Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fitness, growth and transmissibility of SARS-CoV-2 genetic variants

Abstract

The massive scale of the global SARS-CoV-2 sequencing effort created new opportunities and challenges for understanding SARS-CoV-2 evolution. Rapid detection and assessment of new variants has become one of the principal objectives of genomic surveillance of SARS-CoV-2. Because of the pace and scale of sequencing, new strategies have been developed for characterizing fitness and transmissibility of emerging variants. In this Review, I discuss a wide range of approaches that have been rapidly developed in response to the public health threat posed by emerging variants, ranging from new applications of classic population genetics models to contemporary synthesis of epidemiological models and phylodynamic analysis. Many of these approaches can be adapted to other pathogens and will have increasing relevance as large-scale pathogen sequencing becomes a regular feature of many public health systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of the Delta variant in the UK in the spring of 2021.
Fig. 2: Phylogenetic evidence for increased transmissibility of Delta in England in the spring of 2021.

Similar content being viewed by others

References

  1. Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. 8, veac080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Otto, S. P. et al. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr. Biol. 31, R918–R929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nyberg, T. et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants in England: a cohort study. Lancet 399, 1303–1312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orr, H. A. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10, 531–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bedford, T. et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523, 217–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zur Wiesch, P. A., Kouyos, R., Engelstädter, J., Regoes, R. R. & Bonhoeffer, S. Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect. Dis. 11, 236–247 (2011).

    Article  PubMed  Google Scholar 

  9. Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelly, J. K. A test of neutrality based on interlocus associations. Genetics 146, 1197–1206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacLean, O. A. et al. Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biol. 19, e3001115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189–5200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Didelot, X. & Maiden, M. C. J. Impact of recombination on bacterial evolution. Trends Microbiol 18, 315–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Dorp, L. et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat. Commun. 11, 1–8 (2020).

    Google Scholar 

  15. Subissi, L. et al. An early warning system for emerging SARS-CoV-2 variants. Nat. Med. 28, 1110–1115 (2022). This article describes the establishment of a working group of experts at the World Health Organization (WHO) for rapidly sharing data and analysis related to emerging SARS-CoV-2 variants.

    Article  CAS  PubMed  Google Scholar 

  16. Obermeyer, F. et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science 376, 1327–1332 (2022). The authors develop a statistical method for systematically searching SARS-CoV-2 sequence databases to identify lineages with significantly higher growth rates.

    Article  CAS  PubMed  Google Scholar 

  17. Vöhringer, H. S. et al. Genomic reconstruction of the SARS-CoV-2 epidemic in England. Nature 600, 506–511 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kraemer, M. U. G. et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science 373, 889–895 (2021). This article describes a highly detailed epidemiological analysis of B.1.1.7 lineage growth and dispersion, combining genomic and mobile phone data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haldane, J. B. S. A mathematical theory of natural and artificial selection, part V: selection and mutation. Math. Proc. Cambridge Philos. Soc. 23, 838–844 (1927).

    Article  Google Scholar 

  22. Hartl, D. L., Clark, A. G. & Clark, A. G. Principles of population genetics. vol. 116 (Sinauer Associates, 1997).

  23. Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Washington, N. L. et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell 184, 2587–2594.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fountain-Jones, N. M. et al. Emerging phylogenetic structure of the SARS-CoV-2 pandemic. Virus Evol. 6, veaa082 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aggarwal, D. et al. Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission. Nat. Commun. 13, 1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hodcroft, E. B. et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 595, 707–712 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Mannar, D. et al. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science 375, 760–764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tao, K. et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 22, 757–773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yurkovetskiy, L. et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739–751.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 614, 521–529 (2023).

    CAS  PubMed  Google Scholar 

  35. Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis, C. et al. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog. 17, e1010022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Sheward, D. J. et al. Neutralisation sensitivity of the SARS-CoV-2 Omicron (B.1.1.529) variant: a cross-sectional study. Lancet Infect. Dis. 22, 813–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, D. et al. Covid-19 and ethnicity: we must seek to understand the drivers of higher transmission. Br. Med. J. 375, n2709 (2021).

    Article  Google Scholar 

  40. Cherian, S. et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 9, 1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCrone, J. T. et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 610, 154–160 (2022). This article describes application of phylogenetic approaches to identify outbreak clusters derived from individual importation events of the emerging Delta lineage. The authors correlate time of introduction with outbreak sizes and restrictions on travel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haukoos, J. S. & Lewis, R. J. The propensity score. J. Am. Med. Assoc. 314, 1637–1638 (2015).

    Article  CAS  Google Scholar 

  43. Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. McMillen, T., Jani, K., Robilotti, E. V., Kamboj, M. & Babady, N. E. The spike gene target failure (SGTF) genomic signature is highly accurate for the identification of Alpha and Omicron SARS-CoV-2 variants. Sci. Rep. 12, 18968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. Nat. Rev. Genet. 13, 303–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Attwood, S. W., Hill, S. C., Aanensen, D. M., Connor, T. R. & Pybus, O. G. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat. Rev. Genet. 23, 547–562 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reppell, M., Boehnke, M. & Zöllner, S. The impact of accelerating faster than exponential population growth on genetic variation. Genetics 196, 819–828 (2014).

    Article  PubMed  Google Scholar 

  48. Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. King, A. A., Lin, Q. & Ionides, E. L. Markov genealogy processes. Theor. Popul. Biol. 143, 77–91 (2022).

    Article  PubMed  Google Scholar 

  50. Volz, E. M. & Siveroni, I. Bayesian phylodynamic inference with complex models. PLoS Comput. Biol. 14, e1006546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vaughan, T. G. et al. Estimating epidemic incidence and prevalence from genomic data. Mol. Biol. Evol. 36, 1804–1816 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Inward, R. P. D., Parag, K. V. & Faria, N. R. Using multiple sampling strategies to estimate SARS-CoV-2 epidemiological parameters from genomic sequencing data. Nat. Commun. 13, 5587 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Volz, E. M. & Didelot, X. Modeling the growth and decline of pathogen effective population size provides insight into epidemic dynamics and drivers of antimicrobial resistance. Syst. Biol. 67, 719–728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dhar, M. S. et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science 374, 995–999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Du Plessis, L. et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 371, 708–712 (2021).

    Article  PubMed  Google Scholar 

  58. Tegally, H. et al. Global expansion of SARS-CoV-2 variants of concern: dispersal patterns and influence of air travel. Preprint at medRxiv https://doi.org/10.1101/2022.11.22.22282629 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsui, L. H. et al. Genomic assessment of invasion dynamics of SARS-CoV-2 Omicron BA.1. Preprint at medRxiv https://doi.org/10.1101/2023.01.02.23284109 (2023).

    Article  Google Scholar 

  60. Koelle, K., Martin, M. A., Antia, R., Lopman, B. & Dean, N. E. The changing epidemiology of SARS-CoV-2. Science 375, 1116–1121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leung, K., Shum, M. H., Leung, G. M., Lam, T. T. & Wu, J. T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eur. Surveill. 26, 2002106 (2021).

    Article  Google Scholar 

  62. Campbell, F. et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eur. Surveill. 26, 2100509 (2021).

    Article  CAS  Google Scholar 

  63. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mishra, S. et al. Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England. EClinicalMedicine 39, 101064 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Paton, R. S., Overton, C. E. & Ward, T. The rapid replacement of the SARS-CoV-2 Delta variant by Omicron (B.1.1.529) in England. Sci. Transl Med 14, eabo5395 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Dyson, L. et al. Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nat. Commun. 12, 5730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ward, T. et al. Growth, reproduction numbers and factors affecting the spread of SARS-CoV-2 novel variants of concern in the UK from October 2020 to July 2021: a modelling analysis. BMJ Open 11, e056636 (2021).

    Article  PubMed  Google Scholar 

  68. Johnson, K. E. et al. Real-time projections of SARS-CoV-2 B.1.1.7 variant in a university setting, Texas, USA. Emerg. Infect. Dis. 27, 3188–3190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leung, N. H. L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol. 19, 528–545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hart, W. S. et al. Generation time of the Alpha and Delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infect. Dis. 22, 603–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, S. W. et al. The importance of the generation interval in investigating dynamics and control of new SARS-CoV-2 variants. J. R. Soc. Interface 19, 20220173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lyngse, F. P. et al. Increased transmissibility of SARS-CoV-2 lineage B.1.1.7 by age and viral load. Nat. Commun. 12, 7251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elliott, P. et al. Dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022 in England. Nat. Commun. 13, 4500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lyngse, F. P. et al. Household transmission of the SARS-CoV-2 Omicron variant in Denmark. Nat. Commun. 13, 5573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jalali, N. et al. Increased household transmission and immune escape of the SARS-CoV-2 Omicron compared to Delta variants. Nat. Commun. 13, 5706 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pouwels, K. B. et al. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health 6, e30–e38 (2021).

    Article  PubMed  Google Scholar 

  77. Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mercer, T. R. & Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 22, 415–426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hutchison, J. M. et al. Improving correlation of wastewater SARS-CoV-2 gene copy numbers with COVID-19 public health cases using readily available biomarkers. FEMS Microbes 3, xtac010 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bertels, X. et al. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: a systematic review. Sci. Total Environ. 820, 153290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sanderson, T. Taxonium, a web-based tool for exploring large phylogenetic trees. eLife 11, e82392 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Turakhia, Y. et al. Ultrafast sample placement on existing trees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nat. Genet. 53, 809–816 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gangavarapu, K. et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat. Methods 20, 512–522 (2023). This article describes the development of a scalable general-purpose dashboard for collating SARS-CoV-2 variant surveillance data.

    Article  CAS  PubMed  Google Scholar 

  84. Volz, E. M. et al. Identification of hidden population structure in time-scaled phylogenies. Syst. Biol. 69, 884–896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Helekal, D., Ledda, A., Volz, E., Wyllie, D. & Didelot, X. Bayesian inference of clonal expansions in a dated phylogeny. Syst. Biol. 71, 1073–1087 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Beguir, K. et al. Early computational detection of potential high-risk SARS-CoV-2 variants. Comput. Biol. Med. 155, 106618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jankowiak, M., Obermeyer, F. H. & Lemieux, J. E. Inferring selection effects in SARS-CoV-2 with Bayesian viral allele selection. PLoS Genet 18, e1010540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the Wellcome Trust (220885/Z/20/Z) and the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101003653 (CoroNAb). The author further acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Volz.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review information

Nature Reviews Genetics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Tfpscanner: https://github.com/mrc-ide/tfpscanner

Glossary

Ancestral state estimation

Inference of the attributes of a virus (such as genotype) or host species (such as geographical location) of a lineage that is not directly sampled and observed but that is ancestral to a sample of genomes.

Antigenicity

The capacity for binding of the virus with antibodies and other cell-mediated (B cell and T cell) products of the immune system.

Birth–death-sampling model

A mathematical model that relates the rate of transmission over time (births) and the rate of sampling to the times of common ancestry and sample dates as inferred from a random sample of virus genomes; this framework enables inference of epidemic reproduction numbers.

Coalescent models

Mathematical models for virus genealogies that explain how genetic diversity within a random sample of genomes is influenced by epidemic history; this framework enables inference of epidemic growth rates and size.

Darwinian fitness

In the context of pathogen variants, the concept of the ability of a variant relative to other variants to produce an infection within hosts and to transmit to new hosts, thus generating new infections with the given variant.

Effective reproduction number

(Rt). A dimensionless number that describes the average number of secondary infections resulting from a primary infection at a specified time or place, and encapsulating reduction in transmission due to, for example, accumulation of immunity in a host population, changing behaviour or virus variant characteristics.

Fixation

The point at which genomic diversity is lost owing to complete predominance of a particular variant.

Founder effects

Reductions in genetic diversity that accompany the colonization of a new susceptible population by a small randomly selected subset of viral variants from a larger set of infections in a geographically distinct donor population.

Genetic drift

Random fluctuation of pathogen variant frequencies resulting from stochastic transmission within a finite-size population that results in the gradual loss or fixation of pathogen variants in the population.

Logistic growth

Growth in frequency of a variant such that the log odds of sampling a variant increases linearly per generation or per unit time; such growth is characterized by an exponential phase and deceleration to a steady state.

Non-neutral evolution

Changes in genetic diversity of the virus due differences in fitness such as higher transmissibility or immune escape properties.

Proliferation

The spread and subsequent expansion of a novel virus variant to a new geographical region or risk group in which it was not previously circulating.

Selection coefficient

A summary statistic describing fitness of a variant, often quantified in terms of the rate (per unit time or generation) that a variant will grow or decline in relation to the rest of a population.

Transmissibility

A measure of how efficiently a pathogen is transmitted between hosts that can variously be quantified in terms of secondary attack rates, reproduction numbers or hazard rates; this may be time and context dependent as it depends on behaviour and immunity of the host population.

Variants

Genetically distinct circulating forms of a virus, which for SARS-CoV-2 are typically characterized by multiple co-occurring nucleotide substitutions that can potentially lead to measurable changes in transmissibility, severity of infection, effectiveness of vaccines and therapeutics, and effectiveness of diagnostics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volz, E. Fitness, growth and transmissibility of SARS-CoV-2 genetic variants. Nat Rev Genet 24, 724–734 (2023). https://doi.org/10.1038/s41576-023-00610-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00610-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing