Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mendelian inheritance revisited: dominance and recessiveness in medical genetics

Abstract

Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state — representing dominant inheritance — but others only with the biallelic presence of pathogenic variants — representing recessive inheritance — is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genotype and phenotypes — from DNA sequence to clinical manifestation in phenylalanine hydroxylase deficiency.
Fig. 2: Quantitative variant effects.
Fig. 3: Dominant negative effects.
Fig. 4: Protein subfunction and moonlighting-function effects.
Fig. 5: Allelic variants in the fibroblast growth factor receptor 1 gene.
Fig. 6: Multiple steps in tumour predisposition syndromes.
Fig. 7: Gonosomal inheritance.

Similar content being viewed by others

References

  1. Mendel, G. Versuche über Pflanzenhybriden [German]. Verh. Naturforschenden Vereines Brünn. 4, 3–47 (1866). English translation in Bateson, W. Mendel’s Principles of Heredity: A Defence. (Cambridge University Press, 1902).

    Google Scholar 

  2. Zschocke, J., Byers, P. H. & Wilkie, A. O. M. Gregor Mendel and the concepts of dominance and recessiveness. Nat. Rev. Genet. 23, 387–388 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Bateson, W. & Saunders, E. R. The facts of heredity in the light of Mendel’s discovery. Rep. Evol. Comm. R. Soc. 1, 125–160 (1902).

    Google Scholar 

  4. Garrod, A. E. The incidence of alkaptonuria: a study in chemical individuality. Lancet 2, 1616–1620 (1902).

    Article  CAS  Google Scholar 

  5. McKusick, V. A. Mendelian Inheritance in Man (Johns Hopkins Univ. Press, 1966).

  6. Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    Article  PubMed  Google Scholar 

  7. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 586, 749–756 (2020). This article summarizes exome sequence data from almost 50,000 individuals in the UK biobank, including information on the prevalence of LoF variants and pathogenic variants of clinical importance per participant in the general population.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). This study aggregates human sequence data from the Genome Aggregation Database (gnomAD), and describes the LOF observed/expected upper bound fraction score for estimating the likelihood of haplosufficiency versus haploinsufficiency for most protein-coding genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020). This article describes a sequence-resolved analysis of all types of structural variants in almost 15,000 genomes across diverse global populations in gnomAD, and provides estimates of dosage sensitivity in the non-coding genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller, H. J. in Proc. Sixth Int. Congress of Genetics (ed. Jones, D. F.) 213–255 (Brooklyn Botanic Gardens, 1932).

  11. Morgan, T. H., Bridges, C. B. & Sturtevant, A. H. The genetics of Drosophila. Bibliographica Genet. II, 1–262 (1925).

    Google Scholar 

  12. Orr, H. A. A test of Fisher’s theory of dominance. Proc. Natl Acad. Sci. USA 88, 11413–11415 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balick, D. J., Jordan, D. M., Sunyaev, S. & Do, R. Overcoming constraints on the detection of recessive selection in human genes from population frequency data. Am. J. Hum. Genet. 109, 33–49 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cummings, B. B. et al. Transcript expression-aware annotation improves rare variant interpretation. Nature 581, 452–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cody, J. D. The consequences of abnormal gene dosage: lessons from chromosome 18. Trends Genet. 36, 764–776 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Barton, A. R., Hujoel, M. L. A., Mukamel, R. E., Sherman, M. A. & Loh, P. R. A spectrum of recessiveness among Mendelian disease variants in UK Biobank. Am. J. Hum. Genet. 109, 1298–1307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kingdom, R. et al. Rare genetic variants in genes and loci linked to dominant monogenic developmental disorders cause milder related phenotypes in the general population. Am. J. Hum. Genet. 109, 1308–1316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fisher, R. A. The possible modification of the response of the wild type to recurrent mutations. Am. Nat. 62, 679 (1928).

    Article  Google Scholar 

  23. Wright, S. Physiological and evolutionary theories of dominance. Am. Nat. 68, 24–53 (1934).

    Article  Google Scholar 

  24. Kacser, H. & Burns, J. A. The molecular basis of dominance. Genetics 97, 639–666 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Omholt, S. W., Plahte, E., Oyehaug, L. & Xiang, K. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155, 969–980 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishikawa, K., Makanae, K., Iwasaki, S., Ingolia, N. T. & Moriya, H. Post-translational dosage compensation buffers genetic perturbations to stoichiometry of protein complexes. PLoS Genet. 13, e1006554 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kondrashov, F. A. & Koonin, E. V. A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. Trends Genet. 20, 287–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Morrill, S. A. & Amon, A. Why haploinsufficiency persists. Proc. Natl Acad. Sci. USA 116, 11866–11871 (2019). This paper analyses the functional characteristics of haploinsufficient genes, and proposes a dosage-stabilizing hypothesis of haploinsufficiency to explain its persistence over evolutionary time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ni, Z., Zhou, X. Y., Aslam, S. & Niu, D. K. Characterization of human dosage-sensitive transcription factor genes. Front. Genet. 10, 1208 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilchrist, M. A. & Nijhout, H. F. Nonlinear developmental processes as sources of dominance. Genetics 159, 423–432 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veitia, R. A., Caburet, S. & Birchler, J. A. Mechanisms of Mendelian dominance. Clin. Genet. 93, 419–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, A. F., Nguyen, H. T. & Veitia, R. A. Causes and effects of haploinsufficiency. Biol. Rev. Camb. Philos. Soc. 94, 1774–1785 (2019).

    Article  PubMed  Google Scholar 

  34. Veitia, R. A. A generalized model of gene dosage and dominant negative effects in macromolecular complexes. FASEB J. 24, 994–1002 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Thaxton, C. et al. Utilizing ClinGen gene–disease validity and dosage sensitivity curations to inform variant classification. Hum. Mutat. 43, 1031-1040 (2021).

    Article  PubMed  Google Scholar 

  36. Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21, 319–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041–3055.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. van Paassen, B. W. et al. PMP22 related neuropathies: Charcot–Marie–Tooth disease type 1A and hereditary neuropathy with liability to pressure palsies. Orphanet J. Rare Dis. 9, 38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Stoebel, D. M., Dean, A. M. & Dykhuizen, D. E. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 178, 1653–1660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Makanae, K., Kintaka, R., Makino, T., Kitano, H. & Moriya, H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res. 23, 300–311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rice, A. M. & McLysaght, A. Dosage-sensitive genes in evolution and disease. BMC Biol. 15, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rudnik-Schöneborn, S. et al. Andrological findings in infertile men with two (biallelic) CFTR mutations: results of a multicentre study in Germany and Austria comprising 71 patients. Hum. Reprod. 36, 551–559 (2021).

    Article  PubMed  Google Scholar 

  47. Guldberg, P. et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am. J. Hum. Genet. 63, 71–79 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carlock, G. et al. Developmental outcomes in duarte galactosemia. Pediatrics 143, e20182516 (2019).

    Article  PubMed  Google Scholar 

  50. Gouya, L. et al. The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat. Genet. 30, 27–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Rose, A. M. et al. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa. Sci. Rep. 6, 19450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Falkenberg, K. D. et al. Allelic expression imbalance promoting a mutant PEX6 allele causes Zellweger spectrum disorder. Am. J. Hum. Genet. 101, 965–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boussion, S. et al. TAR syndrome: clinical and molecular characterization of a cohort of 26 patients and description of novel noncoding variants of RBM8A. Hum. Mutat. 41, 1220–1225 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Daum, H. et al. Smith–Lemli–Opitz syndrome: what is the actual risk for couples carriers of the DHCR7:c.964-1G>C variant? Eur. J. Hum. Genet. 28, 938–942 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Plomin, R., Haworth, C. M. & Davis, O. S. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017). This study describes an analysis and meta-analysis of de novo pathogenic variants in more than 7,500 individuals with developmental disorders, estimation of their prevalence in the general population and the relative frequency of variants with quantitative and qualitative pathogenic effects, and identification of factors that influence the diagnostic yield.

    Article  Google Scholar 

  57. Gröbner, R. et al. C1R mutations trigger constitutive complement 1 activation in periodontal Ehlers–Danlos syndrome. Front. Immunol. 10, 2537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ilsley, M. D. et al. Corrupted DNA-binding specificity and ectopic transcription underpin dominant neomorphic mutations in KLF/SP transcription factors. BMC Genomics 20, 417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Otonkoski, T. et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am. J. Hum. Genet. 81, 467–474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koyano-Nakagawa, N. et al. Etv2 regulates enhancer chromatin status to initiate Shh expression in the limb bud. Nat. Commun. 13, 4221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oldridge, M. et al. De novo alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome. Am. J. Hum. Genet. 64, 446–461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, K. & Ornitz, D. M. Uncoupling fibroblast growth factor receptor 2 ligand binding specificity leads to Apert syndrome-like phenotypes. Proc. Natl Acad. Sci. USA 98, 3641–3643 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsuji, Y. et al. Systematic review of genotype–phenotype correlations in Frasier syndrome. Kidney Int. Rep. 6, 2585–2593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Swinnen, B., Robberecht, W. & Van Den Bosch, L. RNA toxicity in non-coding repeat expansion disorders. EMBO J. 39, e101112 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Zlotogora, J. Dominance and homozygosity. Am. J. Med. Genet. 68, 412–416 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Cubo, E. et al. Clinical manifestations of homozygote allele carriers in Huntington disease. Neurology 92, e2101–e2108 (2019).

    CAS  PubMed  Google Scholar 

  69. Tabrizi, S. J., Flower, M. D., Ross, C. A. & Wild, E. J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020).

    Article  PubMed  Google Scholar 

  70. Jamilloux, Y. et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology 57, 100–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Jeyakanthan, M. et al. Chemical basis for qualitative and quantitative differences between ABO blood groups and subgroups: implications for organ transplantation. Am. J. Transplant. 15, 2602–2615 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Johnson, W. G. Metabolic interference and the +– heterozygote. a hypothetical form of simple inheritance which is neither dominant nor recessive. Am. J. Hum. Genet. 32, 374–386 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Morissette, J. et al. Homozygotes carrying an autosomal dominant TIGR mutation do not manifest glaucoma. Nat. Genet. 19, 319–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Huard, D. J. E. et al. Trifunctional high-throughput screen identifies promising scaffold to inhibit Grp94 and treat myocilin-associated glaucoma. ACS Chem. Biol. 13, 933–941 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brownlee, J. M., Heinz, B., Bates, J. & Moran, G. R. Product analysis and inhibition studies of a causative Asn to Ser variant of 4-hydroxyphenylpyruvate dioxygenase suggest a simple route to the treatment of Hawkinsinuria. Biochemistry 49, 7218–7226 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, D. et al. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab. 33, 33–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Pan, C., Li, B. & Simon, M. C. Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol. Cell 81, 3760–3774 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, H. K., Pham, M. H. C., Ko, K. S., Rhee, B. D. & Han, J. Alternative splicing isoforms in health and disease. Pflug. Arch. Eur. J. Physiol. 470, 995–1016 (2018).

    Article  CAS  Google Scholar 

  80. Gostyńska, K. B. et al. Mutation in exon 1a of PLEC, leading to disruption of plectin isoform 1a, causes autosomal-recessive skin-only epidermolysis bullosa simplex. Hum. Mol. Genet. 24, 3155–3162 (2015).

    Article  PubMed  Google Scholar 

  81. Seo, A. et al. Mechanism for survival of homozygous nonsense mutations in the tumor suppressor gene BRCA1. Proc. Natl Acad. Sci. USA 115, 5241–5246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mesman, R. L. S. et al. Alternative mRNA splicing can attenuate the pathogenicity of presumed loss-of-function variants in BRCA2. Genet. Med. 22, 1355–1365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, J. et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am. J. Hum. Genet. 98, 830–842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Perenthaler, E. et al. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol. 139, 415–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Dik, E., Naamati, A., Asraf, H., Lehming, N. & Pines, O. Human fumarate hydratase is dual localized by an alternative transcription initiation mechanism. Traffic 17, 720–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Sternisha, S. M. & Miller, B. G. Molecular and cellular regulation of human glucokinase. Arch. Biochem. Biophys. 663, 199–213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferdinandusse, S. et al. An autosomal dominant neurological disorder caused by de novo variants in FAR1 resulting in uncontrolled synthesis of ether lipids. Genet. Med. 23, 740–750 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Salvatore, D., Santoro, M. & Schlumberger, M. The importance of the RET gene in thyroid cancer and therapeutic implications. Nat. Rev. Endocrinol. 17, 296–306 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Arighi, E. et al. Biological effects of the dual phenotypic Janus mutation of ret cosegregating with both multiple endocrine neoplasia type 2 and Hirschsprung’s disease. Mol. Endocrinol. 18, 1004–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Nicole, S. & Lory, P. New challenges resulting from the loss of function of Na(v)1.4 in neuromuscular diseases. Front. Pharmacol. 12, 751095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, M., Yang, K. C. & Dudley, S. C. Jr Cardiac sodium channel mutations: why so many phenotypes? Nat. Rev. Cardiol. 11, 607–615 (2014). This paper provides an exemplary review of the diverse functional effects of different pathogenic variants in the major cardiac sodium channel gene, based on the direct effect of the mutation on channel biophysics as well as age, sex, body temperature, cardiac regions and additional modifiers of channel behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wiuf, C. Do ΔF508 heterozygotes have a selective advantage? Genet. Res. 78, 41–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Allison, A. C. Polymorphism and natural selection in human populations. Cold Spring Harb. Symp. Quant. Biol. 29, 137–149 (1964).

    Article  CAS  PubMed  Google Scholar 

  94. Krawczak, M. & Zschocke, J. A role for overdominant selection in phenylketonuria? Evidence from molecular data. Hum. Mutat. 21, 394–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Miller, A. C. et al. Cystic fibrosis carriers are at increased risk for a wide range of cystic fibrosis-related conditions. Proc. Natl Acad. Sci. USA 117, 1621–1627 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Penrose, L. S. The problem of anticipation in pedigrees of dystrophia myotonica. Ann. Eugen. 14, 125–132 (1948).

    Article  CAS  PubMed  Google Scholar 

  97. Shay, J. W. & Wright, W. E. Telomeres and telomerase: three decades of progress. Nat. Rev. Genet. 20, 299–309 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Vulliamy, T. et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet. 36, 447–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Mangaonkar, A. A. & Patnaik, M. M. Short telomere syndromes in clinical practice: bridging bench and bedside. Mayo Clin. Proc. 93, 904–916 (2018).

    Article  PubMed  Google Scholar 

  100. Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R. & Riccio, A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Buiting, K., Williams, C. & Horsthemke, B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 12, 584–593 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Cooper, D. N., Krawczak, M., Polychronakos, C., Tyler-Smith, C. & Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 132, 1077–1130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martinelli, S. et al. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am. J. Hum. Genet. 102, 309–320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cohen, A. S., Wilson, S. L., Trinh, J. & Ye, X. C. Detecting somatic mosaicism: considerations and clinical implications. Clin. Genet. 87, 554–562 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Smedley, D. et al. A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet. 99, 595–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Turner, H. & Jackson, L. Evidence for penetrance in patients without a family history of disease: a systematic review. Eur. J. Hum. Genet. 28, 539–550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goodrich, J. K. et al. Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nat. Commun. 12, 3505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fallerini, C. et al. Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity. Hum. Genet. 141, 147–173 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Mars, N. et al. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat. Commun. 11, 6383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schäffer, A. A. Digenic inheritance in medical genetics. J. Med. Genet. 50, 641–652 (2013).

    Article  PubMed  Google Scholar 

  113. Deltas, C. Digenic inheritance and genetic modifiers. Clin. Genet. 93, 429–438 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Jirsa, M. et al. Rotor syndrome in GeneReviews [Internet] (Univ. of Washington, 2019).

  115. Bateson, W. Facts limiting the theory of heredity. Science 26, 649–660 (1907).

    Article  CAS  PubMed  Google Scholar 

  116. Miko, I. Epistasis: gene interaction and phenotype effects. Nat. Educ. 1, 197 (2008).

    Google Scholar 

  117. Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kelly, R. J. et al. Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals. Proc. Natl Acad. Sci. USA 91, 5843–5847 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Estiar, M. A. et al. Evidence for non-Mendelian inheritance in spastic paraplegia 7. Mov. Disord. 36, 1664–1675 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Vockley, J. et al. Complex patterns of inheritance, including synergistic heterozygosity, in inborn errors of metabolism: implications for precision medicine driven diagnosis and treatment. Mol. Genet. Metab. 128, 1–9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wei, W. H., Hemani, G. & Haley, C. S. Detecting epistasis in human complex traits. Nat. Rev. Genet. 15, 722–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Hivert, V. et al. Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. Am. J. Hum. Genet. 108, 786–798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Knudson, A. G. Jr Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Turnbull, C., Sud, A. & Houlston, R. S. Cancer genetics, precision prevention and a call to action. Nat. Genet. 50, 1212–1218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fernandez-Rozadilla, C. et al. Early colorectal cancers provide new evidence for a Lynch syndrome-to-CMMRD phenotypic continuum. Cancers 11, 1081 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Verkarre, V. et al. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J. Clin. Invest. 102, 1286–1291 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017). This paper describes a comprehensive study of the pattern of X-chromosome inactivation in human female cells, including data on genes with variable ‘escape’ from inactivation and a discussion of the potential clinical relevance.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Balaton, B. P., Dixon-McDougall, T., Peeters, S. B. & Brown, C. J. The exceptional nature of the X chromosome. Hum. Mol. Genet. 27, R242–R249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Naqvi, S., Bellott, D. W., Lin, K. S. & Page, D. C. Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res. 28, 474–483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, X. et al. Integrated functional genomic analyses of Klinefelter and Turner syndromes reveal global network effects of altered X chromosome dosage. Proc. Natl Acad. Sci. USA 117, 4864–4873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Di Stazio, M. et al. TBL1Y: a new gene involved in syndromic hearing loss. Eur. J. Hum. Genet. 27, 466–474 (2019).

    Article  PubMed  Google Scholar 

  133. Dobyns, W. B. et al. Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am. J. Med. Genet. A 129A, 136–143 (2004).

    Article  PubMed  Google Scholar 

  134. Migeon, B. R. X-linked diseases: susceptible females. Genet. Med. 22, 1156–1174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Luo, S. et al. Biparental inheritance of mitochondrial DNA in humans. Proc. Natl Acad. Sci. USA 115, 13039–13044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pagnamenta, A. T., Wei, W., Rahman, S. & Chinnery, P. F. Biparental inheritance of mitochondrial DNA revisited. Nat. Rev. Genet. 22, 477–478 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Strande, N. T. et al. Evaluating the clinical validity of gene–disease associations: an evidence-based framework developed by the clinical genome resource. Am. J. Hum. Genet. 100, 895–906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). This paper reports the standard ACMG–AMP guidelines for classifying variants in molecular genetic diagnostics as (likely) pathogenic, (likely) benign or of uncertain significance, based on various criteria such as population data, computational data, functional data and segregation data.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Amendola, L. M. et al. Performance of ACMG–AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am. J. Hum. Genet. 98, 1067–1076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Harrison, S. M., Biesecker, L. G. & Rehm, H. L. Overview of specifications to the ACMG/AMP variant interpretation guidelines. Curr. Protoc. Hum. Genet. 103, e93 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Houge, G. et al. Stepwise ABC system for classification of any type of genetic variant. Eur. J. Hum. Genet. 30, 150–159 (2022). This paper is an extension of the ACMG–AMG variant classification system, encompassing functional effect and clinical importance grades that are combined into a joint variant class to provide better estimates of variant significance in a clinical setting.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, S. et al. Base-specific mutational intolerance near splice sites clarifies the role of nonessential splice nucleotides. Genome Res. 28, 968–974 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol. 18, 102–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011). This paper comprehensively reviews the extent to which synonymous variants influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications.

    Article  CAS  PubMed  Google Scholar 

  146. Spielmann, M. & Kircher, M. Computational and experimental methods for classifying variants of unknown clinical significance. Cold Spring Harb. Mol. Case Stud. 8, a006196 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Birolo, G. et al. Protein stability perturbation contributes to the loss of function in haploinsufficient genes. Front. Mol. Biosci. 8, 620793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gerasimavicius, L., Liu, X. & Marsh, J. A. Identification of pathogenic missense mutations using protein stability predictors. Sci. Rep. 10, 15387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Coban-Akdemir, Z. et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am. J. Hum. Genet. 103, 171–187 (2018). This article describes an exemplary study of genes with premature termination codons that are predicted to escape nonsense-mediated decay and may be disease-causing through GoF effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ferdinandusse, S. et al. A mutation creating an upstream translation initiation codon in SLC22A5 5′UTR is a frequent cause of primary carnitine deficiency. Hum. Mutat. 40, 1899–1904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA 106, 7507–7512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bhatia, S. et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 93, 1126–1134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018). This article provides a comprehensive review of structural and quantitative chromosomal rearrangements that may affect the expression of distant genes through copy number alteration of regulatory elements or modification of the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains.

    Article  CAS  PubMed  Google Scholar 

  154. Fuller, Z. L., Berg, J. J., Mostafavi, H., Sella, G. & Przeworski, M. Measuring intolerance to mutation in human genetics. Nat. Genet. 51, 772–776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ziegler, A., Colin, E., Goudenège, D. & Bonneau, D. A snapshot of some pLI score pitfalls. Hum. Mutat. 40, 839–841 (2019).

    PubMed  Google Scholar 

  156. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Przybyla, L. & Gilbert, L. A. A new era in functional genomics screens. Nat. Rev. Genet. 23, 89–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Gussow, A. B., Petrovski, S., Wang, Q., Allen, A. S. & Goldstein, D. B. The intolerance to functional genetic variation of protein domains predicts the localization of pathogenic mutations within genes. Genome Biol. 17, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Havrilla, J. M., Pedersen, B. S., Layer, R. M. & Quinlan, A. R. A map of constrained coding regions in the human genome. Nat. Genet. 51, 88–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Li, G. C., Forster-Benson, E. T. C. & Sanders, C. R. Genetic intolerance analysis as a tool for protein science. Biochim. Biophys. Acta Biomembr. 1862, 183058 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Hayeck, T. J. et al. Improved pathogenic variant localization via a hierarchical model of sub-regional intolerance. Am. J. Hum. Genet. 104, 299–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wiel, L. et al. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum. Mutat. 40, 1030–1038 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Silk, M. et al. MTR3D: identifying regions within protein tertiary structures under purifying selection. Nucleic Acids Res. 49, W438–W445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Qi, H. et al. MVP predicts the pathogenicity of missense variants by deep learning. Nat. Commun. 12, 510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Heyne, H. O. et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. 12, eaay6848 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Bayrak, C. S. et al. Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants. Am. J. Hum. Genet. 108, 2301–2318 (2021).

    Article  Google Scholar 

  168. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gerasimavicius, L., Livesey, B. J. & Marsh, J. A. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat. Commun. 13, 3895 (2022). This study investigates protein-level effects of pathogenic missense variants associated with different molecular mechanisms, showing that qualitative variant effects may be missed by current variant prioritization strategies, and highlighting ways to improve computational predictions through consideration of molecular disease mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Epilepsy Genetics Initiative. De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy. Genet. Med. 20, 275–281 (2018).

    Article  Google Scholar 

  171. White, K. E. et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am. J. Hum. Genet. 76, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Bennett, J. T. et al. Mosaic activating mutations in FGFR1 cause encephalocraniocutaneous lipomatosis. Am. J. Hum. Genet. 98, 579–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ibrahimi, O. A., Zhang, F., Eliseenkova, A. V., Linhardt, R. J. & Mohammadi, M. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum. Mol. Genet. 13, 69–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Erlandsen, H. & Stevens, R. C. The structural basis of phenylketonuria. Mol. Genet. Metab. 68, 103–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Higgs, D. R. et al. A review of the molecular genetics of the human α-globin gene cluster. Blood 73, 1081–1104 (1989).

    Article  CAS  PubMed  Google Scholar 

  177. Magge, S. N. et al. Familial leucine-sensitive hypoglycemia of infancy due to a dominant mutation of the β-cell sulfonylurea receptor. J. Clin. Endocrinol. Metab. 89, 4450–4456 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Marini, J. C. et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 3, 17052 (2017).

    Article  PubMed  Google Scholar 

  179. Lee, J. & Hegele, R. A. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J. Inherit. Metab. Dis. 37, 333–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Ramasamy, I. Update on the molecular biology of dyslipidemias. Clin. Chim. Acta 454, 143–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Wohlfarter, Y. et al. Lost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism. Cell. Mol. Life Sci. 79, 562 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zschocke, J. et al. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr. Res. 48, 852–855 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Zschocke, J. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J. Inherit. Metab. Dis. 35, 81–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Rauschenberger, K. et al. A non-enzymatic function of 17β-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol. Med. 2, 51–62 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bhatta, A., Dienemann, C., Cramer, P. & Hillen, H. S. Structural basis of RNA processing by human mitochondrial RNase P. Nat. Struct. Mol. Biol. 28, 713–723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell 98, 641–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Chung, W. C., Moyle, S. S. & Tsai, P. S. Fibroblast growth factor 8 signaling through fibroblast growth factor receptor 1 is required for the emergence of gonadotropin-releasing hormone neurons. Endocrinology 149, 4997–5003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hong, S. et al. Dominant-negative kinase domain mutations in FGFR1 can explain the clinical severity of Hartsfield syndrome. Hum. Mol. Genet. 25, 1912–1922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Simonis, N. et al. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J. Med. Genet. 50, 585–592 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  191. Stein, Y., Rotter, V. & Aloni-Grinstein, R. Gain-of-function mutant p53: all the roads lead to tumorigenesis. Int. J. Mol. Sci. 20, 6197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kehrer-Sawatzki, H. et al. Phenotypic and genotypic overlap between mosaic NF2 and schwannomatosis in patients with multiple non-intradermal schwannomas. Hum. Genet. 137, 543–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Nogué, C. et al. DGCR8 and the six hit, three-step model of schwannomatosis. Acta Neuropathol. 143, 115–117 (2022).

    Article  PubMed  Google Scholar 

  194. Hoekstra, A. S. et al. Loss of maternal chromosome 11 is a signature event in SDHAF2, SDHD, and VHL-related paragangliomas, but less significant in SDHB-related paragangliomas. Oncotarget 8, 14525–14536 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Burnichon, N. et al. Risk assessment of maternally inherited SDHD paraganglioma and phaeochromocytoma. J. Med. Genet. 54, 125–133 (2017).

    Article  PubMed  Google Scholar 

  196. Twigg, S. R. et al. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes. Hum. Mol. Genet. 22, 1654–1662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Mincheva-Tasheva, S., Nieto Guil, A. F., Homan, C. C., Gecz, J. & Thomas, P. Q. Disrupted excitatory synaptic contacts and altered neuronal network activity underpins the neurological phenotype in PCDH19-clustering epilepsy (PCDH19-CE). Mol. Neurobiol. 58, 2005–2018 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank U. Moog and S. Rudnik for helpful comments on earlier drafts of this manuscript, and J. Amberger for help with Online Mendelian Inheritance in Man (OMIM) statistics. A.O.M.W. acknowledges part-funding from NIHR Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article; J.Z. developed the concept, wrote the initial draft of the manuscript and carried out major revisions.

Corresponding author

Correspondence to Johannes Zschocke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Alessandra Renieri, Zornitza Stark and Hans Waterham for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Matched Annotation from NCBI and EMBL-EBI (MANE): https://www.ncbi.nlm.nih.gov/refseq/MANE/

Online Mendelian Inheritance in Man: https://omim.org/statistics/geneMap

Glossary

Anticipation

The earlier or more severe manifestation of a hereditary disease in the offspring than in the parent.

Allelic series

Different variants in the same gene often acting through different pathogenetic pathways cause a range of phenotypes that may be associated with different inheritance patterns.

Autozygosity mapping

A method to identify disease-causing variants in consanguineous families by focusing on autosomal regions with runs of homozygous genotypes inherited from a shared ancestor (that is, autozygous regions).

Co-dominance

Different alleles of the same autosomal gene yield functionally distinct proteins with alternative phenotypes, both of which can be recognized in the (compound) heterozygous state.

Compound heterozygous

Different pathogenic variants on the two alleles of the same autosomal gene, causing biallelic loss or modification of gene function.

Dominant negative effect

A heterozygous variant codes for a structurally altered protein that interferes with the wild type (WT) protein.

Exome

The transcribed sequences of all protein-coding human genes.

Expressivity

The severity or extent of clinical manifestation in persons with a particular genotype. Variable expressivity indicates that individuals with the same genotype (for example, in the same family) may have quite different phenotypes.

Genotype

The constellation of genetic variants in a particular gene or in the genome.

Gain of function (GoF) variant

A genetic variant that causes inappropriate or novel protein functions such as uncontrolled activation or loss of regulation of the encoded protein, ectopic and/or illegitimate organ and/or cell-specific expression patterns, or novel (including toxic) protein or mRNA functions.

Gonosomal

A gene or variant on one of two sex chromosomes, as opposed to autosomes.

Haplosufficiency

Complete loss of one copy of a particular autosomal gene is usually asymptomatic. Haplosufficiency is a typical feature of recessive diseases and Mendelian wild type (WT) dominance.

Haploinsufficient

Complete loss of one copy of a particular autosomal gene causes noticeable clinical effects; a single (haploid) normal allele does not suffice for normal development or homeostasis. Haploinsufficiency is the central pathogenetic mechanism in semi-dominant diseases caused by loss of function (LoF) variants.

Hypomorphic (Hyp) variants

Genetic variants that reduce but do not completely abolish the function of the encoded protein.

Loss of function (LoF) variant

A genetic variant that causes complete loss of the encoded protein. Also known as a null variant.

Moonlighting-function effects

A multifunctional protein performs two or more autonomous, independent and mechanistically different functions; specific impairment of one function by a pathogenic variant does not necessarily affect the other function(s).

Overdominance

The phenomenon whereby some heterozygous variants have advantageous clinical effects not observed in homozygous wild type (WT) or homozygous variant states.

Penetrance

The probability of clinical manifestation in persons with a particular genotype, which is frequently age-dependent. Penetrance may be complete (100%) or incomplete (reduced).

Phenotype

The measurable consequences of a genetic variant on the protein, cell, organ or clinical level.

Pleiotropy

A protein function is required in two or more different cellular processes or pathways; pathogenic variants in the respective gene cause different seemingly unrelated phenotypic traits.

Pseudo-dominant

The occurrence of an autosomal recessive (biallelic) disease in successive generations.

Semi-dominant

Describes the phenomenon whereby an autsomal genetic variant in its heterozygous state is associated with a less severe, intermediate phenotype than its homozygous state. Most quantitative variants are semi-dominant, but semi-dominance is also commonly observed for variants that have qualitative effects.

Subfunction effects

A protein has successive functions in cellular processes, such as sequential steps in an enzymatic reaction or transport processes, which are differently affected by genetic variants.

Triplosensitive

An additional copy of a particular autosomal gene (for example through a duplication that causes three instead of two gene copies) that has adverse clinical consequences.

Tissue-specific transcript effects

A gene shows functional variability in expression or splicing, which is differently affected by genetic variants.

Underdominance

The phenomenon whereby some heterozygous variants cause a clinically adverse phenotype that is absent or less severe in wild type (WT) or variant homozygotes.

Wild type

(WT). The genetic sequence or function defined as normal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zschocke, J., Byers, P.H. & Wilkie, A.O.M. Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 24, 442–463 (2023). https://doi.org/10.1038/s41576-023-00574-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00574-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing