Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans

Abstract

Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms — mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) — enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of model organisms in the genetic diagnosis of rare human diseases.
Fig. 2: Genetic approaches to studying gene function in Caenorhabditis elegans and Danio rerio.
Fig. 3: Genetic approaches to studying gene function in Drosophila melanogaster.
Fig. 4: From rare diseases to common diseases.

Similar content being viewed by others

References

  1. Garrod, A. E. The incidence of alkaptonuria: a study in chemical individuality. Lancet 160, 1616–1620 (1902).

    Article  Google Scholar 

  2. Ferreira, C. R. The burden of rare diseases. Am. J. Med. Genet. A 179, 885–892 (2019).

    Article  PubMed  Google Scholar 

  3. Schouten, A. KEI briefing note 2020:4 defining rare diseases. KEI https://www.keionline.org/wp-content/uploads/KEI-Briefing-Note-2020-4-Defining-Rare-Diseases.pdf (2020).

  4. Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    Article  PubMed  Google Scholar 

  5. Tisdale, A. et al. The IDeaS initiative: pilot study to assess the impact of rare diseases on patients and healthcare systems. Orphanet J. Rare Dis. 16, 429 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, G. et al. The national economic burden of rare disease in the United States in 2019. Orphanet J. Rare Dis. 17, 163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wright, C. F., FitzPatrick, D. R. & Firth, H. V. Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet. 19, 253–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105, 448–455 (2019). This paper predicts that more than 6,000 genes remain to be associated with rare human diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Might, M. & Crouse, A. B. Why rare disease needs precision medicine and precision medicine needs rare disease. Cell Rep. Med. 3, 100530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33, 228–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Posey, J. E. et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet. Med. 21, 798–812 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baxter, S. M. et al. Centers for Mendelian genomics: a decade of facilitating gene discovery. Genet. Med. 24, 784–797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Might, M. & Wilsey, M. The shifting model in clinical diagnostics: how next-generation sequencing and families are altering the way rare diseases are discovered, studied, and treated. Genet. Med. 16, 736–737 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Hamosh, A. et al. The impact of GeneMatcher on international data sharing and collaboration. Hum. Mutat. 43, 668–673 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Osmond, M. et al. PhenomeCentral: 7 years of rare disease matchmaking. Hum. Mutat. 43, 674–681 (2022).

    PubMed  Google Scholar 

  20. Boycott, K. M., Azzariti, D. R., Hamosh, A. & Rehm, H. L. Seven years since the launch of the matchmaker exchange: the evolution of genomic matchmaking. Hum. Mutat. 43, 659–667 (2022). This report summarizes the importance of matchmaking in the discovery of new rare diseases in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karaca, E. et al. Phenotypic expansion illuminates multilocus pathogenic variation. Genet. Med. 20, 1528–1537 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Splinter, K. et al. Effect of genetic diagnosis on patients with previously undiagnosed disease. N. Engl. J. Med. 379, 2131–2139 (2018). This paper describes the impact of rare disease research carried out by the UDN during the initial phase of this programme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh, R., Oak, N. & Plon, S. E. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol. 18, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baldridge, D. et al. Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet J. Rare Dis. 16, 206 (2021). This paper provides an overview of the role of worms, flies and zebrafish in the diagnosis of diseases in the UDN.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hmeljak, J. & Justice, M. J. From gene to treatment: supporting rare disease translational research through model systems. Dis. Model Mech. 12, dmm039271 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cervelli, T. & Galli, A. Yeast as a tool to understand the significance of human disease-associated gene variants. Genes 12, 1303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang, J. et al. MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am. J. Hum. Genet. 100, 843–853 (2017). This article introduces a bioinformatic tool to quickly mine large amounts of information for every human gene and its orthologues in many model organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, J., Liu, Z., Bellen, H. J. & Yamamoto, S. Navigating MARRVEL, a web-based tool that integrates human genomics and model organism genetics information. J. Vis. Exp. https://doi.org/10.3791/59542 (2019).

    Article  PubMed  Google Scholar 

  31. Chen, S. et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. Preprint at bioRxiv https://doi.org/10.1101/2022.03.20.485034 (2022).

  32. McMurry, J. A. et al. Navigating the phenotype frontier: the monarch initiative. Genetics 203, 1491–1495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alliance of Genome Resources Consortium. Harmonizing model organism data in the Alliance of Genome Resources. Genetics 220, iyac022 (2022). This paper reports the main achievements of the Alliance for Genome Resources Consortium in integrating numerous datasets from different species so that they can be easily compared and searched in the context of animal and human homologues and orthologues.

    Article  Google Scholar 

  34. Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santiago-Sim, T. et al. Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am. J. Hum. Genet. 100, 676–688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burrage, L. C. et al. Bi-allelic variants in TONSL cause sponastrime dysplasia and a spectrum of skeletal dysplasia phenotypes. Am. J. Hum. Genet. 104, 422–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo, X. et al. Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genet. 13, e1006905 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chung, H. L. et al. Loss- or gain-of-function mutations in ACOX1 cause axonal loss via different mechanisms. Neuron 106, 589–606.e6 (2020). This study describes a phenotypic expansion associated with a GOF variant in ACOX1, which encodes a peroxisomal enzyme involved in lipid β-oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bayleran, J., Hechtman, P., Kolodny, E. & Kaback, M. Tay-Sachs disease with hexosaminidase A: characterization of the defective enzyme in two patients. Am. J. Hum. Genet. 41, 532–548 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson, B. H. et al. The use of skin fibroblast cultures in the detection of respiratory chain defects in patients with lacticacidemia. Pediatr. Res. 28, 549–555 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Corkey, B. E. et al. Ca2+ responses to interleukin 1 and tumor necrosis factor in cultured human skin fibroblasts. Possible implications for Reye syndrome. J. Clin. Invest. 87, 778–786 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lönnqvist, L. et al. A point mutation creating an extra N-glycosylation site in fibrillin-1 results in neonatal Marfan syndrome. Genomics 36, 468–475 (1996).

    Article  PubMed  Google Scholar 

  43. van Grunsven, E. G., Mooijer, P. A., Aubourg, P. & Wanders, R. J. Enoyl-CoA hydratase deficiency: identification of a new type of D-bifunctional protein deficiency. Hum. Mol. Genet. 8, 1509–1516 (1999).

    Article  PubMed  Google Scholar 

  44. Webb, B. D. et al. Novel, compound heterozygous, single-nucleotide variants in MARS2 associated with developmental delay, poor growth, and sensorineural hearing loss. Hum. Mutat. 36, 587–592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito, Y. A. et al. A ZPR1 mutation is associated with a novel syndrome of growth restriction, distinct craniofacial features, alopecia, and hypoplastic kidneys. Clin. Genet. 94, 303–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Crutcher, E. et al. mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome. Sci. Rep. 9, 15935 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pijuan, J. et al. Translational diagnostics: an in-house pipeline to validate genetic variants in children with undiagnosed and rare diseases. J. Mol. Diagn. 23, 71–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Staerk, J. et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7, 20–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marcogliese, P. C. et al. Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. Sci. Adv. 8, eabl5613 (2022). This study documents how loss of IRF2BPL leads to excess WNT signalling in flies, zebrafish and human cells, and shows how several drugs that reduce WNT signalling improve the phenotypes associated with LOF IRF2BPL mutants in model organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, L. et al. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Sci. Adv. 8, eabn3326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, G. et al. Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14). eLife 12, e82555 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li, C. et al. Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proc. Natl Acad. Sci. USA 116, 1347–1352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kummeling, J. et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol. Psychiatry 26, 2013–2024 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Dias, K. R. et al. De novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations. Genet. Med. 24, 1952–1966 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Harnish, J. M. et al. ModelMatcher: a scientist-centric online platform to facilitate collaborations between stakeholders of rare and undiagnosed disease research. Hum. Mutat. 43, 743–759 (2022). This paper introduces a matchmaking tool that allows clinicians and patients to identify scientists who have expertise in specific genes to initiate interdisciplinary collaborative projects.

    PubMed  PubMed Central  Google Scholar 

  58. Aoyagi, K. et al. A gain-of-function mutation in NALCN in a child with intellectual disability, ataxia, and arthrogryposis. Hum. Mutat. 36, 753–757 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Frosk, P. et al. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. J. Med. Genet. 54, 490–501 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Pena, I. A. et al. Pyridoxine-dependent epilepsy in zebrafish caused by aldh7a1 deficiency. Genetics 207, 1501–1518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Samarut, É. et al. γ-Aminobutyric acid receptor alpha 1 subunit loss of function causes genetic generalized epilepsy by impairing inhibitory network neurodevelopment. Epilepsia 59, 2061–2074 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Wen, X. Y. et al. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential for muscle function. JCI Insight 3, e122373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brodehl, A. et al. Mutations in ILK, encoding integrin-linked kinase, are associated with arrhythmogenic cardiomyopathy. Transl. Res. 208, 15–29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnstone, D. L. et al. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain 142, 542–559 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lahola-Chomiak, A. A. et al. Non-synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma. Hum. Mol. Genet. 28, 1298–1311 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. van Karnebeek, C. D. M. et al. Bi-allelic GOT2 mutations cause a treatable malate-aspartate shuttle-related encephalopathy. Am. J. Hum. Genet. 105, 534–548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Boycott, K. M. et al. The Canadian Rare Diseases Models and Mechanisms (RDMM) network: connecting understudied genes to model organisms. Am. J. Hum. Genet. 106, 143–152 (2020). This paper summarizes the accomplishments of the Canadian RDMM network, based on collaborations between clinicians and model organism researchers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramoni, R. B. et al. The Undiagnosed Diseases Network: accelerating discovery about health and disease. Am. J. Hum. Genet. 100, 185–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marcogliese, P. C. et al. IRF2BPL is associated with neurological phenotypes. Am. J. Hum. Genet. 103, 245–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, H. et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat. Commun. 10, 4679 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kanca, O. et al. De novo variants in WDR37 are associated with epilepsy, colobomas, dysmorphism, developmental delay, intellectual disability, and cerebellar hypoplasia. Am. J. Hum. Genet. 105, 413–424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barish, S. et al. BICRA, a SWI/SNF complex member, is associated with baf-disorder related phenotypes in humans and model organisms. Am. J. Hum. Genet. 107, 1096–1112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chung, H. L. et al. De novo variants in CDK19 are associated with a syndrome involving intellectual disability and epileptic encephalopathy. Am. J. Hum. Genet. 106, 717–725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dutta, D. et al. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Hum. Mol. Genet. 29, 1568–1579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brokamp, E. et al. One is the loneliest number: genotypic matchmaking using the electronic health record. Genet. Med. 23, 1830–1832 (2021).

    Article  PubMed  Google Scholar 

  76. Luo, X. et al. Rare deleterious de novo missense variants in Rnf2/Ring2 are associated with a neurodevelopmental disorder with unique clinical features. Hum. Mol. Genet. 30, 1283–1292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ravenscroft, T. A. et al. Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genet. Med. 23, 1889–1900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barish, S. et al. The microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder. Hum. Mol. Genet. 31, 2934–2950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, Y. et al. The recurrent de novo c.2011C>T missense variant in MTSS2 causes syndromic intellectual disability. Am. J. Hum. Genet. 109, 1923–1931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, Y. et al. Novel dominant and recessive variants in human ROBO1 cause distinct neurodevelopmental defects through different mechanisms. Hum. Mol. Genet. 31, 2751–2765 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Srivastava, S. et al. SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia. Brain 146, 1420–1435 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamamoto, S. et al. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159, 200–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357 (2011). This paper develops a useful algorithm based on a compendium of programs that predict orthology between genes of model organisms and humans.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Goodman, L. D. et al. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am. J. Hum. Genet. 108, 1669–1691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marcogliese, P. C. et al. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Rep. 38, 110517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ben-Arie, N. et al. Functional conservation of atonal and Math1 in the CNS and PNS. Development 127, 1039–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin–TCF complex. Cell 109, 47–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Jakobsdottir, J. et al. Rare functional variant in TM2D3 is associated with late-onset Alzheimer’s disease. PLoS Genet. 12, e1006327 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Link, N. et al. Mutations in ANKLE2, a Zika virus target, disrupt an asymmetric cell division pathway in Drosophila neuroblasts to cause microcephaly. Dev. Cell 51, 713–729.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, S. et al. Loss-of-function variants in TIAM1 are associated with developmental delay, intellectual disability, and seizures. Am. J. Hum. Genet. 109, 571–586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Muller, H. J. Further studies on the nature and causes of gene mutations. Proc. Sixth Intl Cong. Genet. 1, 213–255 (1932).

    Google Scholar 

  93. Andrews, J. C. et al. De novo variants in MRTFB have gain-of-function activity in Drosophila and are associated with a novel neurodevelopmental phenotype with dysmorphic features. Genet. Med. 25, 100833 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Marom, R. et al. COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. Am. J. Hum. Genet. 108, 1710–1724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bellen, H. J., Wangler, M. F. & Yamamoto, S. The fruit fly at the interface of diagnosis and pathogenic mechanisms of rare and common human diseases. Hum. Mol. Genet. 28, R207–R214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nurse, P. & Hayles, J. Using genetics to understand biology. Heredity 123, 4–13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Fuentes, R., Letelier, J., Tajer, B., Valdivia, L. E. & Mullins, M. C. Fishing forward and reverse: advances in zebrafish phenomics. Mech. Dev. 154, 296–308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kimble, J. & Nüsslein-Volhard, C. The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster. Dev. Biol. 485, 93–122 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  100. Nicolson, T. et al. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20, 271–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Neuhauss, S. C. F. et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19, 8603–8615 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 141–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Chowdhury, B., Wang, M., Gnerer, J. P. & Dierick, H. A. The divider assay is a high-throughput pipeline for aggression analysis in Drosophila. Commun. Biol. 4, 85 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Venken, K. J. T. et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat. Methods 8, 737–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanca, O. et al. An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. eLife 11, e76077 (2022). This paper improves the methodology for CRISPR–Cas9-mediated homologous recombination to replace fly genes with the gene encoding GAL4, which allows for humanization in combination with UAS–human cDNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Larkin, A. et al. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 49, D899–D907 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Lu, S. et al. De novo variants in FRMD5 are associated with developmental delay, intellectual disability, ataxia, and abnormalities of eye movement. Am. J. Hum. Genet. 109, 1932–1943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Blanco-Sánchez, B. et al. yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development. PLoS Genet. 16, e1008841 (2020). This study shows how the ypel3/YPEL3 gene has an evolutionarily conserved role in glial cells of zebrafish and humans.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Zirin, J. et al. Large-scale transgenic Drosophila resource collections for loss- and gain-of-function studies. Genetics 214, 755–767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stainier, D. Y. R. et al. Guidelines for morpholino use in zebrafish. PLoS Genet. 13, e1007000 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cheng, K. C. et al. Promoting validation and cross-phylogenetic integration in model organism research. Dis. Model. Mech. 15, dmm049600 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ma, M. et al. The fly homolog of SUPT16H, a gene associated with neurodevelopmental disorders, is required in a cell-autonomous fashion for cell survival. Hum. Mol. Genet. 32, 984–997 (2022).

    Article  PubMed Central  Google Scholar 

  115. Chiu, H., Schwartz, H. T., Antoshechkin, I. & Sternberg, P. W. Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics 195, 1167–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tzur, Y. B. et al. Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 195, 1181–1185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Waaijers, S. et al. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics 195, 1187–1191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, C. et al. UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism. Am. J. Hum. Genet. 108, 134–147 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Rosenhahn, E. et al. Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications. Am. J. Hum. Genet. 109, 1421–1435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. C. elegans Deletion Mutant Consortium. large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 2, 1415–1425 (2012).

    Article  Google Scholar 

  121. Hwang, W. Y. et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS ONE 8, e68708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xiao, A. & Zhang, B. Generation of targeted genomic deletions through CRISPR/Cas system in zebrafish. Methods Mol. Biol. 1451, 65–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Hoshijima, K. et al. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev. Cell 51, 645–657.e4 (2019). This paper improves the efficiency of CRISPR–Cas9-mediated mutagenesis in zebrafish by allowing the use of injected F0 animals for phenotyping assays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chong, J. X. et al. Mutations in MYLPF cause a novel segmental amyoplasia that manifests as distal arthrogryposis. Am. J. Hum. Genet. 107, 293–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pottie, L. et al. Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. Am. J. Hum. Genet. 108, 1095–1114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sadler, B. et al. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am. J. Hum. Genet. 108, 100–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Ziegler, A. et al. Bi-allelic variants in IPO8 cause a connective tissue disorder associated with cardiovascular defects, skeletal abnormalities, and immune dysregulation. Am. J. Hum. Genet. 108, 1126–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Diao, F. et al. Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes. Cell Rep. 10, 1410–1421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kanca, O., Bellen, H. J. & Schnorrer, F. Gene tagging strategies to assess protein expression, localization, and function in Drosophila. Genetics 207, 389–412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee, P.-T. et al. A gene-specific T2A-GAL4 library for Drosophila. eLife 7, e35574 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kanca, O. et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. eLife 8, e51539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chung, H.-L. et al. De novo variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration and affect glial function in Drosophila. Hum. Mol. Genet. 31, 3231–3244 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McDiarmid, T. A. et al. CRISPR-Cas9 human gene replacement and phenomic characterization in Caenorhabditis elegans to understand the functional conservation of human genes and decipher variants of uncertain significance. Dis. Model. Mech. 11, dmm036517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gümüşderelioğlu, S. et al. A humanized Caenorhabditis elegans model of hereditary spastic paraplegia-associated variants in kinesin light chain KLC4. Preprint at bioRxiv https://doi.org/10.1101/2023.01.07.523106 (2023).

  135. Häberlein, F. et al. Humanized zebrafish as a tractable tool for in vivo evaluation of pro-myelinating drugs. Cell Chem. Biol. 29, 1541–1555.e7 (2022).

    Article  PubMed  Google Scholar 

  136. May, M. et al. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons. Hum. Mol. Genet. 24, 4848–4861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cogné, B. et al. Mutations in the kinesin-2 motor KIF3B cause an autosomal-dominant ciliopathy. Am. J. Hum. Genet. 106, 893–904 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lee, Y. R. et al. Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nat. Commun. 11, 3698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bellen, H. J. & Yamamoto, S. Morgan’s legacy: fruit flies and the functional annotation of conserved genes. Cell 163, 12–14 (2015). This paper outlines a set of experimental strategies in Drosophila to functionally characterize candidate human disease-causing variants and genes using state-of-the-art genetic technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Harnish, J. M., Deal, S. L., Chao, H. T., Wangler, M. F. & Yamamoto, S. In vivo functional study of disease-associated rare human variants using Drosophila. J. Vis. Exp. https://doi.org/10.3791/59658 (2019).

    Article  PubMed  Google Scholar 

  141. Chao, H.-T. et al. A syndromic neurodevelopmental disorder caused by de novo variants in EBF3. Am. J. Hum. Genet. 100, 128–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Vissers, L. E. L. M. et al. De novo variants in CNOT1, a central component of the CCR4-NOT complex involved in gene expression and RNA and protein stability, cause neurodevelopmental delay. Am. J. Hum. Genet. 107, 164–172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dickinson, D. J., Ward, J. D., Reiner, D. J. & Goldstein, B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10, 1028–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paix, A., Folkmann, A., Rasoloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. & Mello, C. C. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics 210, 781–787 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Farboud, B., Severson, A. F. & Meyer, B. J. Strategies for efficient genome editing using CRISPR-Cas9. Genetics 211, 431–457 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Boulin, T. et al. Functional analysis of a de novo variant in the neurodevelopment and generalized epilepsy disease gene NBEA. Mol. Genet. Metab. 134, 195–202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fielder, S. M. et al. Functional analysis of a novel de novo variant in PPP5C associated with microcephaly, seizures, and developmental delay. Mol. Genet. Metab. 136, 65–73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 40, 189–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Motta, M. et al. Enhanced MAPK1 function causes a neurodevelopmental disorder within the RASopathy clinical spectrum. Am. J. Hum. Genet. 107, 499–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hamanaka, K. et al. De novo truncating variants in the last exon of SEMA6B cause progressive myoclonic epilepsy. Am. J. Hum. Genet. 106, 549–558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saida, K. et al. Pathogenic variants in the survival of motor neurons complex gene GEMIN5 cause cerebellar atrophy. Clin. Genet. 100, 722–730 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Reis, L. M. et al. De novo missense variants in WDR37 cause a severe multisystemic syndrome. Am. J. Hum. Genet. 105, 425–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Venken, K. J., He, Y., Hoskins, R. A. & Bellen, H. J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Venken, K. J. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6, 431–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sarov, M. et al. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 5, e12068 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bosch, J. A., Birchak, G. & Perrimon, N. Precise genome engineering in Drosophila using prime editing. Proc. Natl Acad. Sci. USA 118, e2021996118 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166, 1775–1782 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bateman, J. R., Lee, A. M. & Wu, C. Site-specific transformation of Drosophila via ΦC31 integrase-mediated cassette exchange. Genetics 173, 769–777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Roemmich, A. J. et al. Seizure phenotype and underlying cellular defects in Drosophila knock-in models of DS (R1648C) and GEFS+ (R1648H) SCN1A epilepsy. eNeuro 8, ENEURO.0002-21.2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jangam, S. V. et al. A de novo missense variant in EZH1 associated with developmental delay exhibits functional deficits in Drosophila melanogaster. Genetics https://doi.org/10.1093/genetics/iyad110 (2023).

  162. Tepe, B. et al. Bi-allelic variants in INTS11 are associated with a complex neurological disorder. Am. J. Hum. Genet. 110, 774–789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Frøkjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40, 1375–1383 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Niederriter, A. R. et al. In vivo modeling of the morbid human genome using Danio rerio. J. Vis. Exp. 78, e50338 (2013).

    Google Scholar 

  166. Tessadori, F. et al. Recurrent de novo missense variants across multiple histone H4 genes underlie a neurodevelopmental syndrome. Am. J. Hum. Genet. 109, 750–758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc. Natl Acad. Sci. USA. 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mosimann, C. et al. Site-directed zebrafish transgenesis into single landing sites with the phiC31 integrase system. Dev. Dyn. 242, 949–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Girard, L. R. et al. WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids Res. 35, D472–D475 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Huang, H. et al. A dominant negative variant of RAB5B disrupts maturation of surfactant protein B and surfactant protein C. Proc. Natl Acad. Sci. USA 119, e2105228119 (2022). This study documents how a specific variant in rab-5 in C. elegans affects its function and how the analogous variant in human RAB5B leads to a disruption of surfactant secretion in a child.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Clément, A., Blanco-Sánchez, B., Peirce, J. L. & Westerfield, M. Cog4 is required for protrusion and extension of the epithelium in the developing semicircular canals. Mech. Dev. 155, 1–7 (2019).

    Article  PubMed  Google Scholar 

  172. Dasgupta, S., Simonich, M. T. & Tanguay, R. L. Zebrafish behavioral assays in toxicology. Methods Mol. Biol. 2474, 109–122 (2022).

    Article  PubMed  Google Scholar 

  173. Ansar, M. et al. Bi-allelic loss-of-function variants in DNMBP cause infantile cataracts. Am. J. Hum. Genet. 103, 568–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ansar, M. et al. Visual impairment and progressive Phthisis bulbi caused by recessive pathogenic variant in MARK3. Hum. Mol. Genet. 27, 2703–2711 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, N. et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Hum. Mol. Genet. 27, 2454–2465 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Deal, S. L. & Yamamoto, S. Unraveling novel mechanisms of neurodegeneration through a large-scale forward genetic screen in Drosophila. Front. Genet. 9, 700 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Yoon, W. H. et al. Loss of nardilysin, a mitochondrial co-chaperone for α-ketoglutarate dehydrogenase, promotes mTORC1 activation and neurodegeneration. Neuron 93, 115–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Lin, G. et al. Phospholipase PLA2G6, a parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab. 28, 605–618.e6 (2018). This paper reveals that loss of PLA2G6 impairs the function of the retromer complex, which in turn leads to lysosomal expansion and increased levels of ceramides that have an important role in the pathogenesis of Parkinson disease.

    Article  CAS  PubMed  Google Scholar 

  179. Chung, H.-L. et al. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab. 35, 855–874.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Ben-Yakar, A. High-content and high-throughput in vivo drug screening platforms using microfluidics. Assay Drug Dev. Technol. 17, 8–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Su, T. T. Drug screening in Drosophila; why, when, and when not? Wiley Interdiscip. Rev. Dev. Biol. 8, e346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Baraban, S. C. A zebrafish-centric approach to antiepileptic drug development. Dis. Model. Mech. 14, dmm049080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Williams, L. A. et al. Developing antisense oligonucleotides for a TECPR2 mutation-induced, ultra-rare neurological disorder using patient-derived cellular models. Mol. Ther. Nucleic Acids 29, 189–203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. High, K. A. & Roncarolo, M. G. Gene therapy. N. Engl. J. Med. 381, 455–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Helm, J., Schöls, L. & Hauser, S. Towards personalized allele-specific antisense oligonucleotide therapies for toxic gain-of-function neurodegenerative diseases. Pharmaceutics 14, 1708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pan, X., Dutta, D., Lu, S. & Bellen, H. J. Sphingolipids in neurodegenerative diseases. Front. Neurosci. 17, 1137893 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Liu, L. et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015). This article documents the importance of transferring peroxidated lipids from neurons to glia, where they form lipid droplets that provide a temporary protection against increased levels of ROS in neurons, which is relevant to the pathogenesis of Alzheimer disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Liu, L., MacKenzie, K. R., Putluri, N., Maletić-Savatić, M. & Bellen, H. J. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26, 719–737.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Moulton, M. J. et al. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc. Natl Acad. Sci. USA 118, e2112095118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Goodman, L. D. & Bellen, H. J. Recent insights into the role of glia and oxidative stress in Alzheimer’s disease gained from Drosophila. Curr. Opin. Neurobiol. 72, 32–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Ma, M., Moulton, M. J., Lu, S. & Bellen, H. J. ‘Fly-ing’ from rare to common neurodegenerative disease mechanisms. Trends Genet. 38, 972–984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, K. et al. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J. Cell. Biol. 200, 807–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Morgan, N. V. et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 38, 752–754 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Williams, E. T., Chen, X. & Moore, D. J. VPS35, the retromer complex and Parkinson’s disease. J. Parkinsons Dis. 7, 219–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Burrage, J. Mokry, G. Lin, X. Pan, M. Moulton, L. Goodman and S. Lu for suggestions on this manuscript. They also thank P. Hieter, K. Boycott, P. Campeau and C. Oriel for proving valuable information regarding the RDMM, P. Marcogliese for help with analysis of the literature, and Y. Hu for providing data regarding DIOPT.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Michael F. Wangler or Hugo J. Bellen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks P. Lasko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alliance of Genome Resources: https://www.alliancegenome.org/

Drosophila RNAi Screening Center (DRSC) Integrative Orthologue Prediction Tool: https://www.flyrnai.org/diopt

GeneMatcher: https://genematcher.org/

Genome Aggregation Database: https://gnomad.broadinstitute.org/

MARRVEL: https://marrvel.org/

Matchmaker Exchange: https://www.matchmakerexchange.org/

ModelMatcher: https://www.modelmatcher.net/

Monarch Initiative Explorer: https://monarchinitiative.org/

Online Mendelian Inheritance in Man: https://www.omim.org/

PhenomeCentral: https://www.phenomecentral.org/

Rare Disease Models and Mechanisms: https://www.rare-diseases-catalyst-network.ca/

Undiagnosed Diseases Network: https://undiagnosed.hms.harvard.edu/

Supplementary information

Glossary

Amorphic allele

An allele that abrogates gene function, also known as a null allele or a complete loss-of-function allele.

Antimorphic allele

An allele that alters the function of the protein and interferes with its normal function, typically by affecting proteins that it normally interacts with. Also known as a dominant negative allele.

GAL4/UAS system

An essential genetic strategy used primarily in Drosophila melanogaster to overexpress a transgene under the control of UAS regulatory elements by expressing GAL4, typically under the control of specific enhancers.

Hypermorphic allele

An allele that increases the function of the gene product through either increased expression or increased activity. Also known as a gain-of-function allele.

Hypomorphic allele

An allele that partially impairs the function of the gene. Also known as a partial loss-of-function allele.

Kozak–GAL4 cassette

A genetic construct that replaces the coding region of the targeted gene with the gene encoding GAL4. Expression of GAL4 is enhanced by the presence of the Kozak consensus sequence to improve translation.

Mos1-mediated single copy insertion

A homologous recombination-based method in Caenorhabditis elegans to integrate a single copy of a transgene in a locus based on Mos1 transposon mobilization.

Neomorphic allele

An allele that confers a new function, different from the original function of the gene.

P[acman]

A plasmid that has a constitutive, low copy number origin of replication and an inducible, high copy number origin of replication. The design allows large constructs (such as bacterial artificial chromosomes) to be altered through recombineering at a low copy number state and to obtain large amounts of engineered plasmids to be prepped for transgenesis and injection in embryos.

phiC31-mediated transgenesis

A genetic strategy that repurposes an integrase from phiC31 bacteriophage to allow single copy integration of transgenes in predefined loci. It also allows transgenesis with larger constructs than for transposon-based methods (such as P-element, PiggyBac or Minos).

T2A–GAL4 cassette

A genetic construct (SA–T2A–GAL4–polyA) that functions as an artificial exon when inserted in an intron between two exons. It causes premature termination of transcription. During translation, the protein chain is broken at the T2A site and an untethered GAL4 protein is produced.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Kanca, O., Wangler, M.F. et al. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 25, 46–60 (2024). https://doi.org/10.1038/s41576-023-00633-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00633-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing