Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The transition from genomics to phenomics in personalized population health

Abstract

Modern health care faces several serious challenges, including an ageing population and its inherent burden of chronic diseases, rising costs and marginal quality metrics. By assessing and optimizing the health trajectory of each individual using a data-driven personalized approach that reflects their genetics, behaviour and environment, we can start to address these challenges. This assessment includes longitudinal phenome measures, such as the blood proteome and metabolome, gut microbiome composition and function, and lifestyle and behaviour through wearables and questionnaires. Here, we review ongoing large-scale genomics and longitudinal phenomics efforts and the powerful insights they provide into wellness. We describe our vision for the transformation of the current health care from disease-oriented to data-driven, wellness-oriented and personalized population health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenomic snapshots track health trajectories.
Fig. 2: Five fundamental principles of personalized population health.
Fig. 3: The multidimensional health trajectory of an individual.
Fig. 4: Personalized population health enabled by innovative technologies and their large-scale application.
Fig. 5: The integration of big data and knowledge graphs enables advanced analytics that surpass correlations and facilitate the identification of causal mechanisms.

Similar content being viewed by others

References

  1. WHO Department of Data and Analytics, Division of Data, Analytics and Delivery for Impact. WHO Methods and Data Sources for Life Tables 1990–2019. https://www.who.int/docs/default-source/gho-documents/global-health-estimates/ghe2019_life-table-methods.pdf (2020).

  2. Hajat, C. & Stein, E. The global burden of multiple chronic conditions: a narrative review. Prev. Med. Rep. 12, 284–293 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    CAS  ADS  PubMed  Google Scholar 

  4. Senn, S. Statistical pitfalls of personalized medicine. Nature 563, 619–621 (2018).

    CAS  ADS  PubMed  Google Scholar 

  5. Dunlap, N. E. et al. Observations from the field: reporting quality metrics in health care. NAM Perspect. https://doi.org/10.31478/201607e (2016).

  6. AHRQ. 2022 National Healthcare Quality and Disparities Report. Agency for Healthcare Research and Quality https://www.ahrq.gov/research/findings/nhqrdr/nhqdr22/index.html (2023).

  7. Yurkovich, J. T. & Hood, L. Blood is a window into health and disease. Clin. Chem. 65, 1204–1206 (2019).

    CAS  PubMed  Google Scholar 

  8. Mooradian, A. D. The merits and the pitfalls of low carbohydrate diet: a concise review. J. Nutr. Health Aging 24, 805–808 (2020).

    CAS  PubMed  Google Scholar 

  9. Lee, P. et al. Digital health COVID-19 impact assessment: lessons learned and compelling needs. NAM Perspect. https://doi.org/10.31478/202201c (2022).

  10. Pennisi, E. A $100 genome? New DNA sequencers could be a ‘game changer’ for biology, medicine. Science https://doi.org/10.1126/science.add5060 (2022).

  11. Bowcock, A. M. Genomics: guilt by association. Nature 447, 645–646 (2007).

    CAS  ADS  PubMed  Google Scholar 

  12. Kahl, V. F. S. et al. Telomere length measurement by molecular combing. Front. Cell Dev. Biol. 8, 493 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Reinius, L. E. et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE 7, e41361 (2012).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  14. Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  15. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

  16. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    CAS  PubMed  Google Scholar 

  17. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    CAS  PubMed  Google Scholar 

  18. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS  PubMed  Google Scholar 

  19. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    CAS  ADS  PubMed  Google Scholar 

  20. Yousefi, P. D. et al. DNA methylation-based predictors of health: applications and statistical considerations. Nat. Rev. Genet. 23, 369–383 (2022).

    CAS  PubMed  Google Scholar 

  21. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS  PubMed  Google Scholar 

  22. Lio, C.-W. J., Yuita, H. & Rao, A. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood 134, 1487–1497 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Guo, M., Peng, Y., Gao, A., Du, C. & Herman, J. G. Epigenetic heterogeneity in cancer. Biomark. Res. 7, 23 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Apicella, C., Ruano, C. S. M., Méhats, C., Miralles, F. & Vaiman, D. The role of epigenetics in placental development and the etiology of preeclampsia. Int. J. Mol. Sci. 20, 2837 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, U. & Song, M.-A. Dietary and lifestyle factors of DNA methylation. Methods Mol. Biol. 863, 359–376 (2012).

    CAS  PubMed  Google Scholar 

  26. Rozek, L. S., Dolinoy, D. C., Sartor, M. A. & Omenn, G. S. Epigenetics: relevance and implications for public health. Annu. Rev. Public Health 35, 105–122 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Kim, C. H. et al. Stability and reproducibility of proteomic profiles measured with an aptamer-based platform. Sci. Rep. 8, 8382 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  28. Petrera, A. et al. Multiplatform approach for plasma proteomics: complementarity of Olink Proximity Extension Assay technology to mass spectrometry-based protein profiling. J. Proteome Res. 20, 751–762 (2021).

    CAS  PubMed  Google Scholar 

  29. Eldjarn, G. H. et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622, 348–358 (2023).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  30. Chandramouli, K. & Qian, P.-Y. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum. Genom. Proteom. 2009, 239204 (2009).

    Google Scholar 

  31. Güntner, A. T. et al. Breath sensors for health monitoring. ACS Sens. 4, 268–280 (2019).

    PubMed  Google Scholar 

  32. Kennedy, A. D. et al. Metabolomics in the clinic: a review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J. Mass Spectrom. 53, 1143–1154 (2018).

    CAS  ADS  PubMed  Google Scholar 

  33. Würtz, P. et al. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am. J. Epidemiol. 186, 1084–1096 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Tasoglu, S. Toilet-based continuous health monitoring using urine. Nat. Rev. Urol. 19, 219–230 (2022).

    PubMed  Google Scholar 

  35. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    CAS  PubMed  Google Scholar 

  36. Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mayer, E. A., Nance, K. & Chen, S. The gut–brain axis. Annu. Rev. Med. 73, 439–453 (2022).

    CAS  PubMed  Google Scholar 

  38. Tilg, H., Adolph, T. E. & Trauner, M. Gut–liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    CAS  PubMed  Google Scholar 

  39. Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).

    PubMed  PubMed Central  Google Scholar 

  40. Andoh, A. & Nishida, A. Alteration of the gut microbiome in inflammatory bowel disease. Digestion 104, 16–23 (2023).

    CAS  PubMed  Google Scholar 

  41. Nichols, R. G., Peters, J. M. & Patterson, A. D. Interplay between the host, the human microbiome, and drug metabolism. Hum. Genom. 13, 27 (2019).

    Google Scholar 

  42. Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med 3, 388–405.e6 (2022).

    CAS  PubMed  Google Scholar 

  43. Wilmanski, T., Rappaport, N., Diener, C., Gibbons, S. M. & Price, N. D. From taxonomy to metabolic output: what factors define gut microbiome health? Gut Microbes 13, 1–20 (2021).

    PubMed  Google Scholar 

  44. Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ip, J. E. Wearable devices for cardiac rhythm diagnosis and management. JAMA 321, 337–338 (2019).

    PubMed  Google Scholar 

  46. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  47. Lee, I., Probst, D., Klonoff, D. & Sode, K. Continuous glucose monitoring systems — current status and future perspectives of the flagship technologies in biosensor research. Biosens. Bioelectron. 181, 113054 (2021).

    CAS  PubMed  Google Scholar 

  48. Taj, F., Klein, M. C. A. & van Halteren, A. Digital health behavior change technology: bibliometric and scoping review of two decades of research. JMIR mHealth uHealth 7, e13311 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Öhman, F., Hassenstab, J., Berron, D., Schöll, M. & Papp, K. V. Current advances in digital cognitive assessment for preclinical Alzheimer’s disease. Alzheimers Dement. 13, e12217 (2021).

    Google Scholar 

  50. Nahum, M., Lee, H. & Merzenich, M. M. Principles of neuroplasticity-based rehabilitation. Prog. Brain Res. 207, 141–171 (2013).

    PubMed  Google Scholar 

  51. Lindner, N., Kuwabara, A. & Holt, T. Non-invasive and minimally invasive glucose monitoring devices: a systematic review and meta-analysis on diagnostic accuracy of hypoglycaemia detection. Syst. Rev. 10, 145 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    PubMed  Google Scholar 

  53. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  54. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, X. et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit. Health 1, e271–e297 (2019).

    PubMed  Google Scholar 

  56. Wong, B. L. H. et al. The dawn of digital public health in Europe: implications for public health policy and practice. Lancet Reg. Health Eur. 14, 100316 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Boyd, A. D. et al. Potential bias and lack of generalizability in electronic health record data: reflections on health equity from the National Institutes of Health Pragmatic Trials Collaboratory. J. Am. Med. Inform. Assoc. 30, 1561–1566 (2023).

    PubMed  PubMed Central  Google Scholar 

  58. Joshua Lin, K. et al. Longitudinal data discontinuity in electronic health records and consequences for medication effectiveness studies. Clin. Pharmacol. Ther. 111, 243–251 (2022).

    PubMed  Google Scholar 

  59. Carey, D. J. et al. The Geisinger MyCode Community Health Initiative: an electronic health record-linked biobank for precision medicine research. Genet. Med. 18, 906–913 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Vatsalan, D., Christen, P. & Verykios, V. S. A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 38, 946–969 (2013).

    Google Scholar 

  61. Jain, A. & Srivastava, N. Privacy-preserving record linkage with block-chains. In Proc. Cyber Security, Privacy and Networking 61–70 (Springer Nature, 2022).

  62. Kumar, M. & Mostafa, J. Research evidence on strategies enabling integration of electronic health records in the health care systems of low- and middle-income countries: a literature review. Int. J. Health Plann. Manag. 34, e1016–e1025 (2019).

    Google Scholar 

  63. Ebrahim, A. et al. Do genome-scale models need exact solvers or clearer standards? Mol. Syst. Biol. 11, 831 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Deutsch, E. W. et al. Proteomics Standards Initiative at twenty years: current activities and future work. J. Proteome Res. 22, 287–301 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Koistinen, V. et al. Towards a Rosetta stone for metabolomics: recommendations to overcome inconsistent metabolite nomenclature. Nat. Metab. 5, 351–354 (2023).

    CAS  PubMed  Google Scholar 

  66. Carey, M. A., Dräger, A., Beber, M. E., Papin, J. A. & Yurkovich, J. T. Community standards to facilitate development and address challenges in metabolic modeling. Mol. Syst. Biol. 16, e9235 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Köhler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    ADS  PubMed  Google Scholar 

  68. Piekos, S. N. et al. Biomedical Data Commons (BMDC) prioritizes B-lymphocyte non-coding genetic variants in type 1 diabetes. PLoS Comput. Biol. 17, e1009382 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fecho, K. et al. Progress toward a universal biomedical data translator. Clin. Transl Sci. 15, 1838–1847 (2022).

    PubMed  PubMed Central  Google Scholar 

  70. Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495.e20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Orth, M. F. et al. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep. 41, 111761 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wilmanski, T. et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 37, 1217–1228 (2019).

    CAS  PubMed  Google Scholar 

  74. Magis, A. T. et al. Untargeted longitudinal analysis of a wellness cohort identifies markers of metastatic cancer years prior to diagnosis. Sci. Rep. 10, 16275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Earls, J. C. et al. Multi-omic biological age estimation and its correlation with wellness and disease phenotypes: a longitudinal study of 3,558 individuals. J. Gerontol. A Biol. Sci. Med. Sci. 74, S52–S60 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Watanabe, K. et al. Multiomic signatures of body mass index identify heterogeneous health phenotypes and responses to a lifestyle intervention. Nat. Med. 29, 996–1008 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. 23, 715–727 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shah, N. R. & Braverman, E. R. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS ONE 7, e33308 (2012).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  79. Tomiyama, A. J., Hunger, J. M., Nguyen-Cuu, J. & Wells, C. Misclassification of cardiometabolic health when using body mass index categories in NHANES 2005-2012. Int. J. Obes. 40, 883–886 (2016).

    CAS  Google Scholar 

  80. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    CAS  PubMed  Google Scholar 

  81. Xavier, J. B. et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer Res. 6, 192–204 (2020).

    CAS  Google Scholar 

  82. Girinathan, B. P. et al. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 29, 1693–1708.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390.e3 (2020).

    MathSciNet  CAS  PubMed  Google Scholar 

  84. Johnson, J. P. et al. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with impaired kidney function. Preprint at bioRxiv https://doi.org/10.1101/2023.03.04.531100 (2023).

  85. Bohmann, N. et al. Microbial community-scale metabolic modeling predicts personalized short-chain-fatty-acid production profiles in the human gut. Preprint at bioRxiv https://doi.org/10.1101/2023.02.28.530516 (2023).

  86. Sharp, S. A., Weedon, M. N., Hagopian, W. A. & Oram, R. A. Clinical and research uses of genetic risk scores in type 1 diabetes. Curr. Opin. Genet. Dev. 50, 96–102 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    CAS  PubMed  Google Scholar 

  88. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Visscher, P. M., Yengo, L., Cox, N. J. & Wray, N. R. Discovery and implications of polygenicity of common diseases. Science 373, 1468–1473 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  90. Marston, N. A. et al. Predictive utility of a coronary artery disease polygenic risk score in primary prevention. JAMA Cardiol. 8, 130–137 (2023).

    PubMed  Google Scholar 

  91. Wainberg, M. et al. Multiomic blood correlates of genetic risk identify presymptomatic disease alterations. Proc. Natl Acad. Sci. USA 117, 21813–21820 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  92. Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    PubMed  Google Scholar 

  93. Yang, G. et al. The national economic burden of rare disease in the United States in 2019. Orphanet J. Rare Dis. 17, 163 (2022).

    PubMed  PubMed Central  Google Scholar 

  94. Willmen, T. et al. Health economic benefits through the use of diagnostic support systems and expert knowledge. BMC Health Serv. Res. 21, 947 (2021).

    PubMed  PubMed Central  Google Scholar 

  95. Schuermans, N. et al. Shortcutting the diagnostic odyssey: the multidisciplinary Program for Undiagnosed Rare Diseases in adults (UD-PrOZA). Orphanet J. Rare Dis. 17, 210 (2022).

    PubMed  PubMed Central  Google Scholar 

  96. Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622, 339–347 (2023).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  97. Kerr, K. et al. A scoping review and proposed workflow for multi-omic rare disease research. Orphanet J. Rare Dis. 15, 107 (2020).

    PubMed  PubMed Central  Google Scholar 

  98. Unni, D. R. et al. Biolink model: a universal schema for knowledge graphs in clinical, biomedical, and translational science. Clin. Transl Sci. 15, 1848–1855 (2022).

    PubMed  PubMed Central  Google Scholar 

  99. de Vries, B. M. et al. Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review. Front. Med. 10, 1180773 (2023).

    Google Scholar 

  100. Alloghani, M. et al. in Communications in Computer and Information Science 248–261 (Springer, 2020).

  101. Goh, K.-I. & Choi, I.-G. Exploring the human diseasome: the human disease network. Brief. Funct. Genom. 11, 533–542 (2012).

    CAS  Google Scholar 

  102. Xu, H. et al. APRILE: exploring the molecular mechanisms of drug side effects with explainable graph neural networks. Preprint at bioRxiv https://doi.org/10.1101/2021.07.02.450937 (2021).

  103. Ruiz, C., Zitnik, M. & Leskovec, J. Identification of disease treatment mechanisms through the multiscale interactome. Nat. Commun. 12, 1796 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  104. Qiu, W., Chen, H., Kaeberlein, M. & Lee, S.-I. ExplaiNAble BioLogical Age (ENABL Age): an artificial intelligence framework for interpretable biological age. Lancet Healthy Longev. 4, e711–723 (2023).

    PubMed  Google Scholar 

  105. van der Velden, B. H. M., Kuijf, H. J., Gilhuijs, K. G. A. & Viergever, M. A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470 (2022).

    PubMed  Google Scholar 

  106. Molani, S. et al. Risk factors for severe COVID-19 differ by age for hospitalized adults. Sci. Rep. 12, 6568 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  107. Yurkovich, J. T., Tian, Q., Price, N. D. & Hood, L. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat. Rev. Clin. Oncol. 17, 183–194 (2019).

    PubMed  Google Scholar 

  108. Hernandez-Boussard, T. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 27, 2065–2066 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Coorey, G., Figtree, G. A., Fletcher, D. F. & Redfern, J. The health digital twin: advancing precision cardiovascular medicine. Nat. Rev. Cardiol. 18, 803–804 (2021).

    PubMed  Google Scholar 

  110. Popa, E. O., van Hilten, M., Oosterkamp, E. & Bogaardt, M.-J. The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sci. Soc. Policy 17, 6 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Smarr, B. L. et al. Feasibility of continuous fever monitoring using wearable devices. Sci. Rep. 10, 21640 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  112. Hua, H. et al. A wipe-based stool collection and preservation kit for microbiome community profiling. Front. Immunol. 13, 889702 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Meydan, C. et al. Improved gastrointestinal health for irritable bowel syndrome with metagenome-guided interventions. Precis. Clin. Med. 3, 136–146 (2020).

    PubMed  PubMed Central  Google Scholar 

  114. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

  115. Koulman, A. et al. The development, validation and application of remote blood sample collection in telehealth programmes. J. Telemed. Telecare https://doi.org/10.1177/1357633X221093434 (2022).

  116. Johnson, R. et al. Volumetric absorptive microsampling–LC–MS/MS assays for quantitation of giredestrant in dried human whole blood. Bioanalysis 14, 1377–1389 (2022).

    CAS  PubMed  Google Scholar 

  117. Singhal, K. et al. Large language models encode clinical knowledge. Nature 620, 172–180 (2023).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  118. Jiang, L. Y. et al. Health system-scale language models are all-purpose prediction engines. Nature 619, 357–362 (2023).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  119. Mündler, N., He, J., Jenko, S. & Vechev, M. Self-contradictory hallucinations of large language models: evaluation, detection and mitigation. Preprint at arXiv https://doi.org/10.48550/ARXIV.2305.15852 (2023).

  120. Meskó, B. & Topol, E. J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit. Med. 6, 120 (2023).

    Google Scholar 

  121. Sallam, M. ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare 11, 887 (2023).

    PubMed  PubMed Central  Google Scholar 

  122. Zeggini, E., Gloyn, A. L., Barton, A. C. & Wain, L. V. Translational genomics and precision medicine: moving from the lab to the clinic. Science 365, 1409–1413 (2019).

    CAS  ADS  PubMed  Google Scholar 

  123. Oliveira, K. C. S. et al. Current perspectives on circulating tumor DNA, precision medicine, and personalized clinical management of cancer. Mol. Cancer Res. 18, 517–528 (2020).

    CAS  PubMed  Google Scholar 

  124. Cammarota, G. et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648 (2020).

    PubMed  Google Scholar 

  125. Green, R. C. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 15, 565–574 (2013).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  126. ACMG Board of Directors. ACMG policy statement: updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing. Genet. Med. 17, 68–69 (2015).

    Google Scholar 

  127. Sadee, W., Wang, D., Hartmann, K. & Toland, A. E. Pharmacogenomics: driving personalized medicine. Pharmacol. Rev. 75, 789–814 (2023).

    CAS  PubMed  Google Scholar 

  128. Katsanis, N. et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001).

    CAS  ADS  PubMed  Google Scholar 

  129. Alkuraya, F. S. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum. Genet. 132, 1197–1211 (2013).

    CAS  PubMed  Google Scholar 

  130. Sidransky, E. Heterozygosity for a Mendelian disorder as a risk factor for complex disease. Clin. Genet. 70, 275–282 (2006).

    CAS  PubMed  Google Scholar 

  131. Sellami, M., Elrayess, M. A., Puce, L. & Bragazzi, N. L. Molecular big data in sports sciences: state-of-art and future prospects of OMICS-based sports sciences. Front. Mol. Biosci. 8, 815410 (2021).

    CAS  PubMed  Google Scholar 

  132. Dashti, H. S. & Ordovás, J. M. Genetics of sleep and insights into its relationship with obesity. Annu. Rev. Nutr. 41, 223–252 (2021).

    CAS  PubMed  Google Scholar 

  133. Lazaridis, L. et al. Precision neuro-oncology: a pilot analysis of personalized treatment in recurrent glioma. J. Cancer Res. Clin. Oncol. 149, 3513–3526 (2023).

    CAS  PubMed  Google Scholar 

  134. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    CAS  PubMed  Google Scholar 

  136. Rajabli, F. et al. Ancestral origin of ApoE ε4 Alzheimer disease risk in Puerto Rican and African American populations. PLoS Genet. 14, e1007791 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Kulminski, A. M. et al. APOE region molecular signatures of Alzheimer’s disease across races/ethnicities. Neurobiol. Aging 87, 141.e1–141.e8 (2020).

    CAS  PubMed  Google Scholar 

  138. Shah, A. & Kanaya, A. M. Diabetes and associated complications in the South Asian population. Curr. Cardiol. Rep. 16, 476 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. Hills, A. P. et al. Epidemiology and determinants of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 6, 966–978 (2018).

    PubMed  Google Scholar 

  140. Ahmad, S., Fatima, S. S., Rukh, G. & Smith, C. E. Gene lifestyle interactions with relation to obesity, cardiometabolic, and cardiovascular traits among South Asians. Front. Endocrinol. 10, 221 (2019).

    Google Scholar 

  141. Hodgson, S. et al. Integrating polygenic risk scores in the prediction of type 2 diabetes risk and subtypes in British Pakistanis and Bangladeshis: a population-based cohort study. PLoS Med. 19, e1003981 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases: part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation 104, 2855–2864 (2001).

    CAS  PubMed  Google Scholar 

  143. Shevchenko, Y. & Bale, S. Clinical versus research sequencing. Cold Spring Harb. Perspect. Med. 6, a025809 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Rockowitz, S. et al. Children’s rare disease cohorts: an integrative research and clinical genomics initiative. NPJ Genom. Med. 5, 29 (2020).

    PubMed  PubMed Central  Google Scholar 

  145. Schaibley, V. M. et al. Limited genomics training among physicians remains a barrier to genomics-based implementation of precision medicine. Front. Med. 9, 757212 (2022).

    Google Scholar 

  146. Nelson, C. A., Butte, A. J. & Baranzini, S. E. Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nat. Commun. 10, 3045 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  147. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Shen, X. et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00999-8 (2023).

  149. Li, X.-J. et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl Med. 5, 207ra142 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  150. Zimmer, A. et al. The geometry of clinical labs and wellness states from deeply phenotyped humans. Nat. Commun. 12, 3578 (2021).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  151. Sowjanya, A. M. & Mrudula, O. Effective treatment of imbalanced datasets in health care using modified SMOTE coupled with stacked deep learning algorithms. Appl. Nanosci. 13, 1829–1840 (2023).

    CAS  ADS  PubMed  Google Scholar 

  152. Beckmann, N. D. et al. Multiscale causal networks identify VGF as a key regulator of Alzheimer’s disease. Nat. Commun. 11, 3942 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  153. US Preventive Services Task Force. et al. Screening for cervical cancer: US Preventive Services Task Force recommendation statement. JAMA 320, 674–686 (2018).

    Google Scholar 

  154. Chou, R., Dana, T., Blazina, I., Daeges, M. & Jeanne, T. L. Statins for prevention of cardiovascular disease in adults: evidence report and systematic review for the US Preventive Services Task Force. JAMA 316, 2008–2024 (2016).

    PubMed  Google Scholar 

  155. Tripp, S. & Grueber, M. Economic impact of the Human Genome Project (Batelle Memorial Institute, 2011).

  156. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  157. Shilo, S. et al. 10K: a large-scale prospective longitudinal study in Israel. Eur. J. Epidemiol. 36, 1187–1194 (2021).

    CAS  PubMed  Google Scholar 

  158. Smith, L. M. et al. Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679 (1986).

    CAS  ADS  PubMed  Google Scholar 

  159. Church, G. M. & Kieffer-Higgins, S. Multiplex DNA sequencing. Science 240, 185–188 (1988).

    CAS  ADS  PubMed  Google Scholar 

  160. Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    CAS  ADS  PubMed  Google Scholar 

  161. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  162. Morris, K. N., Jensen, K. B., Julin, C. M., Weil, M. & Gold, L. High affinity ligands from in vitro selection: complex targets. Proc. Natl Acad. Sci. USA 95, 2902–2907 (1998).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  163. Gullberg, M. et al. Cytokine detection by antibody-based proximity ligation. Proc. Natl Acad. Sci. USA 101, 8420–8424 (2004).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  164. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    CAS  PubMed  Google Scholar 

  165. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  ADS  PubMed  Google Scholar 

  166. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  ADS  PubMed  Google Scholar 

  167. Ozaki, K. et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  168. Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    CAS  PubMed  Google Scholar 

  169. Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 1000 Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Google Scholar 

  171. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Smarr, L. Quantifying your body: a how-to guide from a systems biology perspective. Biotechnol. J. 7, 980–991 (2012).

    CAS  PubMed  Google Scholar 

  173. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  175. Cirulli, E. T. et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 29, 488–500.e2 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Hou, Y.-C. C. et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc. Natl Acad. Sci. USA 117, 3053–3062 (2020).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  177. Mason, A. E. et al. Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study. Sci. Rep. 12, 3463 (2022).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  178. Benn, M., Watts, G. F., Tybjærg-Hansen, A. & Nordestgaard, B. G. Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur. Heart J. 37, 1384–1394 (2016).

    CAS  PubMed  Google Scholar 

  179. Zubair, N. et al. Genetic predisposition impacts clinical changes in a lifestyle coaching program. Sci. Rep. 9, 6805 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  180. Koletzko, B. et al. FADS1 and FADS2 polymorphisms modulate fatty acid metabolism and dietary impact on health. Annu. Rev. Nutr. 39, 21–44 (2019).

    CAS  PubMed  Google Scholar 

  181. Ferguson, J. F. et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis 211, 539–544 (2010).

    CAS  PubMed  Google Scholar 

  182. Barton, J. C., Edwards, C. Q. & Acton, R. T. HFE gene: structure, function, mutations, and associated iron abnormalities. Gene 574, 179–192 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    CAS  PubMed  Google Scholar 

  184. Ahn, J. et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 19, 2739–2745 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Heianza, Y., Ma, W., Manson, J. E., Rexrode, K. M. & Qi, L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J. Am. Heart Assoc. 6, e004947 (2017).

  186. El Rouby, N., Lima, J. J. & Johnson, J. A. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug Metab. Toxicol. 14, 447–460 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Levine for the assistance with drafting figures, B. Barry and M. Simmons for the thorough editing, and L. Pflieger and B. Yurkovich for the useful discussions regarding scientific content.

Author information

Authors and Affiliations

Authors

Contributions

J.T.Y., S.J.E., N.R. and J.L.B. researched the literature. J.T.Y., S.J.E., N.R., J.L.B., J.C.L. & L.E.H. contributed substantially to the discussions of the content. J.T.Y., S.J.E., N.R., J.L.B., J.C.L. & L.E.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Leroy E. Hood.

Ethics declarations

Competing interests

Phenome Health is a nonprofit research organization. The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Melissa A. Haendel, Jason L. Vassy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Data Commons: https://www.datacommons.org/

Nutrition for Precision Health: https://commonfund.nih.gov/nutritionforprecisionhealth

Glossary

Actionable recommendations

Behavioural or clinical intervention strategies driven by data that can be pursued to reach specific health outcome.

Aptamers

Short, single-stranded nucleic acid fragments (DNA or RNA) that selectively bind to specific target molecules such as proteins with variable affinities and off-target binding.

Deep learning

A specific machine learning approach inspired by the human brain that uses multi-layered (so-called deep) network architectures.

Deep phenotyping

A comprehensive analysis of phenotypic drivers and endpoints, from molecular assays and clinical data to social determinants of health and digital measures of environmental exposures and behaviours.

Digital biomarkers

Lifestyle and physiological factors measured via digital health devices that enable remote — and possibly non-invasive — surveillance of the health state.

Digital health

Digital tools such as mobile apps, wearables and telehealth that help provide a more holistic view of the health state of an individual.

Digital twins

Computable digital, dynamic representations of a human that continuously integrates physiological and biochemical data with mechanistic knowledge.

Explainable artificial intelligence

(XAI). Interpretable deep learning that provides explanations for black-box predictions.

Genetic variants

Differences in the DNA sequence — from single nucleotides to large regions — among individuals, populations or species that may be inherited (passed down from parents in the germline) or somatic (developed de novo) and can explain differences in physical appearance, disease susceptibility and how people react to pharmacological interventions.

Health outcomes

Labels derived from clinical metrics that reflect an individual’s dynamic state of physical, mental and social well-being, often used as ground truth (or expected values) to train computational models.

Health trajectory

The trend of the integrated health of an individual, which is multidimensional and may simultaneously direct away from one disease and towards another.

Incidental findings

Observations that were not the primary objective of the study but could have potential significance or implications for the health of the subjects.

Knowledge graphs

Network representations of entities (for example, molecules, diseases and drugs) and the relationships between them.

Multi-omics

Multiple omic data modalities, such as genomics, transcriptomics, epigenomics, metabolomics, microbiomics and proteomics.

Personalized population health

An approach aimed at optimizing the health trajectory of each individual at the population scale.

Phenome

The collection of dynamic and observable characteristics of an organism, ranging from the amount of markers in blood (such as cholesterol levels) to physiological signals (such as heart rate).

Rare diseases

One of approximately 7,000 diseases affecting fewer than 1 in 200,000 people (USA) or fewer than 1 in 2,000 people (Europe), of which about 80% are thought to be genetic (so-called Mendelian diseases).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurkovich, J.T., Evans, S.J., Rappaport, N. et al. The transition from genomics to phenomics in personalized population health. Nat Rev Genet 25, 286–302 (2024). https://doi.org/10.1038/s41576-023-00674-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00674-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research