (2020). This study is the first to reveal that viruses can specifically target MR1 for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ashley, C. L. et al. Suppression of MR1 by human cytomegalovirus inhibits MAIT cell activation. Front Immunol. 14, 1107497 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Samer, C. et al. Viral impacts on MR1 antigen presentation to MAIT cells. Crit. Rev. Immunol. 41, 49–67 (2021).

    Article  PubMed  Google Scholar 

  105. Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Corse, E., Gottschalk, R. A. & Allison, J. P. Strength of TCR–peptide/MHC interactions and in vivo T cell responses. J. Immunol. 186, 5039–5045 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Adams, B. M., Oster, M. E. & Hebert, D. N. Protein quality control in the endoplasmic reticulum. Protein J. 38, 317–329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Caramelo, J. J., Castro, O. A., Alonso, L. G., De Prat-Gay, G. & Parodi, A. J. UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc. Natl Acad. Sci. USA 100, 86–91 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Vassilakos, A., Cohen-Doyle, M. F., Peterson, P. A., Jackson, M. R. & Williams, D. B. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 15, 1495–1506 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Peaper, D. R. & Cresswell, P. Regulation of MHC class I assembly and peptide binding. Annu. Rev. Cell Dev. Biol. 24, 343–368 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. McWilliam, H. E. G. & Villadangos, J. A. How MR1 presents a pathogen metabolic signature to mucosal-associated invariant T (MAIT) cells. Trends Immunol. 38, 679–689 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Kumari, S., Mg, S. & Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 20, 256–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Ohno, H. et al. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem. 273, 25915–25921 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Karamooz, E., Harriff, M. J., Narayanan, G. A., Worley, A. & Lewinsohn, D. M. MR1 recycling and blockade of endosomal trafficking reveal distinguishable antigen presentation pathways between Mycobacterium tuberculosis infection and exogenously delivered antigens. Sci. Rep. 9, 4797 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  116. McWilliam, H. E. & Villadangos, J. A. MR1 antigen presentation to MAIT cells: new ligands, diverse pathways? Curr. Opin. Immunol. 52, 108–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Karamooz, E., Harriff, M. J. & Lewinsohn, D. M. MR1-dependent antigen presentation. Semin. Cell Dev. Biol. 84, 58–64 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kulicke, C., Karamooz, E., Lewinsohn, D. & Harriff, M. Covering all the bases: complementary MR1 antigen presentation pathways sample diverse antigens and intracellular compartments. Front. Immunol. 11, 2034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McWilliam, H. E. & Villadangos, J. A. MR1: a multi-faceted metabolite sensor for T cell activation. Curr. Opin. Immunol. 64, 124–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Eggensperger, S. & Tampe, R. The transporter associated with antigen processing: a key player in adaptive immunity. Biol. Chem. 396, 1059–1072 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Sandvig, K. & Van Deurs, B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529, 49–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Ackerman, A. L., Kyritsis, C., Tampe, R. & Cresswell, P. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat. Immunol. 6, 107–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  124. Soudais, C. et al. In vitro and in vivo analysis of the Gram-negative bacteria-derived riboflavin precursor derivatives activating mouse MAIT cells. J. Immunol. 194, 4641–4649 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Patel, O. et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4, 2142 (2013).

    Article  ADS  PubMed  Google Scholar 

  126. Pentcheva, T., Spiliotis, E. T. & Edidin, M. Cutting edge: tapasin is retained in the endoplasmic reticulum by dynamic clustering and exclusion from endoplasmic reticulum exit sites. J. Immunol. 168, 1538–1541 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Barnden, M. J., Purcell, A. W., Gorman, J. J. & McCluskey, J. Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol. 165, 322–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Meyerholz, A. et al. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6, 1225–1234 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Traub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dickson, L. J., Liu, S. & Storrie, B. Rab6 is required for rapid, cisternal-specific, intra-Golgi cargo transport. Sci. Rep. 10, 16604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Martinez, O. et al. The small GTP-binding protein rab6 functions in intra-Golgi transport. J. Cell Biol. 127, 1575–1588 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Martinez, O. et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 94, 1828–1833 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Utskarpen, A., Slagsvold, H. H., Iversen, T.-G., Wälchli, S. & Sandvig, K. Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A′. Traffic 7, 663–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Spessott, W. A., Sanmillan, M. L., Kulkarni, V. V., McCormick, M. E. & Giraudo, C. G. Syntaxin 4 mediates endosome recycling for lytic granule exocytosis in cytotoxic T-lymphocytes. Traffic 18, 442–452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stow, J. L., Manderson, A. P. & Murray, R. Z. SNAREing immunity: the role of SNAREs in the immune system. Nat. Rev. Immunol. 6, 919–929 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Ganley, I. G., Espinosa, E. & Pfeffer, S. R. A syntaxin 10–SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J. Cell Biol. 180, 159–172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hirose, H. et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 23, 1267–1278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hatsuzawa, K. et al. Syntaxin 18, a SNAP receptor that functions in the endoplasmic reticulum, intermediate compartment, and cis-Golgi vesicle trafficking. J. Biol. Chem. 275, 13713–13720 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Williams, D. & Pessin, J. E. Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes. J. Cell Biol. 180, 375–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fritzius, T., Frey, A. D., Schweneker, M., Mayer, D. & Moelling, K. WD-repeat-propeller-FYVE protein, ProF, binds VAMP2 and protein kinase Cζ. FEBS J. 274, 1552–1566 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Shitara, A. et al. VAMP4 is required to maintain the ribbon structure of the Golgi apparatus. Mol. Cell. Biochem. 380, 11–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Imai, T. et al. Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells. PLoS ONE 8, e72050 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rao, P. et al. Herpes simplex virus 1 glycoprotein B and US3 collaborate to inhibit CD1d antigen presentation and NKT cell function. J. Virol. 85, 8093–8104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Seidel, E. et al. Dynamic co-evolution of host and pathogen: HCMV downregulates the prevalent allele MICA*008 to escape elimination by NK cells. Cell Rep. 10, 968–982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Abendroth, A., Lin, I., Slobedman, B., Ploegh, H. & Arvin, A. M. Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J. Virol. 75, 4878–4888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Riegert, P., Wanner, V. & Bahram, S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J. Immunol. 161, 4066–4077 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Yamaguchi, H., Hirai, M., Kurosawa, Y. & Hashimoto, K. A highly conserved major histocompatibility complex class I-related gene in mammals. Biochem. Biophys. Res. Commun. 238, 697–702 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Tsukamoto, K., Deakin, J. E., Graves, J. A. & Hashimoto, K. Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics 65, 115–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Robinson, J. et al. IPD-IMGT/HLA database. Nucleic Acids Res. 48, D948–D955 (2020).

    CAS  PubMed  Google Scholar 

  152. Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Rozemuller, E. et al. MR1 encompasses at least six allele groups with coding region alterations. HLA 98, 509–516 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Seshadri, C. et al. A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis. Genes. Immun. 18, 8–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Robinson, J. et al. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A, -B and -C alleles. PLOS Genet. 13, e1006862 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Huang, S. et al. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc. Natl Acad. Sci. USA 106, 8290–8295 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Boudinot, P. et al. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. Proc. Natl Acad. Sci. USA 113, E2983–E2992 (2016). This study describes MR1 conservation in mammalian evolution and finds that MR1 and the MAIT cell TCRα chain (TRAV1) are intricately intertwined through evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.E.G.M. discloses support for the research of this work from the National Health and Medical Research Council of Australia (NHMRC) (2003192). J.A.V. discloses support for the research of this work from the Australian Research Council (ARC) (DP170102471), the NHMRC (1113293 and 1058193) and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) (R01AI148407).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Hamish E. G. McWilliam or Jose A. Villadangos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Mariolina Salio, Oliver Lantz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McWilliam, H.E.G., Villadangos, J.A. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 24, 178–192 (2024). https://doi.org/10.1038/s41577-023-00934-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00934-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing