Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aneuploidy and complex genomic rearrangements in cancer evolution

Abstract

Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of selective and physical considerations on alteration frequencies.
Fig. 2: Causes of whole-genome duplication and links between complex genomic events.
Fig. 3: A summary of the processes underlying four classes of large-scale genomic rearrangements.

Similar content being viewed by others

Data availability

This manuscript contains no original research or analysis.

References

  1. Shih, J. et al. Cancer aneuploidies are shaped primarily by effects on tumour fitness. Nature 619, 793–800 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521, 81–84 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Boveri, T. Zur frage der entstehung maligner tumoren (Fischer, 1914).

  8. von Hansemann, D. Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Arch. Pathol. Anat. Physiol. Klin. Med. 119, 299–326 (1890).

    Article  Google Scholar 

  9. Hardy, P. A. & Zacharias, H. Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol. Int. 29, 983–992 (2005).

    Article  PubMed  Google Scholar 

  10. Wunderlich, V. JMM—past and present. Chromosomes and cancer: Theodor Boveri’s predictions 100 years later. J. Mol. Med. 80, 545–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minussi, D. C. et al. Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592, 302–308 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baslan, T. et al. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing. eLife 9, e51480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zaccaria, S. & Raphael, B. J. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nat. Biotechnol. 39, 207–214 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Zahn, H. et al. Scalable whole-genome single-cell library preparation without preamplification. Nat. Methods 14, 167–173 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Salehi, S. et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature 595, 585–590 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, C. Y. et al. Integrative single-cell analysis of allele-specific copy number alterations and chromatin accessibility in cancer. Nat. Biotechnol. 39, 1259–1269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Sansregret, L. & Swanton, C. The role of aneuploidy in cancer evolution. Cold Spring Harb. Perspect Med. 7, a028373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Giam, M. & Rancati, G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guerrero, A. A., Martinez, A. C. & van Wely, K. H. Merotelic attachments and non-homologous end joining are the basis of chromosomal instability. Cell Div. 5, 13 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Telentschak, S., Soliwoda, M., Nohroudi, K., Addicks, K. & Klinz, F. J. Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells. Oncol. Rep. 33, 2001–2008 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Tyagi, I. S. et al. Intrinsic and chemically-induced daughter number variations in cancer cell lines. Cell Cycle 20, 537–549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ring, D., Hubble, R. & Kirschner, M. Mitosis in a cell with multiple centrioles. J. Cell Biol. 94, 549–556 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M. & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127–129 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bennett, W. P. et al. p53 protein accumulates frequently in early bronchial neoplasia. Cancer Res. 53, 4817–4822 (1993).

    CAS  PubMed  Google Scholar 

  41. Shiao, Y. H., Rugge, M., Correa, P., Lehmann, H. P. & Scheer, W. D. p53 alteration in gastric precancerous lesions. Am. J. Pathol. 144, 511–517 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brentnall, T. A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107, 369–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Bronder, D. et al. TP53 loss initiates chromosomal instability in fallopian tube epithelial cells. Dis Model Mech. 14, dmm049001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soto, M. et al. p53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 19, 2423–2431 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Storchova, Z. & Kuffer, C. The consequences of tetraploidy and aneuploidy. J. Cell Sci. 121, 3859–3866 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Zbar, B., Brauch, H., Talmadge, C. & Linehan, M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721–724 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Foulkes, W. D., Black, D. M., Stamp, G. W., Solomon, E. & Trowsdale, J. Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. Int. J. Cancer 54, 220–225 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Bigner, S. H., Mark, J. & Bigner, D. D. Cytogenetics of human brain tumors. Cancer Genet. Cytogenet. 47, 141–154 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Drpic, D. et al. Chromosome segregation is biased by kinetochore size. Curr. Biol. 28, 1344–1356 e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dumont, M. et al. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J. 39, e102924 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Klaasen, S. J. et al. Nuclear chromosome locations dictate segregation error frequencies. Nature 607, 604–609 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bochtler, T. et al. Micronucleus formation in human cancer cells is biased by chromosome size. Genes Chromosomes Cancer 58, 392–395 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sack, L. M. et al. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell 173, 499–514 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ryland, G. L. et al. Loss of heterozygosity: what is it good for? BMC Med. Genomics 8, 45 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Merajver, S. D. et al. Germline BRCA1 mutations and loss of the wild-type allele in tumors from families with early onset breast and ovarian cancer. Clin. Cancer Res. 1, 539–544 (1995).

    CAS  PubMed  Google Scholar 

  57. Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Hoevenaar, W. H. M. et al. Degree and site of chromosomal instability define its oncogenic potential. Nat. Commun. 11, 1501 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheltzer, J. M. et al. Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31, 240–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rutledge, S. D. et al. Selective advantage of trisomic human cells cultured in non-standard conditions. Sci. Rep. 6, 22828 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Choma, D., Daures, J. P., Quantin, X. & Pujol, J. L. Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data. Br. J. Cancer 85, 14–22 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu, J., Huang, L. & Li, J. DNA aneuploidy and breast cancer: a meta-analysis of 141,163 cases. Oncotarget 7, 60218–60229 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stopsack, K. H. et al. Aneuploidy drives lethal progression in prostate cancer. Proc. Natl Acad. Sci. USA 116, 11390–11395 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, J. et al. Prognostic value of DNA aneuploidy in gastric cancer: a meta-analysis of 3449 cases. BMC Cancer 19, 650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Silk, A. D. et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc. Natl Acad. Sci. USA 110, E4134–E4141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Dijk, E. et al. Chromosomal copy number heterogeneity predicts survival rates across cancers. Nat. Commun. 12, 3188 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hong, C. et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wijewardhane, N., Dressler, L. & Ciccarelli, F. D. Normal somatic mutations in cancer transformation. Cancer Cell 39, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25–28 (2012).

    Article  PubMed  Google Scholar 

  78. Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor Growth: TRACERx Renal. Cell 173, 595–610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martinez-Jimenez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cancer Genome Atlas Research Network et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed Central  Google Scholar 

  86. Birkbak, N. J. & McGranahan, N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37, 8–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Funnell, T. et al. Single-cell genomic variation induced by mutational processes in cancer. Nature 612, 106–115 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lens, S. M. A. & Medema, R. H. Cytokinesis defects and cancer. Nat. Rev. Cancer 19, 32–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21, 765–776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Duelli, D. M., Hearn, S., Myers, M. P. & Lazebnik, Y. A primate virus generates transformed human cells by fusion. J. Cell Biol. 171, 493–503 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dittmar, T. & Zanker, K. S. Tissue regeneration in the chronically inflamed tumor environment: implications for cell fusion driven tumor progression and therapy resistant tumor hybrid cells. Int. J. Mol. Sci. 16, 30362–30381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gemble, S. et al. Genetic instability from a single S phase after whole-genome duplication. Nature 604, 146–151 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Prasad, K. et al. Whole-genome duplication shapes the aneuploidy landscape of human cancers. Cancer Res. 82, 1736–1752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4, 175–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Lambuta, R. A. et al. Whole-genome doubling drives oncogenic loss of chromatin segregation. Nature 615, 925–933 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lopez, S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lukow, D. A. et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 56, 2427–2439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coward, J. & Harding, A. Size does matter: why polyploid tumor cells are critical drug targets in the war on cancer. Front. Oncol. 4, 123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Laughney, A. M., Elizalde, S., Genovese, G. & Bakhoum, S. F. Dynamics of tumor heterogeneity derived from clonal karyotypic evolution. Cell Rep. 12, 809–820 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, J. E. et al. High prevalence of TP53 loss and whole-genome doubling in early-onset colorectal cancer. Exp. Mol. Med. 53, 446–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Anderson, N. D. et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, eaam8419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dahiya, R., Hu, Q. & Ly, P. Mechanistic origins of diverse genome rearrangements in cancer. Semin. Cell Dev. Biol. 123, 100–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosswog, C. et al. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nat. Genet. 53, 1673–1685 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  ADS  CAS  Google Scholar 

  115. Kloosterman, W. P. et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1, 648–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Boboila, C., Alt, F.W. & Schwer, B. in Advances in Immunology, Vol. 116 (ed. Alt, F. W.) Ch. 1 (Academic Press, 2012).

  121. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weckselblatt, B. & Rudd, M. K. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 31, 587–599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kurzrock, R., Gutterman, J. U. & Talpaz, M. The molecular genetics of philadelphia chromosome–positive leukemias. New Engl. J. Med. 319, 990–998 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Turc-Carel, C. et al. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet. Cytogenet. 19, 361–362 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Delattre, O. et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Robinson, D. R. et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat. Genet. 45, 180–185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Soda, M. et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Neuse, C. J. et al. Genome instability in multiple myeloma. Leukemia 34, 2887–2897 (2020).

    Article  PubMed  Google Scholar 

  130. Oey, H. et al. Whole-genome sequencing of human malignant mesothelioma tumours and cell lines. Carcinogenesis 40, 724–734 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Rustad, E. H. et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 1, 258–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pellestor, F., Gaillard, J. B., Schneider, A., Puechberty, J. & Gatinois, V. Chromoanagenesis, the mechanisms of a genomic chaos. Semin. Cell Dev. Biol. 123, 90–99 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Viswanathan, S. R. et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174, 433–447 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mansfield, A. S. et al. Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J. Thorac.Oncol. 14, 276–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Leibowitz, M. L., Zhang, C.-Z. & Pellman, D. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49, 183–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bao, L., Zhong, X., Yang, Y. & Yang, L. Starfish infers signatures of complex genomic rearrangements across human cancers. Nat. Cancer 3, 1247–1259 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tang, S., Stokasimov, E., Cui, Y. & Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 606, 930–936 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hirsch, D. et al. Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res. 73, 1454–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Kloosterman, W. P. et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 12, R103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Magrangeas, F., Avet-Loiseau, H., Munshi, N. C. & Minvielle, S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118, 675–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  148. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Parker, M. et al. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 451–455 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bhargava, R., Fischer, M. & O’Sullivan, R. J. Genome rearrangements associated with aberrant telomere maintenance. Curr. Opin. Genet. Dev. 60, 31–40 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tanaka, H. & Watanabe, T. Mechanisms underlying recurrent genomic amplification in human cancers. Trends Cancer 6, 462–477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Coquelle, A., Pipiras, E., Toledo, F., Buttin, G. & Debatisse, M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89, 215–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Marotta, M. et al. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. BCR 14, R150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Thomas, R., Marks, D. H., Chin, Y. & Benezra, R. Whole chromosome loss and associated breakage–fusion–bridge cycles transform mouse tetraploid cells. EMBO J. 37, 201–218 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Ferrari, A. et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat. Commun. 7, 12222 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Marotta, M. et al. Palindromic amplification of the ERBB2 oncogene in primary HER2-positive breast tumors. Sci. Rep. 7, 41921 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Reshmi, S. C. et al. Inverted duplication pattern in anaphase bridges confirms the breakage-fusion-bridge (BFB) cycle model for 11q13 amplification. Cytogen. Genome Res. 116, 46–52 (2007).

    Article  CAS  Google Scholar 

  160. Hellman, A. et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1, 89–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, Y. K. et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 49, 856–865 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Garsed, D. W. et al. The architecture and evolution of cancer neochromosomes. Cancer Cell 26, 653–667 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  165. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu, S., Bafna, V., Chang, H. Y. & Mischel, P. S. Extrachromosomal DNA: an emerging hallmark in human cancer. Annu. Rev. Pathol. Mech. Dis. 17, 367–386 (2022).

    Article  CAS  Google Scholar 

  167. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cox, D., Yuncken, C. & Spriggs, A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 1, 55–58 (1965).

    Article  CAS  PubMed  Google Scholar 

  170. Chapman, O. S. et al. Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat. Genet. 55, 2189–2199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yi, E., Chamorro Gonzalez, R., Henssen, A. G. & Verhaak, R. G. W. Extrachromosomal DNA amplifications in cancer. Nat. Rev. Genet. 23, 760–771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  174. deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Markowetz, F. A saltationist theory of cancer evolution. Nat. Genet. 48, 1102–1103 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Sen, O., Harrison, J. U., Burroughs, N. J. & McAinsh, A. D. Kinetochore life histories reveal an Aurora-B-dependent error correction mechanism in anaphase. Dev. Cell 56, 3082–3099 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hong, M. K. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6, 6605 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  180. Choi, J. et al. Integrated mutational landscape analysis of uterine leiomyosarcomas. Proc. Natl Acad. Sci. USA 118, e2025182118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, Z. et al. RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement. Cancer 123, 3916–3924 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Notta, F. et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538, 378–382 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Singer, M. J., Mesner, L. D., Friedman, C. L., Trask, B. J. & Hamlin, J. L. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc. Natl Acad. Sci. USA 97, 7921–7926 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Song, K. et al. Plasticity of extrachromosomal and intrachromosomal BRAF amplifications in overcoming targeted therapy dosage challenges. Cancer Discov. 12, 1046–1069 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Pillay for helpful discussion on the manuscript. T.M.B., S.W. and P.V.L. are supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC2008), the UK Medical Research Council (CC2008) and the Wellcome Trust (CC2008). For the purpose of open access, the authors have applied a CC BY public copyright license to any author accepted manuscript version arising from this submission. T.M.B. is supported by a PhD fellowship from Boehringer Ingelheim Fonds. S.W. is a Jean Shanks/Pathological Society Clinical Lecturer. M.T. was supported as a postdoctoral researcher of the F.R.S.-FNRS. P.V.L. is a CPRIT Scholar in Cancer Research and acknowledges CPRIT grant support (RR210006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Van Loo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Samuel Bakhoum, Anton Henssen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, T.M., Waise, S., Tarabichi, M. et al. Aneuploidy and complex genomic rearrangements in cancer evolution. Nat Cancer 5, 228–239 (2024). https://doi.org/10.1038/s43018-023-00711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00711-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer