Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interrogating epigenetic mechanisms with chemically customized chromatin

Abstract

Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of ‘designer’ chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established ‘omics’ techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein–chromatin interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key players in the epigenetic regulation of chromatin.
Fig. 2: Chemical biology routes to obtaining designer chromatin.
Fig. 3: Designer nucleosome arrays are valuable for studying histone PTM spreading.
Fig. 4: Designer nucleosomes reveal PTM-mediated regulatory mechanisms of writers and erasers.
Fig. 5: Proteomics methods for identifying readers.
Fig. 6: Identifying readers in situ.
Fig. 7: Mapping the local protein composition by proximity labelling.

Similar content being viewed by others

References

  1. Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

    PubMed  Google Scholar 

  2. Zhao, S., Allis, C. D. & Wang, G. G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 21, 413–430 (2021).

    PubMed Central  PubMed  Google Scholar 

  3. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  4. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  5. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  ADS  PubMed  Google Scholar 

  6. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  7. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed Central  ADS  PubMed  Google Scholar 

  8. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  9. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).

    CAS  PubMed  Google Scholar 

  11. Lusser, A. & Kadonaga, J. T. Strategies for the reconstitution of chromatin. Nat. Methods 1, 19–26 (2004).

    CAS  PubMed  Google Scholar 

  12. Müller, M. M. & Muir, T. W. Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115, 2296–2349 (2015).

    PubMed  Google Scholar 

  13. Cuvier, O. & Fierz, B. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat. Rev. Genet. 18, 457–472 (2017).

    CAS  PubMed  Google Scholar 

  14. Fierz, B. & Poirier, M. G. Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345 (2019).

    CAS  PubMed  Google Scholar 

  15. Mitchener, M. M. & Muir, T. W. Oncohistones: exposing the nuances and vulnerabilities of epigenetic regulation. Mol. Cell 82, 2925–2938 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Maksimovic, I. & David, Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem. Sci. 46, 718–730 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).

    CAS  PubMed  Google Scholar 

  18. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    CAS  PubMed  Google Scholar 

  19. Krieger, D. E., Levine, R., Merrifield, R. B., Vidali, G. & Allfrey, V. G. Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei. J. Biol. Chem. 249, 332–334 (1974).

    CAS  PubMed  Google Scholar 

  20. Krieger, D. E., Vidali, G., Erickson, B. W., Allfrey, V. G. & Merrifield, R. B. The synthesis of diacetylated histone H4-(1–37) for studies on the mechanism of histone deacetylation. Bioorg. Chem. 8, 409–427 (1979).

    CAS  Google Scholar 

  21. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  ADS  PubMed  Google Scholar 

  22. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

    CAS  PubMed  Google Scholar 

  23. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  24. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    CAS  PubMed  Google Scholar 

  25. Musselman, C. A. & Kutateladze, T. G. Strategies for generating modified nucleosomes: applications within structural biology studies. ACS Chem. Biol. 14, 579–586 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Sankar, A. et al. Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat. Genet. 54, 754–760 (2022).

    CAS  PubMed  Google Scholar 

  28. Grewal, S. I. S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol. Cell 83, 1767–1785 (2023).

    CAS  PubMed  Google Scholar 

  29. Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 23, 325–341 (2022).

    CAS  PubMed  Google Scholar 

  30. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    CAS  PubMed  Google Scholar 

  31. Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    CAS  PubMed  Google Scholar 

  32. Al-Sady, B., Madhani, H. D. & Narlikar, G. J. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell 51, 80–91 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Müller, M. M., Fierz, B., Bittova, L., Liszczak, G. & Muir, T. W. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat. Chem. Biol. 12, 188–193 (2016).

    PubMed Central  PubMed  Google Scholar 

  34. Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154–162 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ge, E. J., Jani, K. S., Diehl, K. L., Müller, M. M. & Muir, T. W. Nucleation and propagation of heterochromatin by the histone methyltransferase PRC2: geometric constraints and impact of the regulatory subunit JARID2. J. Am. Chem. Soc. 141, 15029–15039 (2019). Through biochemical assays utilizing a variety of heterotypic designer nucleosome arrays, this study uncovers the geometric constraints of H3K27me3 propagation and demonstrates how differentially modified JARID2 regulates PRC2 substrate preferences.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Sanulli, S. et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol. Cell 57, 769–783 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kasinath, V. et al. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371, eabc3393 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  40. Voigt, P., Tee, W.-W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhang, T., Cooper, S. & Brockdorff, N. The interplay of histone modifications – writers that read. EMBO Rep. 16, 1467–1481 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Worden, E. J. & Wolberger, C. Activation and regulation of H2B-Ubiquitin-dependent histone methyltransferases. Curr. Opin. Struct. Biol. 59, 98–106 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Briggs, S. D. et al. Trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).

    CAS  ADS  PubMed  Google Scholar 

  44. Ng, H. H., Xu, R.-M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).

    CAS  PubMed  Google Scholar 

  45. Zhu, B. et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell 20, 601–611 (2005).

    CAS  PubMed  Google Scholar 

  46. McGinty, R. K., Kim, J., Chatterjee, C., Roeder, R. G. & Muir, T. W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  47. Holt, M. T. et al. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc. Natl Acad. Sci. USA 112, 10365–10370 (2015).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  48. Zhou, L. et al. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Nat. Commun. 7, 10589 (2016).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  49. Worden, E. J., Hoffmann, N. A., Hicks, C. W. & Wolberger, C. Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell 176, 1490–1501 (2019). This study determines the structure of Dot1L bound to H2BK120-ubiquitinated nucleosomes in poised and active states, revealing a unique conformational plasticity in the H3 globular core that underlines the H2BK120ub–H3K79me crosstalk.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Anderson, C. J. et al. Structural basis for recognition of ubiquitylated nucleosome by Dot1L methyltransferase. Cell Rep. 26, 1681–1690 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Valencia-Sánchez, M. I. et al. Structural basis of Dot1L stimulation by histone H2B lysine 120 ubiquitination. Mol. Cell 74, 1010–1019 (2019).

    PubMed Central  PubMed  Google Scholar 

  52. Ai, H. et al. H2B Lys34 ubiquitination induces nucleosome distortion to stimulate Dot1L activity. Nat. Chem. Biol. 18, 972–980 (2022).

    CAS  PubMed  Google Scholar 

  53. Wojcik, F. et al. Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants. Nat. Commun. 9, 1394 (2018).

    PubMed Central  ADS  PubMed  Google Scholar 

  54. Parreno, V., Martinez, A.-M. & Cavalli, G. Mechanisms of Polycomb group protein function in cancer. Cell Res. 32, 231–253 (2022).

    PubMed Central  PubMed  Google Scholar 

  55. Cao, R. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  ADS  PubMed  Google Scholar 

  56. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014). By combining an unbiased proteomic screen with in vitro biochemical experiments, this study shows that H2A119 ubiquitination is recognized by and stimulates the activity of JARID2-AEBP2-containing PRC2.

    CAS  PubMed  Google Scholar 

  57. Blackledge, N. P. et al. PRC1 catalytic activity is central to polycomb system function. Mol. Cell 77, 857–874.e9 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).

    PubMed Central  PubMed  Google Scholar 

  60. Gallinari, P., Marco, S. D., Jones, P., Pallaoro, M. & Steinkühler, C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 17, 195–211 (2007).

    CAS  PubMed  Google Scholar 

  61. Lan, F., Nottke, A. C. & Shi, Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr. Opin. Cell Biol. 20, 316–325 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Torres, I. O. et al. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nat. Commun. 6, 6204 (2015).

    CAS  ADS  PubMed  Google Scholar 

  63. Klein, B. J. et al. The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep. 6, 325–335 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lukasak, B. J. et al. A genetically encoded approach for breaking chromatin symmetry. ACS Cent. Sci. 8, 176–183 (2022). This study describes a practical approach to preparing nucleosomes with asymmetrically modified H3 that is useful for interrogating the reaction of writers and erasers such as KDM5 to nucleosome asymmetry.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Choudhury, R., Singh, S., Arumugam, S., Roguev, A. & Stewart, A. F. The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes Dev. 33, 550–564 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Gatchalian, J. et al. Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Res. 44, 6102–6112 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  68. Zhao, S. et al. Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout. Proc. Natl Acad. Sci. USA 118, e2016742118 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    CAS  PubMed  Google Scholar 

  70. Li, Y., Chen, X. & Lu, C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep. 22, e51803 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Dhayalan, A. et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285, 26114–26120 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    CAS  ADS  PubMed  Google Scholar 

  73. Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  74. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    CAS  PubMed  Google Scholar 

  75. Choufani, S. et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun. 6, 10207 (2015).

    CAS  ADS  PubMed  Google Scholar 

  76. Sendzikaite, G., Hanna, C. W., Stewart-Morgan, K. R., Ivanova, E. & Kelsey, G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat. Commun. 10, 1884 (2019).

    PubMed Central  ADS  PubMed  Google Scholar 

  77. Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019).

    CAS  PubMed  Google Scholar 

  78. Weinberg, D. N. et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat. Genet. 53, 794–800 (2021). Through a combination of genomic experiments and in vitro nucleosome binding assays, this study shows that DNMT3A recruitment to PRC1-targeted CpG islands is mediated by its N-terminal ubiquitin-dependent recruitment region, which binds H2AK119ub.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    CAS  ADS  PubMed  Google Scholar 

  80. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  ADS  PubMed  Google Scholar 

  81. Turner, B. M. Decoding the nucleosome. Cell 75, 5–8 (1993).

    CAS  PubMed  Google Scholar 

  82. Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).

    CAS  PubMed  Google Scholar 

  83. Talbert, P. B. & Henikoff, S. The yin and yang of histone marks in transcription. Annu. Rev. Genomics Hum. Genet. 22, 147–170 (2021).

    PubMed  Google Scholar 

  84. Swygert, S. G. & Peterson, C. L. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim. Biophys. Acta 1839, 728–736 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kim, J. J., Lee, S. Y. & Miller, K. M. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit. Rev. Biochem. Mol. Biol. 54, 208–241 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    CAS  ADS  PubMed  Google Scholar 

  87. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    CAS  PubMed  Google Scholar 

  88. Lauberth, S. M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021–1036 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Wang, H. et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature 615, 339–348 (2023).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  90. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    CAS  PubMed  Google Scholar 

  91. Zhang, Z. et al. Photo-cross-linking to delineate epigenetic interactome. J. Am. Chem. Soc. 144, 20979–20997 (2022).

    CAS  PubMed  Google Scholar 

  92. Moyle, P. M. & Muir, T. W. Method for the synthesis of mono-ADP-ribose conjugated peptides. J. Am. Chem. Soc. 132, 15878–15880 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Li, X. & Kapoor, T. M. Approach to profile proteins that recognize post-translationally modified histone “tails”. J. Am. Chem. Soc. 132, 2504–2505 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kleiner, R. E., Verma, P., Molloy, K. R., Chait, B. T. & Kapoor, T. M. Chemical proteomics reveals a gammaH2AX-53BP1 interaction in the DNA damage response. Nat. Chem. Biol. 11, 807–814 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Bao, X. et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3, e02999 (2014).

    PubMed Central  PubMed  Google Scholar 

  96. Lee, K. & O’Reilly, F. J. Cross-linking mass spectrometry for mapping protein complex topologies in situ. Essays Biochem. 67, 215–228 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Lin, J., Bao, X. & Li, X. D. A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions. Mol. Cell 81, 2669–2681.e9 (2021).

    CAS  PubMed  Google Scholar 

  98. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Brustel, J. et al. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication. EMBO J. 36, 2726–2741 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Makowski, M. M. et al. Global profiling of protein–DNA and protein–nucleosome binding affinities using quantitative mass spectrometry. Nat. Commun. 9, 1653 (2018).

    PubMed Central  ADS  PubMed  Google Scholar 

  102. Skrajna, A. et al. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res. 48, 9415–9432 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Spangler, C. J. et al. Structural basis of paralog-specific KDM2A/B nucleosome recognition. Nat. Chem. Biol. 19, 624–632 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Local, A. et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 50, 73–82 (2018).

    CAS  PubMed  Google Scholar 

  105. Nakamura, K. et al. H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat. Cell Biol. 21, 311–318 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Lin, J. et al. Menin “reads” H3K79me2 mark in a nucleosomal context. Science 379, 717–723 (2023). This study uses a photoaffinity nucleosome probe to capture H3K79me2-specific binders in nuclear extracts, identifying menin as a reader of this PTM; ChIP–seq experiments validate this interaction on native chromatin.

    CAS  ADS  PubMed  Google Scholar 

  107. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    CAS  PubMed  Google Scholar 

  108. Wilkins, B. J. et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343, 77–80 (2014).

    CAS  ADS  PubMed  Google Scholar 

  109. Kleiner, R. E., Hang, L. E., Molloy, K. R., Chait, B. T. & Kapoor, T. M. A chemical proteomics approach to reveal direct protein-protein interactions in living cells. Cell Chem. Biol. 25, 110–120.e3 (2018).

    CAS  PubMed  Google Scholar 

  110. Qin, F. F. et al. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell 186, 1066–1085 (2023). This study uses genetic code expansion to install acylated lysine photoaffinity probes into histones, allowing the capture of mark-specific readers in living cells.

    CAS  PubMed  Google Scholar 

  111. Fang, R. et al. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol. Cell 49, 558–570 (2013).

    CAS  PubMed  Google Scholar 

  112. Burton, A. J. et al. In situ chromatin interactomics using a chemical bait and trap approach. Nat. Chem. 12, 520–527 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. David, Y., Vila-Perello, M., Verma, S. & Muir, T. W. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat. Chem. 7, 394–402 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Franklin, K. A., Shields, C. E. & Haynes, K. A. Beyond the marks: reader-effectors as drivers of epigenetics and chromatin engineering. Trends Biochem. Sci. 47, 417–432 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Villaseñor, R. et al. ChromID identifies the protein interactome at chromatin marks. Nat. Biotechnol. 38, 728–736 (2020).

    PubMed Central  PubMed  Google Scholar 

  117. Santos-Barriopedro, I., van Mierlo, G. & Vermeulen, M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat. Commun. 12, 5015 (2021).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  118. Seath, C. P. et al. Tracking chromatin state changes using nanoscale photo-proximity labelling. Nature 616, 574–580 (2023). This study describes a method for incorporating light-induced proximity labelling catalysts into chromatin, enabling the detection of interactome changes affected by cancer-associated histone mutations.

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  119. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  120. Hananya, N., Ye, X., Koren, S. & Muir, T. W. A genetically encoded photoproximity labeling approach for mapping protein territories. Proc. Natl Acad. Sci. USA 120, e2219339120 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Zhai, Y. et al. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat. Commun. 13, 4906 (2022).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  122. Allis, C. D. & Muir, T. W. Spreading chromatin into chemical biology. Chembiochem 12, 264–279 (2011).

    CAS  PubMed  Google Scholar 

  123. Thompson, R. E. & Muir, T. W. Chemoenzymatic semisynthesis of proteins. Chem. Rev. 120, 3051–3126 (2020).

    CAS  PubMed  Google Scholar 

  124. Meek, D. W. & Anderson, C. W. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol. 1, a000950 (2009).

    PubMed Central  PubMed  Google Scholar 

  125. Chen, L., Liu, S. & Tao, Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct. Target. Ther. 5, 90 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Margiola, S., Gerecht, K. & Müller, M. M. Semisynthetic ‘designer’ p53 sheds light on a phosphorylation–acetylation relay. Chem. Sci. 12, 8563–8570 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Karukurichi, K. R. et al. Analysis of p300/CBP histone acetyltransferase regulation using circular permutation and semisynthesis. J. Am. Chem. Soc. 132, 1222–1223 (2010).

    CAS  PubMed  Google Scholar 

  128. Policarpi, C., Dabin, J. & Hackett, J. A. Epigenetic editing: dissecting chromatin function in context. Bioessays 43, 2000316 (2021).

    Google Scholar 

  129. Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).

    CAS  PubMed  Google Scholar 

  130. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    CAS  PubMed  Google Scholar 

  131. Nguyen, D. P., Garcia Alai, M. M., Kapadnis, P. B., Neumann, H. & Chin, J. W. Genetically encoding Nε-methyl-L-lysine in recombinant histones. J. Am. Chem. Soc. 131, 14194–14195 (2009).

    CAS  PubMed  Google Scholar 

  132. Neumann, H. et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36, 153–163 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Kim, C. H., Kang, M., Kim, H. J., Chatterjee, A. & Schultz, P. G. Site-specific incorporation of ε-N-crotonyllysine into histones. Angew. Chem. Int. Ed. 51, 7246–7249 (2012).

    CAS  Google Scholar 

  134. Lee, S. et al. A facile strategy for selective incorporation of phosphoserine into histones. Angew. Chem. Int. Ed. 52, 5771–5775 (2013).

    CAS  Google Scholar 

  135. Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Li, F. et al. A direct method for site-specific protein acetylation. Angew. Chem. Int. Ed. 50, 9611–9614 (2011).

    CAS  Google Scholar 

  137. Chatterjee, C., McGinty, R. K., Fierz, B. & Muir, T. W. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat. Chem. Biol. 6, 267–269 (2010).

    CAS  PubMed  Google Scholar 

  138. Morgan, M. T. et al. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  139. Le, D. D., Cortesi, A. T., Myers, S. A., Burlingame, A. L. & Fujimori, D. G. Site-specific and regiospecific installation of methylarginine analogues into recombinant histones and insights into effector protein binding. J. Am. Chem. Soc. 135, 2879–2882 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Dadová, J., Galan, S. R. G. & Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Curr. Opin. Chem. Biol. 46, 71–81 (2018).

    PubMed  Google Scholar 

  141. Fu, X.-P. et al. Stereoretentive post-translational protein editing. ACS Cent. Sci. 9, 405–416 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Josephson, B. et al. Light-driven post-translational installation of reactive protein side chains. Nature 585, 530–537 (2020).

    CAS  ADS  PubMed  Google Scholar 

  143. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  ADS  PubMed  Google Scholar 

  144. Maity, S. K., Jbara, M., Mann, G., Kamnesky, G. & Brik, A. Total chemical synthesis of histones and their analogs, assisted by native chemical ligation and palladium complexes. Nat. Protoc. 12, 2293–2322 (2017).

    CAS  PubMed  Google Scholar 

  145. Qi, Y. K., Ai, H. S., Li, Y. M. & Yan, B. Total chemical synthesis of modified histones. Front. Chem. 6, 19 (2018).

    PubMed Central  ADS  PubMed  Google Scholar 

  146. Muir, T. W., Sondhi, D. & Cole, P. A. Expressed protein ligation: a general method for protein engineering. Proc. Natl Acad. Sci. USA 95, 6705–6710 (1998).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  147. Muir, T. W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    CAS  PubMed  Google Scholar 

  148. Holt, M. & Muir, T. Application of the protein semisynthesis strategy to the generation of modified chromatin. Annu. Rev. Biochem. 84, 265–290 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  150. Szymczak, L. C., Kuo, H.-Y. & Mrksich, M. Peptide arrays: development and application. Anal. Chem. 90, 266–282 (2018).

    CAS  PubMed  Google Scholar 

  151. Matthews, A. G. W. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  152. Moreno-Yruela, C. et al. Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nat. Commun. 12, 62 (2021).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  153. Garske, A. L. et al. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat. Chem. Biol. 6, 283–290 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Morrison, E. A., Bowerman, S., Sylvers, K. L., Wereszczynski, J. & Musselman, C. A. The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome. eLife 7, e31481 (2018).

    PubMed Central  PubMed  Google Scholar 

  155. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  156. Nguyen, U. T. T. et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat. Methods 11, 834–840 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Liszczak, G., Diehl, K. L., Dann, G. P. & Muir, T. W. Acetylation blocks DNA damage–induced chromatin ADP-ribosylation. Nat. Chem. Biol. 14, 837–840 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  159. Bagert, J. D. et al. Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat. Chem. Biol. 17, 403–411 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Jain, K. et al. An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability. eLife 12, e82596 (2023).

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the work discussed in this Review was conducted in the laboratory of T.W.M. and financially supported by the National Institutes of Health (NIH, R01 GM086868, R01 CA240768 and P01 CA196539) and Princeton Catalysis Initiative. N.H. is a Robert Black Fellow of the Damon Runyon Cancer Research Foundation, DRG-2425-21. S.K. is supported by the Human Frontier Science Program fellowship, LT000595/2020. We also thank members of the Muir lab past and present for helpful discussions in the preparation of this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Tom W. Muir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Rodrigo Villaseñor, who co-reviewed with Namisha Rakesh, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Dedication

This Review is dedicated to the memory of C. David Allis.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Constitutive heterochromatin

Genomic regions containing a high density of repetitive DNA elements, found for example in centromeres and pericentromeric domains, which are packed in a stably inactive form.

Designer chromatin

A reconstituted chromatin template comprising one or more chemically customized histone(s) containing site-specific post-translational modifications and/or a biochemical probe such as a photocrosslinker.

Epigenetic

Heritable gene regulatory information that is not linked to changes in DNA sequence.

Eraser

An enzyme that removes modifications from histones or DNA.

Facultative heterochromatin

Genomic regions containing genes that are silenced in a cell type-specific or developmentally regulated manner. Various signals can reverse facultative heterochromatin repression to allow transcription.

Histone PTM crosstalk

The ability of a preexisting post-translational modification (PTM) to impact the installation, removal or readout of another PTM. Crosstalk can occur between PTMs on the same histone (cis) or different histones (trans).

Interactome

Here, it refers to the constellation of cellular factors that are recruited to a particular protein. Chromatin interactomes can change as a function of epigenetic modifications.

Proximity labelling

A chemo-proteomic approach that allows the interactome around a protein of interest to be identified by ‘painting’ it with locally-activated chemical probes bearing an affinity handle such as biotin.

Reader

A protein that binds specifically to post-translationally-modified histones, thereby mediating the post-translational modification’s biological outcome.

Writer

An enzyme that adds modifications to histones or DNA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hananya, N., Koren, S. & Muir, T.W. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 25, 255–271 (2024). https://doi.org/10.1038/s41576-023-00664-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00664-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing