Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Pioneer factors — key regulators of chromatin and gene expression

Pioneer factors are a group of transcription factors with important roles in gene regulation during development. Their unique ability to bind to compacted chromatin, promoting its remodelling for gene expression, sets them apart from other regulatory proteins and makes them essential players in cellular differentiation, fate determination and reprogramming. Here, we have tasked five experts with discussing our current understanding of pioneer factors and their functions to showcase why exploring these proteins offers unique insights into gene regulation and cellular identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Zaret, K. S. Pioneer transcription factors initiating gene network changes. Annu. Rev. Genet. 54, 367–385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frederick, M. A. et al. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 30, 31–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Balsalobre, A. & Drouin, J. Pioneer factors as master regulators of the epigenome and cell fate. Nat. Rev. Mol. Cell Biol. 23, 449–464 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Roberts, G. A. et al. Dissecting OCT4 defines the role of nucleosome binding in pluripotency. Nat. Cell Biol. 23, 834–845 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blassberg, R. et al. Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat. Cell Biol. 24, 633–644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez Garcia, M. et al. Structural features of transcription factors associating with nucleosome binding. Mol. Cell 75, 921–932.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mayran, A. et al. Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate. Nat. Genet. 50, 259–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Lerner, J. et al. Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin. Mol. Cell 79, 677–688.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jozwik, K. M. & Carroll, J. S. Pioneer factors in hormone-dependent cancers. Nat. Rev. Cancer 12, 381–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Iwafuchi, M. et al. Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat. Genet. 52, 418–427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michael, A. K. et al. Mechanisms of OCT4–SOX2 motif readout on nucleosomes. Science 368, 1460–1465 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, F. et al. The interaction landscape between transcription factors and the nucleosome. Nature 562, 76–81 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, X. & Buck, M. J. Defining TP53 pioneering capabilities with competitive nucleosome binding assays. Genome Res. 29, 107–115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sinha, K. K., Bilokapic, S., Du, Y., Malik, D. & Halic, M. Histone modifications regulate pioneer transcription factor cooperativity. Nature 619, 378–384 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delás, M. J. et al. Developmental cell fate choice in neural tube progenitors employs two distinct cis-regulatory strategies. Dev. Cell 58, 3–17.e8 (2023).

    Article  PubMed  Google Scholar 

  19. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donaghey, J. et al. Genetic determinants and epigenetic effects of pioneer factor occupancy. Nat. Genet. 50, 250–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skene, P. J. & Henikoff, S. A simple method for generating high-resolution maps of genome-wide protein binding. eLife 4, e09225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Neikes, H. K. et al. Quantification of absolute transcription factor binding affinities in the native chromatin context using BANC-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01715-w (2023).

    Article  PubMed  Google Scholar 

  23. Dodonova, S. O., Zhu, F., Dienemann, C., Taipale, J. & Cramer, P. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature 580, 669–672 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Larson, E. D., Marsh, A. J. & Harrison, M. M. Pioneering the developmental frontier. Mol. Cell 81, 1640–1650 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development 146, dev161471 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson, T. J. & Harrison, M. Protein-intrinsic properties and epigenetic effects regulate pioneer-factor binding and function. Preprint at biorXiv https://doi.org/10.1101/2023.03.18.533281 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meers, M. P., Janssens, D. H. & Henikoff, S. Pioneer factor–nucleosome binding events during differentiation are motif encoded. Mol. Cell 75, 562–575.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgunova, E. & Taipale, J. Structural insights into the interaction between transcription factors and the nucleosome. Curr. Opin. Struct. Biol. 71, 171–179 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Donovan, B. T. et al. Basic helix–loop–helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol. Cell https://doi.org/10.1016/j.molcel.2023.03.006 (2023).

    Article  PubMed  Google Scholar 

  32. Bascunana, V. et al. Chromatin opening ability of pioneer factor Pax7 depends on unique isoform and C-terminal domain. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad520 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brennan, K. J. et al. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev. Cell https://doi.org/10.1016/j.devcel.2023.07.007 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hansen, J. L., Loell, K. J. & Cohen, B. A. A test of the pioneer factor hypothesis using ectopic liver gene activation. eLife 11, e73358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lerner, J., Katznelson, A., Zhang, J. & Zaret, K. S. Distinct chromatin scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep. 42, 12748 (2023).

    Article  Google Scholar 

  36. Gouhier, A., Dumoulin-Gagnon, J., Lapointe-Roberge, V., Balsalobre, A. & Drouin, J. Pioneer factor Pax7 initiates two-step cell-cycle dependent chromatin opening. Preprint at bioRxiv https://doi.org/10.1101/2022.11.16.516735 (2022).

    Article  Google Scholar 

  37. Pelletier, A. et al. Pax7 pioneer factor action requires both paired and homeo DNA binding domains. Nucleic Acids Res. 49, 7424–7436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sekiya, T., Muthurajan, U. M., Luger, K., Tulin, A. V. & Zaret, K. S. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 23, 804–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah, P. P. et al. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol. 24, 16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maeshima, K. et al. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. J. Phys. Condens. Matter 27, 064116 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iurlaro, M. et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 53, 279–287 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.L.B. is supported by US National Institutes of Health (NIH) grant R01HG012246. Research in the laboratory of J.D. is supported by the Canadian Institutes of Health Research (CIHR) and Compute Canada. M.M.H. is funded by NIH R35GM136298 and R01NS111647, and is a Romnes Faculty Fellow and Vilas Faculty Mid-Career Investigator. K.S.Z. is supported by NIH grant R01 GM36477.

Author information

Authors and Affiliations

Authors

Contributions

Martha L. Bulyk is a Professor of Medicine and Pathology at Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. Her research laboratory develops high-throughput experimental and computational methods for investigations of transcription factors and cis-regulatory elements, with a focus on mechanisms of their interactions and the impact of genetic variants on gene regulation.

Jacques Drouin is Director of the Laboratory of Molecular Genetics at the Institut de recherches cliniques de Montréal, Canada with academic positions at Université de Montréal and McGill University. His research focuses on transcriptional and epigenetic regulation of pituitary cell differentiation and function. He is a Fellow of the Royal Society of Canada and of the Canadian Academies of Sciences and of Health Sciences.

Melissa M. Harrison is a Professor of Biomolecular Chemistry at the University of Wisconsin School of Medicine and Public Health, USA. Her research is focused on transcriptional control of conserved developmental transitions. One major area of investigation is understanding the rapid and efficient genomic reprogramming that occurs during early development to establish a totipotent embryo. She was a Vallee Scholar and is a Romnes Faculty Fellow and Vilas Faculty Mid-Career Investigator.

Jussi Taipale is a professor at Cambridge University, UK, at Karolinska Institutet, Sweden and at University of Helsinki, Finland. His laboratory focuses on high-throughput biology — combining experimental and computational approaches to understand two systems-level questions that are presently poorly understood: the mechanisms that control growth of tissues and organisms, and the rules that specify how DNA sequence determines when and where genes are expressed.

Kenneth S. Zaret is Professor of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania, USA. His research focuses on how to overcome chromatin barriers during cell fate changes in embryogenesis, regeneration and disease. Ken is the Director of the Institute for Regenerative Medicine at University of Pennsylvania and originated the concept of pioneer factors.

Corresponding authors

Correspondence to Martha L. Bulyk, Jacques Drouin, Melissa M. Harrison, Jussi Taipale or Kenneth S. Zaret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyk, M.L., Drouin, J., Harrison, M.M. et al. Pioneer factors — key regulators of chromatin and gene expression. Nat Rev Genet 24, 809–815 (2023). https://doi.org/10.1038/s41576-023-00648-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00648-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing