Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Context-specific functions of chromatin remodellers in development and disease

Abstract

Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The family of human chromatin remodellers.
Fig. 2: Chromatin remodelling complexes in human development and disease.
Fig. 3: The dosage sensitivity of human remodellers.
Fig. 4: Models of remodeller–TF interactions.
Fig. 5: Enrichment of non-synonymous cancer mutations in chromatin remodelling complexes.

Similar content being viewed by others

References

  1. Flaus, A. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pulice, J. L. & Kadoch, C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb. Symp. Quant. Biol. 81, 53–60 (2016).

    Article  PubMed  Google Scholar 

  5. Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes. Dev. 33, 936–959 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ho, P. J., Lloyd, S. M. & Bao, X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 146, dev178780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alendar, A. & Berns, A. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease. Genes Dev. 35, 1403–1430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clapier, C. R. Sophisticated conversations between chromatin and chromatin remodelers, and dissonances in cancer. Int. J. Mol. Sci. 22, ijms22115578 (2021).

    Article  Google Scholar 

  9. Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016). Hota and Bruneau comprehensively review genetic and functional studies showing the unique roles of chromatin remodellers during mammalian development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sundaramoorthy, R. & Owen-Hughes, T. Chromatin remodelling comes into focus. F1000Res 9, https://doi.org/10.12688/f1000research.21933.1 (2020).

  11. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes. Dev. 6, 2288–2298 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Sternberg, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567–577 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579–587 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Langst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Ayala, R. et al. Structure and regulation of the human INO80-nucleosome complex. Nature 556, 391–395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013). This is a clear and concise review of the basic biochemical mechanisms of nucleosome remodelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Längst, G. & Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).

    Article  PubMed  Google Scholar 

  23. Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dyer, M. A., Qadeer, Z. A., Valle-Garcia, D. & Bernstein, E. ATRX and DAXX: mechanisms and mutations. Cold Spring Harb. Perspect. Med. 7, a026567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ni, K. et al. LSH mediates gene repression through macroH2A deposition. Nat. Commun. 11, 5647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 e1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erdel, F. & Rippe, K. Chromatin remodelling in mammalian cells by ISWI-type complexes—where, when and why? FEBS J. 278, 3608–3618 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes. Dev. 10, 2117–2130 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J. 15, 5370–5382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang, C. Y. et al. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol. Cell 81, 4964–4978 e4968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Fulton, S. L. et al. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nat. Commun. 13, 6384 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Braun, S. M. G. et al. BAF subunit switching regulates chromatin accessibility to control cell cycle exit in the developing mammalian cortex. Genes. Dev. 35, 335–353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007). Lessard and colleagues describe a neuron-specific remodelling complex (neuronal BAF or nBAF) with subunits expressed only in the nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodman, J. V. & Bonni, A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr. Opin. Neurobiol. 59, 59–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nitarska, J. et al. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development. Cell Rep. 17, 1683–1698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoo, A. S., Staahl, B. T., Chen, L. & Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009). These two studies defined switches in BAF complex subunit composition that are instructive for maturation of neurons (Yoo et al., 2009) or the cardiomyocytes (Takeuchi et al., 2009), and the groups have continued to study the cell-type-specific remodeller complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim, H. Y. G. et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585, 404–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Laurent, B. C., Yang, X. & Carlson, M. An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Mol. Cell Biol. 12, 1893–1902 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsuchiya, E. et al. The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J. 11, 4017–4026 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes. Dev. 13, 686–697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alén, C. et al. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell 10, 1441–1452 (2002).

    Article  PubMed  Google Scholar 

  52. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kubik, S. et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, e712 (2016).

    Article  Google Scholar 

  55. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rice, A. M. & McLysaght, A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 8, 14366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Valencia, A. M. et al. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat. Genet. 55, 1400–1412 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morrill, S. A. & Amon, A. Why haploinsufficiency persists. Proc. Natl Acad. Sci. USA 116, 11866–11871 (2019). Morill and Amon provide an insightful perspective on how genetic dosage and haploinsufficiency contribute to cellular fitness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wenderski, W. et al. Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proc. Natl Acad. Sci. USA 117, 10055–10066 (2020). The authors identified recessive missense variants in a neuron-specific subunit of the BAF complex in individuals with autism spectrum disorder, and mapped their biochemical contributions to autism-spectrum-disorder-related phenotypes in flies, human organoids and mouse models, finding that these mutations produce specific defects in social behaviour and neuronal-activity-dependent responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. The Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).

    Article  Google Scholar 

  64. Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988). In this study, Kennison and Tamkun identified the ATPase Brahma (part of the BAF complex) and its role in opposing Polycomb complexes; the opposition between Polycomb and BAF complexes is a crucial underlying mechanism that has been observed in many human malignancies and developmental disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010). Deal, Henikoff and Henikoff develop a chemical biological method to measure rates of nucleosome turnover and find that turnover occurs faster than a cell cycle across most of the genome, implying that nucleosome remodelling itself can regulate active or repressive gene expression states simply by modulating local DNA accessibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lai, B. et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147, 1498–1510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Narlikar, G. J., Fan, H.-Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barozzi, I. et al. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54, 844–857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miller, E. L. et al. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24, 344–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. King, H. W. & Klose, R. J. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 6, e22631 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Friman, E. T. et al. Dynamic regulation of chromatin accessibility by pluripotency transcription factors across the cell cycle. eLife 8, e50087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xiao, L. et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang, W. et al. Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc. Natl Acad. Sci. USA 95, 492–498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith, M. J. et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat. Genet. 45, 295–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019). Barisic and colleagues use functional genomic and epigenomic analyses to identify the unique contributions of different remodellers to the binding of different transcription factors in mouse embryonic stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Swinstead, E. E., Paakinaho, V., Presman, D. M. & Hager, G. L. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective. BioEssays 38, 1150–1157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grossman, S. R. et al. Positional specificity of different transcription factor classes within enhancers. Proc. Natl Acad. Sci. USA 115, E7222–E7230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, J. M. et al. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10, e69387 (2021). Kim and colleagues measure rates of remodeller association with chromatin and find very fast residence times (less than ten seconds), proposing atug-of-warmodel between many remodellers and other regulators and loci on chromatin.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Erin et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605 (2016).

    Article  Google Scholar 

  83. Iurlaro, M. et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 53, 279–287 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson, T. A. et al. Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res. 46, 203–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Paun, O. et al. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes. Dev. 37, 218–242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Esch, D. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat. Cell Biol. 15, 295–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Takaku, M. et al. GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol. 17, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zentner, G. E., Tsukiyama, T. & Henikoff, S. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet. 9, e1003317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weber, C. M. et al. mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nat. Struct. Mol. Biol. 28, 501–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Son, E. Y. & Crabtree, G. R. The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am. J. Med. Genet. C 166, 333–349 (2014).

    Article  CAS  Google Scholar 

  93. Snijders Blok, L. et al. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat. Commun. 9, 4619 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sood, S. et al. CHD8 dosage regulates transcription in pluripotency and early murine neural differentiation. Proc. Natl Acad. Sci. USA 117, 22331–22340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Breuss, M. W. & Gleeson, J. G. When size matters: CHD8 in autism. Nat. Neurosci. 19, 1430–1432 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Durak, O. et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat. Neurosci. 19, 1477–1488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rhee, S. et al. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat. Commun. 9, 368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tuoc, T. C. et al. Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev. Cell 25, 256–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Goljanek-Whysall, K. et al. myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development 141, 3378–3387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saccone, V. et al. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes. Dev. 28, 841–857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goodwin, L. R. & Picketts, D. J. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol. Cell Neurosci. 87, 55–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Alberini, C. M. & Kandel, E. R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021741 (2014).

    Article  PubMed  Google Scholar 

  104. Kim, B. et al. Neuronal activity-induced BRG1 phosphorylation regulates enhancer activation. Cell Rep. 36, 109357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, Y. et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science 353, 300–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, J. I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004). Aizawa and colleagues discovered that CREST (a subunit of the BAF complex) is required for activity-dependent dendritic outgrowth; these findings initiated further studies by this group and many others to understand the contributions of remodellers to activity-dependent neuronal processes.

    Article  CAS  PubMed  Google Scholar 

  108. Tea, J. S. & Luo, L. The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Dev. 6, 5 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Walsh, J. J. et al. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology 46, 2000–2010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Valencia, A. M. et al. Recurrent SMARCB1 mutations reveal a nucleosome acidic patch interaction site that potentiates mSWI/SNF complex chromatin remodeling. Cell 179, 1342–1356.e1323 (2019). Valencia and colleagues used hotspot disease mutations in a BAF subunit to elucidate its biochemical interactions with the nucleosome; the study provides a roadmap for how human genetics data can be used for studies of remodeller mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 e824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Riviere, J. B. et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat. Genet. 44, 440–444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cuvertino, S. et al. ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am. J. Hum. Genet. 101, 1021–1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Clapier, C. R. et al. Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Mol. Cell 62, 453–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xie, X., Jankauskas, R., Mazari, A. M. A., Drou, N. & Percipalle, P. β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. PLoS Genet. 14, e1007846 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mahmood, S. R. et al. β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat. Commun. 12, 5240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Noh, K. M. et al. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons. Proc. Natl Acad. Sci. USA 112, 6820–6827 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Sachs, P. et al. SMARCAD1 ATPase activity is required to silence endogenous retroviruses in embryonic stem cells. Nat. Commun. 10, 1335 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dunaief, J. L. et al. The retinoblastoma protein and BRGI form a complex and cooperateto induce cell cycle arrest. Cell 79, 119–130 (1994). This paper describes the first evidence that remodellers can act as tumour suppressors.

    Article  CAS  PubMed  Google Scholar 

  125. Wong, A. K. C. et al. BRG1, a component of the SWI–SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 60, 6171–6177 (2000).

    CAS  PubMed  Google Scholar 

  126. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  129. Sevenet, N. et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet. 65, 1342–1348 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Biegel, J. A. et al. Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and renal rhabdoid tumor. Genes Chromosomes Cancer 28, 31–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the Cancer Genome Atlas. Cell 173, 321–337.e310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kolla, V., Zhuang, T., Higashi, M., Naraparaju, K. & Brodeur, G. M. Role of CHD5 in human cancers: 10 years later. Cancer Res. 74, 652–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Burkhardt, L. et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 73, 2795–2805 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Graf, M. et al. Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nat. Commun. 13, 1544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, J. N. & Roberts, C. W. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 3, 35–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Bultman, S. J. et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27, 460–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Wanior, M., Kramer, A., Knapp, S. & Joerger, A. C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 40, 3637–3654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Garbarino, J., Eckroate, J., Sundaram, R. K., Jensen, R. B. & Bindra, R. S. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl. Oncol. 14, 101147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shen, J. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 24, 556–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Okamura, R. et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J. Immunother. Cancer 8, e000438 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Krishnamurthy, N., Kato, S., Lippman, S. & Kurzrock, R. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J. Immunother. Cancer 10, e004669 (2022).

    Article  PubMed Central  Google Scholar 

  149. Guo, A. et al. cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature 607, 135–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, W. et al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 31, 3939–3948 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Augello, M. A. et al. CHD1 loss alters AR binding at lineage-specific enhancers and modulates distinct transcriptional programs to drive prostate tumorigenesis. Cancer Cell 35, 603–617.e608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Egan, C. M. et al. CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and Polycomb gene repression. Dev. Cell 26, 223–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Dykhuizen, E. C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase II α. Nature 497, 624–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fillmore, C. M. et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 563, E27 (2015).

    Article  Google Scholar 

  157. Seoane, J. A., Kirkland, J. G., Caswell-Jin, J. L., Crabtree, G. R. & Curtis, C. Chromatin regulators mediate anthracycline sensitivity in breast cancer. Nat. Med. 25, 1721–1727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kakarougkas, A. et al. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol. Cell 55, 723–732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chan, C. S. et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct α-cell signature subgroup. Nat. Commun. 9, 4158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Xia, L. et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell 31, 653–668.e657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Clark, J. et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994).

    Article  CAS  PubMed  Google Scholar 

  164. de Leeuw, B., Balemans, M., Olde Weghuis, D. & Geurts van Kessel, A. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum. Mol. Genet. 4, 1097–1099 (1995).

    Article  PubMed  Google Scholar 

  165. Skytting, B. et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J. Natl Cancer Inst. 91, 974–975 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. McBride, M. J. et al. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. Nat. Struct. Mol. Biol. 27, 836–845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. McBride, M. J. et al. The SS18–SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141.e1127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18–SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013). These two studies provide an example of how a remodeller may function directly as an oncogene; in this case, by virtue of a genetic translocation in a subunit creating a fusion protein that then drives aberrant remodelling activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sima, X. et al. The genetic alteration spectrum of the SWI/SNF complex: the oncogenic roles of BRD9 and ACTL6A. PLoS One 14, e0222305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhao, D. et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature 542, 484–488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhao, D. et al. Chromatin regulator CHD1 remodels the immunosuppressive tumor microenvironment in PTEN-deficient prostate cancer. Cancer Discov. 10, 1374–1387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. The Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    Article  PubMed Central  Google Scholar 

  176. Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  PubMed  Google Scholar 

  179. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013). This study extensively surveyed Cancer Genome Atlas data and found that BAF complexes were mutated in almost 20% of all human cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chun, H. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  185. Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853–868 (1984). These papers discovered SWI/SNF from screens in yeast for defects in sucrose fermentation and pheromone-dependent mating-type switching.

    Article  CAS  PubMed  Google Scholar 

  187. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes. Dev. 9, 2770–2779 (1995).

    Article  CAS  PubMed  Google Scholar 

  188. Laurent, B. C., Treich, I. & Carlson, M. Role of yeast SNF and SWI proteins in transcriptional activation. Cold Spring Harb. Symp. Quant. Biol. 58, 257–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  189. Laurent, B., Treitel, M. A. & Carlson, M. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl Acad. Sci. USA 88, 2687–2691 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Peterson, C. L. & Herskowitz, I. Characterization of the yeast SWl, SW2, and SW13 genes, which encode a global activator of transcription. Cell 68, 573–583 (1992).

    Article  CAS  PubMed  Google Scholar 

  191. Tamkun, J. W. et al. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWl2. Cell 66, 561–572 (1992).

    Article  Google Scholar 

  192. Kingston, R. E. & Tamkun, J. W. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb. Perspect. Biol. 6, a019349 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Siebenlist, U. et al. Promoter region of interleukin-2 gene undergoes chromatin structure changes and confers inducibility on chloramphenicol acetyltransferase gene during activation of T cells. Mol. Cell Biol. 6, 3042–3049 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Goldsmith, M. A., Desai, D. M., Schultz, T. & Weiss, A. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. J. Biol. Chem. 264, 17190–17197 (1989).

    Article  CAS  PubMed  Google Scholar 

  195. Socolovsky, M., Dusanter-Fourt, I. & Lodish, H. F. The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J. Biol. Chem. 272, 14009–14012 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Brisken, C., Socolovsky, M., Lodish, H. F. & Weinberg, R. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proc. Natl Acad. Sci. USA 99, 14241–14245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  198. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  199. Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, aa05902 (2018).

    Article  Google Scholar 

  201. Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gourisankar, S. et al. Rewiring cancer drivers to activate apoptosis. Nature 620, 417–425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Braun, S. M. G. et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ren, J., Hathaway, N. A., Crabtree, G. R. & Muegge, K. Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics 13, 173–181 (2017).

    Article  Google Scholar 

  205. Marian, C. A. et al. Small molecule targeting of specific BAF (mSWI/SNF) complexes for HIV latency reversal. Cell Chem. Biol. 25, 1443–1455.e1414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Papillon, J. P. N. et al. Discovery of orally active inhibitors of Brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of Brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem. 61, 10155–10172 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Chory, E. J. et al. Chemical inhibitors of a selective SWI/SNF function synergize with ATR inhibition in cancer cell killing. ACS Chem. Biol. 15, 1685–1696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kishtagari, A. et al. A first-in-class inhibitor of ISWI-mediated (ATP-dependent) transcription repression releases terminal-differentiation in AML cells while sparing normal hematopoiesis. Blood 132, 216 (2018).

    Article  Google Scholar 

  209. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Edn Engl. 56, 5738–5743 (2017).

    Article  CAS  Google Scholar 

  210. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat. Genet. 51, 1399–1410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rago, F. et al. Exquisite sensitivity to dual BRG1/BRM ATPase inhibitors reveals broad SWI/SNF dependencies in acute myeloid leukemia. Mol. Cancer Res. 20, 361–372 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chory, E. J. et al. Nucleosome turnover regulates histone methylation patterns over the genome. Mol. Cell 73, 61–72 e63 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Butler, K. V., Chiarella, A. M., Jin, J. & Hathaway, N. A. Targeted gene repression using novel bifunctional molecules to harness endogenous histone deacetylation activity. ACS Synth. Biol. 7, 38–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Chiarella, A. M. et al. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat. Biotechnol. 38, 50–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Abbott, J. M. et al. First-in-class inhibitors of oncogenic CHD1L with preclinical activity against colorectal cancer. Mol. Cancer Ther. 19, 1598–1612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Prigaro, B. J. et al. Design, synthesis, and biological evaluation of the first inhibitors of oncogenic CHD1L. J. Med. Chem. 65, 3943–3961 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Martin, L. J. et al. Structure-based design of an in vivo active selective BRD9 inhibitor. J. Med. Chem. 59, 4462–4475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Remillard, D. et al. Chemoproteomics enabled discovery of selective probes for NuA4 factor BRD8. ACS Chem. Biol. 16, 2185–2192 (2021).

    Article  CAS  PubMed  Google Scholar 

  223. Chen, P. et al. Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. J. Med. Chem. 59, 1410–1424 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Lu, T. et al. Discovery of high-affinity inhibitors of the BPTF bromodomain. J. Med. Chem. 64, 12075–12088 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Zahid, H. et al. New design rules for developing potent cell-active inhibitors of the nucleosome remodeling factor (NURF) via BPTF bromodomain inhibition. J. Med. Chem. 64, 13902–13917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Park, S. G., Lee, D., Seo, H. R., Lee, S. A. & Kwon, J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci. Rep. 10, 16330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Shishodia, S. et al. Selective and cell-active PBRM1 bromodomain inhibitors discovered through NMR fragment screening. J. Med. Chem. 65, 13714–13735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Londregan, A. T. et al. Discovery of high-affinity small-molecule binders of the epigenetic reader YEATS4. J. Med. Chem. 66, 460–472 (2023).

    Article  CAS  PubMed  Google Scholar 

  229. Coffey, K. et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One 7, e45539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Zoppi, V. et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel–Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J. Med. Chem. 62, 699–726 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009). These two papers describe two chemical biological tools that use chemically induced proximity to recruit endogenous proteins to the proteosome in order to rapidly delete them in living cells and organisms and have been increasingly deployed to define the direct functions of remodellers.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all co-workers who have contributed to this large field whose work we have been unable to cite for want of space.

Author information

Authors and Affiliations

Authors

Contributions

G.R.C., S.G., A.K. and W.W. researched data for the article. G.R.C., S.G. and A.K. wrote the article. All authors contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gerald R. Crabtree.

Ethics declarations

Competing interests

G.R.C. is a founder and scientific adviser for Foghorn Therapeutics and a founder of Shenandoah Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jerry Workman and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41576_2023_666_MOESM1_ESM.xlsx

Supplementary Table 1 Nomenclature of chromatin remodellers. Alternate protein and gene nomenclature for the human chromatin remodelling complexes and their subunits, details on their canonical transcripts, data about their tolerance to loss-of-function, constraint on missense mutation, and copy-number variation conservation, and references to their associated structures if available.

41576_2023_666_MOESM2_ESM.xlsx

Supplementary Table 2 Developmental disorder mutations in chromatin remodellers. A tabulated list of mutations in genes encoding chromatin remodellers and their subunits that are implicated in human developmental disorders, detailing the published reference to the source human genetic study characterizing the disorder, the cohort size analysed, mutation types catalogued, mutation class (such as de novo if this information was available), and detail about the number and type of mutation in remodeller subunit genes in that disorder.

Glossary

Assay for transposase-accessible chromatin with sequencing (ATAC-seq)

An assay to measure accessible (open) chromatin that uses the transposase Tn5, which preferentially targets open chromatin sites to insert sequencing primers.

Chromatin immunoprecipitation (with sequencing)

An assay to measure chromatin–protein interactions by immunoprecipitating the DNA bound to a protein (ChIP) and sequencing it (ChIP-seq).

Constraint on missense variants

A transcript is more intolerant of variation (more constrained) if there are fewer rare missense variants per transcript observed than expected (as predicted by a sequence-context-based mutational model)61.

Dosage sensitivity

Genetic dosage sensitivity defines steps in a biological pathway in which a reduction in functional protein or a gain in protein copy leads to a phenotypic effect.

Haploinsufficiency

Haploinsufficient genes are a subset of dosage-sensitive genes where loss of function of a single allele produces a phenotype, defining a rate-limiting role for a gene in a biological process.

Micrococcal nuclease digestion with sequencing (MNase-seq)

An assay to determine nucleosome structure where genomic DNA is treated with micrococcal nuclease, which digests open DNA, leaving sequences bound by nucleosomes and other chromatin-bound proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourisankar, S., Krokhotin, A., Wenderski, W. et al. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 25, 340–361 (2024). https://doi.org/10.1038/s41576-023-00666-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00666-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing