Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements

Abstract

Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods to detect chromothripsis with different spatial and sequence resolution.
Fig. 2: Mechanisms of micronuclei and chromosome bridge formation and rupture.
Fig. 3: Molecular mechanisms initiating chromosome fragmentation.
Fig. 4: Molecular mechanisms for chromosome reassembly.
Fig. 5: Mechanisms through which chromothripsis drives tumorigenesis.
Fig. 6: Pan-cancer genome analysis reveals frequent co-occurrence of chromothripsis and ecDNA in 25 cancer types.

Similar content being viewed by others

References

  1. Nowell, P. C. & Hungerford, D. A. Minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1497 (1960).

    Google Scholar 

  2. Kaung, D. T. & Swartzendruber, A. A. Effect of chemotherapeutic agents on chromosomes of patients with lung cancer. Dis. Chest 55, 98–100 (1969).

    CAS  PubMed  Google Scholar 

  3. Van Steenis, H. Chromosomes and cancer. Nature 209, 819–821 (1966).

    PubMed  ADS  Google Scholar 

  4. Ishihara, T., Kikuchi, Y. & Sandberg, A. A. Chromosomes of twenty cancer effusions: correlation of karyotypic, clinical, and pathologic aspects. J. Natl Cancer Inst. 30, 1303–1361 (1963).

    CAS  PubMed  Google Scholar 

  5. Rowley, J. D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    CAS  PubMed  ADS  Google Scholar 

  6. Thompson, S. L. & Compton, D. A. Chromosomes and cancer cells. Chromosome Res. 19, 433–444 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Frohling, S. & Dohner, H. Chromosomal abnormalities in cancer. N. Engl. J. Med. 359, 722–734 (2008).

    CAS  PubMed  Google Scholar 

  8. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  ADS  Google Scholar 

  9. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  ADS  Google Scholar 

  10. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    CAS  PubMed  Google Scholar 

  12. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    CAS  PubMed  Google Scholar 

  17. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Holland, A. J. & Cleveland, D. W. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 18, 1630–1638 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This study reported the discovery of chromothripsis and established potential mechanisms and consequences of massive chromosome rearrangements.

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013). Korbel and Campbell proposed a set of criteria to distinguish chromothripsis from other rearrangements.

    CAS  PubMed  Google Scholar 

  24. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012). This study identified cell division errors to be a main cause of chromothripsis.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015). This study introduced single-cell genomic analysis combined with live-cell imaging (‘Look-Seq’) to follow genomic rearrangements, including chromothripsis, associated with micronuclei.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This study established chromothripsis as a key contributor to therapy-induced gene amplification in cancer, including the generation of ecDNAs.

    CAS  PubMed  ADS  Google Scholar 

  28. Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

    CAS  PubMed  Google Scholar 

  29. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    PubMed  PubMed Central  ADS  Google Scholar 

  30. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    CAS  PubMed  ADS  Google Scholar 

  32. Magrangeas, F., Avet-Loiseau, H., Munshi, N. C. & Minvielle, S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118, 675–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020). This study (as a part of the PCAWG Consortium) performed a pan-cancer analysis of chromothripsis, establishing its very high prevalence in cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    CAS  ADS  Google Scholar 

  35. Voronina, N. et al. The landscape of chromothripsis across adult cancer types. Nat. Commun. 11, 2320 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Rasnic, R. & Linial, M. Chromoanagenesis landscape in 10,000 TCGA patients. Cancers 13, 4197 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Bao, L., Zhong, X., Yang, Y. & Yang, L. Starfish infers signatures of complex genomic rearrangements across human cancers. Nat. Cancer 3, 1247–1259 (2022).

    CAS  PubMed  Google Scholar 

  39. Hirsch, D. et al. Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res. 73, 1454–1460 (2013).

    CAS  PubMed  Google Scholar 

  40. Fontana, M. C. et al. Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia 32, 1609–1620 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Rustad, E. H. et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 1, 258–273 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Maclachlan, K. H. et al. Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma. Nat. Commun. 12, 5172 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Rosswog, C. et al. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nat. Genet. 53, 1673–1685 (2021).

    CAS  PubMed  Google Scholar 

  44. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020). This study performed a pan-cancer analysis of ecDNA prevalence, linking ecDNA to oncogene amplification and poor prognosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kloosterman, W. P. et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 12, R103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakamoto, Y. et al. Phasing analysis of lung cancer genomes using a long read sequencer. Nat. Commun. 13, 3464 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Lei, M. et al. Long-read DNA sequencing fully characterized chromothripsis in a patient with Langer-Giedion syndrome and Cornelia de Lange syndrome-4. J. Hum. Genet. 65, 667–674 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. Schopflin, R. et al. Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes. Nat. Commun. 13, 6470 (2022).

    PubMed  PubMed Central  ADS  Google Scholar 

  51. Rausch, T. et al. Long-read sequencing of diagnosis and post-therapy medulloblastoma reveals complex rearrangement patterns and epigenetic signatures. Cell Genom. 3, 100281 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Przybytkowski, E. et al. Chromosome-breakage genomic instability and chromothripsis in breast cancer. BMC Genom. 15, 579 (2014).

    Google Scholar 

  53. Berry, N. K., Dixon-McIver, A., Scott, R. J., Rowlings, P. & Enjeti, A. K. Detection of complex genomic signatures associated with risk in plasma cell disorders. Cancer Genet. 218-219, 1–9 (2017).

    CAS  PubMed  Google Scholar 

  54. Ortega, V., Mendiola, C. & Velagaleti, G. V. N. Identification of chromothripsis in biopsy using SNP-based microarray. Methods Mol. Biol. 1769, 85–117 (2018).

    CAS  PubMed  Google Scholar 

  55. Chan, E. K. F. et al. Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Res. 28, 726–738 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, H. et al. High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic aberrations of prognostic and therapeutic significance. Leukemia 36, 2306–2316 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramos-Campoy, S. et al. TP53 abnormalities are underlying the poor outcome associated with chromothripsis in chronic lymphocytic leukemia patients with complex karyotype. Cancers 14, 3715 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Francis, J. M. et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 4, 956–971 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jeong, H. et al. Functional analysis of structural variants in single cells using Strand-seq. Nat. Biotechnol. 41, 832–844 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. Sanders, A. D. et al. Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. Nat. Biotechnol. 38, 343–354 (2020).

    CAS  PubMed  Google Scholar 

  61. Parra, G. R. et al. Single cell multi-omics analysis of chromothriptic medulloblastoma highlights genomic and transcriptomic consequences of genome instability. Preprint at bioRxiv https://doi.org/10.1101/2021.06.25.449944 (2021).

  62. Shiau, C. K. et al. High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors. Nat. Commun. 14, 4124 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    CAS  PubMed  Google Scholar 

  64. Mackinnon, R. N. & Campbell, L. J. Chromothripsis under the microscope: a cytogenetic perspective of two cases of AML with catastrophic chromosome rearrangement. Cancer Genet. 206, 238–251 (2013).

    CAS  PubMed  Google Scholar 

  65. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Su, J. H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, J., Deng, G. & Cai, H. ChromothripsisDB: a curated database of chromothripsis. Bioinformatics 32, 1433–1435 (2016).

    CAS  PubMed  Google Scholar 

  68. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. International Cancer Genome Consortium et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    ADS  Google Scholar 

  70. Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91, 355–358 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Heath, A. P. et al. The NCI genomic data commons. Nat. Genet. 53, 257–262 (2021).

    CAS  PubMed  Google Scholar 

  72. Fenech, M. et al. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat. Res. Rev. Mutat. Res. 786, 108342 (2020).

    CAS  PubMed  Google Scholar 

  73. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato, H. & Sandberg, A. A. Chromosome pulverization in human cells with micronuclei. J. Natl Cancer Inst. 40, 165–179 (1968).

    CAS  PubMed  Google Scholar 

  75. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Xia, Y. et al. Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013). This study identified the collapse of the nuclear envelope surrounding a micronucleus to be a common feature of cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vargas, J. D., Hatch, E. M., Anderson, D. J. & Hetzer, M. W. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3, 88–100 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Willan, J. et al. ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis 8, 29 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Vietri, M. et al. Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat. Cell Biol. 22, 856–867 (2020).

    CAS  PubMed  Google Scholar 

  81. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019). This study used a cellular model of missegregation of the Y chromosome bearing a selective marker to demostrate that chromosome micronucleation can initiate a broad spectrum of genome rearrangements (including chromothripsis) found in human cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bochtler, T. et al. Micronucleus formation in human cancer cells is biased by chromosome size. Genes Chromosomes Cancer 58, 392–395 (2019).

    CAS  PubMed  Google Scholar 

  83. Klaasen, S. J. et al. Nuclear chromosome locations dictate segregation error frequencies. Nature 607, 604–609 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Mammel, A. E., Huang, H. Z., Gunn, A. L., Choo, E. & Hatch, E. M. Chromosome length and gene density contribute to micronuclear membrane stability. Life Sci. Alliance 5, e202101210 (2022).

    CAS  PubMed  Google Scholar 

  85. Schutze, D. M. et al. Immortalization capacity of HPV types is inversely related to chromosomal instability. Oncotarget 7, 37608–37621 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Dacus, D. et al. Beta human papillomavirus 8 E6 induces micronucleus formation and promotes chromothripsis. J. Virol. 96, e0101522 (2022).

    PubMed  Google Scholar 

  87. Li, J. S. Z. et al. Chromosomal fragile site breakage by EBV-encoded EBNA1 at clustered repeats. Nature 616, 504–509 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  89. McClintock, B. The stability of broken ends of chromosomes in zea mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Maciejowski, J. & de Lange, T. Telomeres in cancer: tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18, 175–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoffelder, D. R. et al. Resolution of anaphase bridges in cancer cells. Chromosoma 112, 389–397 (2004).

    PubMed  Google Scholar 

  92. Pampalona, J., Soler, D., Genesca, A. & Tusell, L. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies. Mutat. Res. 683, 16–22 (2010).

    CAS  PubMed  Google Scholar 

  93. Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Mardin, B. R. et al. A cell-based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11, 828 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc. Natl Acad. Sci. USA 98, 12683–12688 (2001).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Yang, Y. G., Lindahl, T. & Barnes, D. E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    CAS  PubMed  Google Scholar 

  98. Christmann, M., Tomicic, M. T., Aasland, D., Berdelle, N. & Kaina, B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res. 38, 6418–6432 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Maciejowski, J. et al. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 52, 884–890 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nader, G. P. F. et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 184, 5230–5246.e22 (2021).

    CAS  PubMed  Google Scholar 

  101. Xia, Y. et al. Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. J. Cell Biol. 218, 2545–2563 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hong, Y. et al. LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nat. Commun. 9, 728 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  103. Song, J., Freeman, A. D. J., Knebel, A., Gartner, A. & Lilley, D. M. J. Human ANKLE1 is a nuclease specific for branched DNA. J. Mol. Biol. 432, 5825–5834 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiang, H., Kong, N., Liu, Z., West, S. C. & Chan, Y. W. Human endonuclease ANKLE1 localizes at the midbody and processes chromatin bridges to prevent DNA damage and cGAS-STING activation. Adv. Sci. 10, e2204388 (2023).

    Google Scholar 

  105. Tang, S., Stokasimov, E., Cui, Y. & Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 606, 930–936 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Terzoudi, G. I. et al. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Mutat. Res. Genet. Toxicol. Env. Mutagen. 793, 185–198 (2015).

    CAS  Google Scholar 

  107. Tang, H. L. et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tubio, J. M. & Estivill, X. Cancer: when catastrophe strikes a cell. Nature 470, 476–477 (2011).

    CAS  PubMed  ADS  Google Scholar 

  109. Rello-Varona, S. et al. Autophagic removal of micronuclei. Cell Cycle 11, 170–176 (2012).

    CAS  PubMed  Google Scholar 

  110. Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Zhao, M. et al. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17, 3976–3991 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, J. et al. Comprehensive chromosome end remodeling during programmed DNA elimination. Curr. Biol. 30, 3397–3413.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Morishita, M. et al. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 7, 10182–10192 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  115. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Geng, K. et al. Target-enriched nanopore sequencing and de novo assembly reveals co-occurrences of complex on-target genomic rearrangements induced by CRISPR-Cas9 in human cells. Genome Res. 32, 1876–1891 (2022).

    PubMed  PubMed Central  Google Scholar 

  118. Trivedi, P., Steele, C. D., Au, F. K. C., Alexandrov, L. B. & Cleveland, D. W. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 618, 1049–1056 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Lin, Y. F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023). Trivedi et al. and Lin et al. showed that tethering of micronuclei-derived chromosome fragments in mitosis enables their inheritance.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    CAS  PubMed  Google Scholar 

  121. Lupski, J. R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

    CAS  PubMed  Google Scholar 

  122. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kloosterman, W. P. et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1, 648–655 (2012).

    CAS  PubMed  Google Scholar 

  124. Ratnaparkhe, M. et al. Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat. Commun. 9, 4760 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  125. Schipler, A. et al. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res. 44, 7673–7690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cleal, K., Jones, R. E., Grimstead, J. W., Hendrickson, E. A. & Baird, D. M. Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res. 29, 737–749 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001).

    CAS  PubMed  Google Scholar 

  128. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Rucker, F. G. et al. Chromothripsis is linked to TP53 alteration, cell cycle impairment, and dismal outcome in acute myeloid leukemia with complex karyotype. Haematologica 103, e17–e20 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Mehine, M., Kaasinen, E. & Aaltonen, L. A. Chromothripsis in uterine leiomyomas. N. Engl. J. Med. 369, 2160–2161 (2013).

    CAS  PubMed  Google Scholar 

  131. Holzmann, C. et al. Cytogenetically normal uterine leiomyomas without MED12-mutations-a source to identify unknown mechanisms of the development of uterine smooth muscle tumors. Mol. Cytogenet. 7, 88 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Mehine, M., Makinen, N., Heinonen, H. R., Aaltonen, L. A. & Vahteristo, P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil. Steril. 102, 621–629 (2014).

    CAS  PubMed  Google Scholar 

  133. Pendina, A. A. et al. Case of chromothripsis in a large solitary non-recurrent uterine leiomyoma. Eur. J. Obstet. Gynecol. Reprod. Biol. 219, 134–136 (2017).

    PubMed  Google Scholar 

  134. McEvoy, J. et al. RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget 5, 438–450 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

    CAS  PubMed  ADS  Google Scholar 

  137. Notta, F. et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538, 378–382 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Parker, M. et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506, 451–455 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Kodama, T. et al. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line. J. Thorac. Oncol. 9, 1638–1646 (2014).

    CAS  PubMed  Google Scholar 

  140. Singh, Z. N. et al. Cryptic ETV6-PDGFRB fusion in a highly complex rearrangement of chromosomes 1, 5, and 12 due to a chromothripsis-like event in a myelodysplastic syndrome/myeloproliferative neoplasm. Leuk. Lymphoma 60, 1304–1307 (2019).

    CAS  PubMed  Google Scholar 

  141. Anderson, N. D. et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, eaam8419 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Arniani, S. et al. Chromothripsis is a frequent event and underlies typical genetic changes in early T-cell precursor lymphoblastic leukemia in adults. Leukemia 36, 2577–2585 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cox, D., Yuncken, C. & Spriggs, A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 1, 55–58 (1965).

    CAS  PubMed  Google Scholar 

  144. Ilic, M., Zaalberg, I. C., Raaijmakers, J. A. & Medema, R. H. Life of double minutes: generation, maintenance, and elimination. Chromosoma 131, 107–125 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pecorino, L. T., Verhaak, R. G. W., Henssen, A. & Mischel, P. S. Extrachromosomal DNA (ecDNA): an origin of tumor heterogeneity, genomic remodeling, and drug resistance. Biochem. Soc. Trans. 50, 1911–1920 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. van Leen, E., Bruckner, L. & Henssen, A. G. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat. Genet. 54, 107–114 (2022).

    PubMed  Google Scholar 

  147. Kaufman, R. J., Brown, P. C. & Schimke, R. T. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl Acad. Sci. USA 76, 5669–5673 (1979).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  148. Fakharzadeh, S. S., Trusko, S. P. & George, D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10, 1565–1569 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mansfield, A. S. et al. Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J. Thorac. Oncol. 14, 276–287 (2019).

    CAS  PubMed  Google Scholar 

  150. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017). This study demonstrated that DNA in ruptured micronuclei is recognized by the innate immunity DNA sensor cGAS.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  151. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  152. Bartsch, K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26, 3960–3972 (2017).

    CAS  PubMed  Google Scholar 

  153. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Gratia, M. et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J. Exp. Med. 216, 1199–1213 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ku, J. W. K. et al. Bacterial-induced cell fusion is a danger signal triggering cGAS-STING pathway via micronuclei formation. Proc. Natl Acad. Sci. USA 117, 15923–15934 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. Lohard, S. et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat. Commun. 11, 259 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  157. Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Heijink, A. M. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat. Commun. 10, 100 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  159. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  ADS  Google Scholar 

  160. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  PubMed  ADS  Google Scholar 

  161. Ablasser, A. et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  162. Liu, H. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018).

    CAS  PubMed  ADS  Google Scholar 

  163. Jiang, H. et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 38, e102718 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Banerjee, D. et al. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat. Commun. 12, 6207 (2021).

    PubMed  PubMed Central  ADS  Google Scholar 

  165. Cramer, S. F. & Patel, A. The frequency of uterine leiomyomas. Am. J. Clin. Pathol. 94, 435–438 (1990).

    CAS  PubMed  Google Scholar 

  166. McDermott, D. H. et al. Chromothriptic cure of WHIM syndrome. Cell 160, 686–699 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).

    CAS  PubMed  Google Scholar 

  168. de Pagter, M. S. et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96, 651–656 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. Chiang, C. et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 44, 390–397, S1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Nazaryan, L. et al. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur. J. Hum. Genet. 22, 338–343 (2014).

    CAS  PubMed  Google Scholar 

  171. Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 49, 36–45 (2017).

    CAS  PubMed  Google Scholar 

  172. Weckselblatt, B., Hermetz, K. E. & Rudd, M. K. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 25, 937–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gamba, B. F., Richieri-Costa, A., Costa, S., Rosenberg, C. & Ribeiro-Bicudo, L. A. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies. Mol. Genet. Genom. 290, 2213–2216 (2015).

    CAS  Google Scholar 

  174. Meier, B. et al. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res. 24, 1624–1636 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee, J. K. et al. Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma. Ann. Oncol. 28, 890–897 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Lee, J. J. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).

    CAS  PubMed  Google Scholar 

  177. Tan, E. H. et al. Catastrophic chromosomal restructuring during genome elimination in plants. eLife 4, e06516 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Guo, W., Comai, L. & Henry, I. M. Chromoanagenesis from radiation-induced genome damage in Populus. PLoS Genet. 17, e1009735 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Guo, W., Comai, L. & Henry, I. M. Chromoanagenesis in plants: triggers, mechanisms, and potential impact. Trends Genet. 39, 34–45 (2023).

    CAS  PubMed  Google Scholar 

  180. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Fossi, M., Amundson, K., Kuppu, S., Britt, A. & Comai, L. Regeneration of solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiol. 180, 78–86 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Carbonell-Bejerano, P. et al. Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine. Plant Physiol. 175, 786–801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose work was not included due to space and format constraints. The authors received salary support from NIH grant R35 GM122476.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Don W. Cleveland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jan O. Korbel, who co-reviewed with Marco R. Cosenza, and David S. Pellman, who co-reviewed with Shangming Tang and Tajinder Ubhi, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal: https://www.cbioportal.org/

ChromothripsisDB: http://cailab.labshare.cn/chromothripsisdb

Chromothripsis Explorer: http://compbio.med.harvard.edu/chromothripsis/

COSMIC: https://cancer.sanger.ac.uk/cosmic

GDC: https://portal.gdc.cancer.gov/

ICGC: https://dcc.icgc.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupina, K., Goginashvili, A. & Cleveland, D.W. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 25, 196–210 (2024). https://doi.org/10.1038/s41576-023-00663-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00663-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer