Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interplay between chromatin marks in development and disease

Abstract

DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H3K4 methylation inhibits DNMT3A/3B activity.
Fig. 2: H3K9me3 promotes UHRF1 and DNMT1 activity.
Fig. 3: H3K9me3-marked heterochromatin inhibits de novo DNAme in the male germ line.
Fig. 4: H3K36me2 and H3K36me3 recruit DNMT3A/3B.
Fig. 5: Crosstalk between H3K36me2/me3, H3K27me3 and DNAme.

Similar content being viewed by others

References

  1. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  3. Hyun, K., Jeon, J., Park, K. & Kim, J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49, e324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 20, 625–641 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, J., Ahn, J. H. & Wang, G. G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol. Life Sci. 76, 2899–2916 (2019).

    CAS  PubMed  Google Scholar 

  6. Kimura, H. Histone modifications for human epigenome analysis. J. Hum. Genet. 58, 439–445 (2013).

    CAS  PubMed  Google Scholar 

  7. Cooper, D. N., Taggart, M. H. & Bird, A. P. Unmethylated domains in vertebrate DNA. Nucleic Acids Res. 11, 647–658 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird, A., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    CAS  PubMed  Google Scholar 

  9. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).

    CAS  PubMed  Google Scholar 

  10. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Smallwood, S. A. & Kelsey, G. De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42 (2012).

    CAS  PubMed  Google Scholar 

  12. Edwards, J. R. et al. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res. 20, 972–980 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu, K., Bonora, G. & Pellegrini, M. Interactions between core histone marks and DNA methyltransferases predict DNA methylation patterns observed in human cells and tissues. Epigenetics 15, 272–282 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Lynch, M. D. et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J. 31, 317–329 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Appanah, R., Dickerson, D. R., Goyal, P., Groudine, M. & Lorincz, M. C. An unmethylated 3′ promoter-proximal region is required for efficient transcription initiation. PLoS Genet. 3, 241–253 (2007).

    CAS  Google Scholar 

  16. Ooi, S. K. T. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007). This study shows that the cysteine-rich domain (later termed the ADD domain) of DNMT3L selectively interacts with unmethylated H3K4.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246–4253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, B.-Z. et al. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res. 21, 1172–1181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, J.-L. et al. The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc. Natl Acad. Sci. USA 106, 22187–22192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, T.-H. et al. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature 586, 151–155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, Y. et al. The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev. 34, 1546–1558 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, X. et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644 (2015). This study reveals that binding of the DNMT3A ADD domain to unmodified H3K4 relieves its autoinhibitory interaction with the catalytic domain.

    CAS  PubMed  Google Scholar 

  24. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).

    CAS  PubMed  Google Scholar 

  25. Singh, P. et al. De novo DNA methylation in the male germ line occurs by default but is excluded at sites of H3K4 methylation. Cell Rep. 4, 205–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

    CAS  PubMed  Google Scholar 

  27. Hammoud, S. S. et al. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15, 239–253 (2014).

    CAS  PubMed  Google Scholar 

  28. Greenfield, R. et al. Role of transcription complexes in the formation of the basal methylation pattern in early development. Proc. Natl Acad. Sci. USA 115, 10387–10391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    CAS  PubMed  Google Scholar 

  31. Ginno, P. A. et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Noh, K.-M. et al. Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs. Mol. Cell 59, 89–103 (2015). This study reveals aberrant DNMT3A targeting to H3K4me3-marked promoters due to a mutation in the ADD domain, rendering it insensitive to the H3K4me state.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hagarman, J. A., Motley, M. P., Kristjansdottir, K. & Soloway, P. D. Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS ONE 8, e53880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, Y. et al. Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 19, 18 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Hanna, C. W. et al. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat. Struct. Mol. Biol. 25, 73–82 (2018).

    CAS  PubMed  Google Scholar 

  36. Douillet, D. et al. Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat. Genet. 52, 615–625 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grosswendt, S. et al. Epigenetic regulator function through mouse gastrulation. Nature 584, 102–108 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hernandez, C. et al. Dppa2/4 facilitate epigenetic remodeling during reprogramming to pluripotency. Cell Stem Cell 23, 396–411 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Eckersley-Maslin, M. A. et al. Epigenetic priming by Dppa2 and 4 in pluripotency facilitates multi-lineage commitment. Nat. Struct. Mol. Biol. 27, 696–705 (2020).

    CAS  PubMed  Google Scholar 

  40. Gretarsson, K. H. & Hackett, J. A. Dppa2 and Dppa4 counteract de novo methylation to establish a permissive epigenome for development. Nat. Struct. Mol. Biol. 27, 706–716 (2020).

    CAS  PubMed  Google Scholar 

  41. Collins, B. E., Greer, C. B., Coleman, B. C. & Sweatt, J. D. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 12, 7 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat. Rev. Genet. 22, 38–58 (2020).

    PubMed  Google Scholar 

  43. Krzyzewska, I. M. et al. A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin. Epigenetics 11, 156 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Aref-Eshghi, E. et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 106, 356–370 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Labonne, J. D. J. et al. An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability. Hum. Genet. 135, 757–771 (2016).

    CAS  PubMed  Google Scholar 

  46. Butcher, D. T. et al. CHARGE and Kabuki syndromes: gene-specific DNA methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions. Am. J. Hum. Genet. 100, 773–788 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sobreira, N. et al. Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities. Eur. J. Hum. Genet. 25, 1335–1344 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aref-Eshghi, E. et al. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics 12, 923–933 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Steiner, C. E. & Marques, A. P. Growth deficiency, mental retardation and unusual facies. Clin. Dysmorphol. 9, 155 (2000).

    CAS  PubMed  Google Scholar 

  51. Jones, W. D. et al. De novo mutations in MLL cause wiedemann-steiner syndrome. Am. J. Hum. Genet. 91, 358–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334–346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Saksouk, N., Simboeck, E. & Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8, 3 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nicetto, D. & Zaret, K. S. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr. Opin. Genet. Dev. 55, 1–10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bruno, M., Mahgoub, M. & Macfarlan, T. S. The arms race between KRAB–zinc finger proteins and endogenous retroelements and its impact on mammals. Annu. Rev. Genet. 53, 393–416 (2019).

    CAS  PubMed  Google Scholar 

  56. Bulut-Karslioglu, A. et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cell 55, 277–290 (2014).

    CAS  PubMed  Google Scholar 

  57. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    CAS  PubMed  Google Scholar 

  58. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  59. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007). This study, together with Bostick et al. (2007), shows that UHRF1 binds to hemimethylated DNA, facilitates DNMT1 chromatin binding and thereby ensures faithful maintenance of DNAme.

    CAS  PubMed  Google Scholar 

  60. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    CAS  PubMed  Google Scholar 

  61. Unoki, M., Nishidate, T. & Nakamura, Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23, 7601–7610 (2004).

    CAS  PubMed  Google Scholar 

  62. Avvakumov, G. V. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825 (2008).

    CAS  PubMed  Google Scholar 

  63. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818–821 (2008).

    CAS  PubMed  Google Scholar 

  64. Hashimoto, H. et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Harrison, J. S. et al. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife 5, e17101 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Vaughan, R. M. et al. Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. Proc. Natl Acad. Sci. USA 115, 8775–8780 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vaughan, R. M., Rothbart, S. B. & Dickson, B. M. The finger loop of the SRA domain in the E3 ligase UHRF1 is a regulator of ubiquitin targeting and is required for the maintenance of DNA methylation. J. Biol. Chem. 294, 15724–15732 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Karagianni, P., Amazit, L., Qin, J. & Wong, J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol. Cell Biol. 28, 705–717 (2008).

    CAS  PubMed  Google Scholar 

  69. Nishiyama, A. et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249–253 (2013).

    CAS  PubMed  Google Scholar 

  70. Qin, W. et al. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res. 25, 911–929 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Karg, E. et al. Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells. J. Mol. Biol. 429, 3814–3824 (2017).

    CAS  PubMed  Google Scholar 

  72. Ishiyama, S. et al. Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol. Cell 68, 350–360 (2017).

    CAS  PubMed  Google Scholar 

  73. González-Magaña, A. et al. Double monoubiquitination modifies the molecular recognition properties of p15 PAF promoting binding to the reader module of Dnmt1. ACS Chem. Biol. 14, 2315–2326 (2019).

    PubMed  Google Scholar 

  74. Nishiyama, A. et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat. Commun. 11, 1222 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS  PubMed  Google Scholar 

  76. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nady, N. et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J. Biol. Chem. 286, 24300–24311 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rothbart, S. B. et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19, 1155–1160 (2012). This study indicates a role for the interaction between the UHRF1 TTD domain and H3K9me3 in DNMT1-mediated maintenance DNAme.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Arita, K. et al. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc. Natl Acad. Sci. USA 109, 12950–12955 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Xie, S., Jakoncic, J. & Qian, C. UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail. J. Mol. Biol. 415, 318–328 (2012).

    CAS  PubMed  Google Scholar 

  81. Rothbart, S. B. et al. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 27, 1288–1298 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng, J. et al. Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein. J. Biol. Chem. 288, 1329–1339 (2013).

    CAS  PubMed  Google Scholar 

  83. Tauber, M. et al. Alternative splicing and allosteric regulation modulate the chromatin binding of UHRF1. Nucleic Acids Res. 48, 7728–7747 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, X. et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. 4, 1563 (2013).

    PubMed  Google Scholar 

  85. Bashtrykov, P., Jankevicius, G., Jurkowska, R. Z., Ragozin, S. & Jeltsch, A. The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J. Biol. Chem. 289, 4106–4115 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Peters, A. H. F. M. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    CAS  PubMed  Google Scholar 

  87. Saksouk, N. et al. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014).

    CAS  PubMed  Google Scholar 

  88. Han, M. et al. A role for LSH in facilitating DNA methylation by DNMT1 through enhancing UHRF1 chromatin association. Nucleic Acids Res. 48, 12116–12134 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ming, X. et al. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res. 30, 980–996 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ren, W. et al. Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc. Natl Acad. Sci. USA 117, 18439–18447 (2020). This study uncovers a direct interaction between the RFTS domain of DNMT1 and H3K9me3.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ren, W. et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat. Commun. 12, 2490 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Leung, D. et al. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc. Natl Acad. Sci. USA 111, 6690–6695 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, S. et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev. 28, 2041–2055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003). This study is the first of many to show that specific TEs are resistant to DNA demethylation during epigenetic reprogramming in germ cells and the pre-implantation embryo.

    CAS  PubMed  Google Scholar 

  95. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Guibert, S., Forné, T. & Weber, M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 22, 633–641 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012). This study extensively characterizes the dynamics of DNAme in early germ cell development, starting from the epiblast to E16.5 female and male germ cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Takahashi, N. et al. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 33, 49–54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

    CAS  PubMed  Google Scholar 

  102. von Meyenn, F. et al. Comparative principles of DNA methylation reprogramming during human and mouse in vitro primordial germ cell specification. Dev. Cell 39, 104–115 (2016).

    Google Scholar 

  103. Biniszkiewicz, D. et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell Biol. 22, 2124–2135 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hirasawa, R. et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607–1616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Maenohara, S. et al. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genet. 13, e1007042 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Min, B., Park, J. S., Jeong, Y. S., Jeon, K. & Kang, Y.-K. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos. Nucleic Acids Res. 48, 8431–8444 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dahlet, T. et al. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun. 11, 3153 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Q. et al. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet. 52, 828–839 (2020).

    CAS  PubMed  Google Scholar 

  109. Haggerty, C. et al. Dnmt1 has de novo activity targeted to transposable elements. Nat. Struct. Mol. Biol. 28, 594–603 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. He, J. et al. Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat. Commun. 10, 34 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Dong, J. et al. UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat. Commun. 10, 4705 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. von Meyenn, F. et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 848–861 (2016).

    Google Scholar 

  113. Funaki, S. et al. Inhibition of maintenance DNA methylation by Stella. Biochem. Biophys. Res. Commun. 453, 455–460 (2014).

    CAS  PubMed  Google Scholar 

  114. Du, W. et al. Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger-type E3 ubiquitin ligase UHRF1. J. Biol. Chem. 294, 8907–8917 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sato, M. et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev. 113, 91–94 (2002).

    CAS  PubMed  Google Scholar 

  116. Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    CAS  PubMed  Google Scholar 

  117. Li, Y. et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564, 136–140 (2018).

    CAS  PubMed  Google Scholar 

  118. Han, L., Ren, C., Zhang, J., Shu, W. & Wang, Q. Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development. Cell Discov. 5, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Mulholland, C. B. et al. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat. Commun. 11, 5972 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nakashima, H. et al. Effects of Dppa3 on DNA methylation dynamics during primordial germ cell development in mice. Biol. Reprod. 88, 125 (2013).

    PubMed  Google Scholar 

  121. Zhao, Q. et al. Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat. Commun. 7, 12464 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith, Z. D. et al. Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 549, 543–547 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Molaro, A. et al. Two waves of de novo methylation during mouse germ cell development. Genes Dev. 28, 1544–1549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kubo, N. et al. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 16, 624 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Shirane, K., Miura, F., Ito, T. & Lorincz, M. C. NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat. Genet. 52, 1088–1098 (2020).

    PubMed  Google Scholar 

  126. Ohta, H. et al. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J. 36, 1888–1907 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sakai, Y., Suetake, I., Shinozaki, F., Yamashina, S. & Tajima, S. Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr. Patterns 5, 231–237 (2004).

    CAS  PubMed  Google Scholar 

  128. Yamanaka, S. et al. Broad heterochromatic domains open in gonocyte development prior to de novo DNA methylation. Dev. Cell 51, 21–34 (2019). Employing ATAC-seq in male germ cells, this study reveals an increase in chromatin accessibility in heterochromatic regions at E17.5 versus E13.5.

    CAS  PubMed  Google Scholar 

  129. Soldi, M. & Bonaldi, T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol. Cell Proteom. 12, 764–780 (2013).

    CAS  Google Scholar 

  130. Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Köhler, F. et al. Epigenetic deregulation of lamina-associated domains in Hutchinson–Gilford progeria syndrome. Genome Med. 12, 46 (2020).

    PubMed  PubMed Central  Google Scholar 

  132. Bachman, K. E., Rountree, M. R. & Baylin, S. B. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276, 32282–32287 (2001).

    CAS  PubMed  Google Scholar 

  133. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell Biol. 23, 5594–5605 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dukatz, M. et al. H3K36me2/3 binding and DNA binding of the DNA methyltransferase DNMT3A PWWP domain both contribute to its chromatin interaction. J. Mol. Biol. 431, 5063–5074 (2019).

    CAS  PubMed  Google Scholar 

  135. Hiragami-Hamada, K. et al. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin. Nat. Commun. 7, 11310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Healton, S. E. et al. H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc. Natl Acad. Sci. USA 117, 14251–14258 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Magaraki, A. et al. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 10, 11 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Rowbotham, S. P. et al. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42, 285–296 (2011).

    CAS  PubMed  Google Scholar 

  139. Navarro, C., Lyu, J., Katsori, A.-M., Caridha, R. & Elsässer, S. J. An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility. Nat. Commun. 11, 5095 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lorincz, M. C., Schübeler, D., Hutchinson, S. R., Dickerson, D. R. & Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell Biol. 22, 7572–7580 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem. 279, 48350–48359 (2004).

    CAS  PubMed  Google Scholar 

  142. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Schroeder, D. I. et al. The human placenta methylome. Proc. Natl Acad. Sci. USA 110, 6037–6042 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Salhab, A. et al. A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol. 19, 150 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Berman, B. P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40–46 (2011).

    PubMed  PubMed Central  Google Scholar 

  148. Hon, G. C. et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 22, 246–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

    CAS  PubMed  Google Scholar 

  151. Timp, W. et al. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med. 6, 61 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Decato, B. E. et al. Characterization of universal features of partially methylated domains across tissues and species. Epigenetics Chromatin 13, 39 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wagner, E. J. & Carpenter, P. B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    CAS  PubMed  Google Scholar 

  155. Yoh, S. M., Lucas, J. S. & Jones, K. A. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev. 22, 3422–3434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Dhayalan, A. et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285, 26114–26120 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    CAS  PubMed  Google Scholar 

  158. Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019). This study reveals that the PWWP domain of DNMT3A interacts with NSD1-mediated H3K36me2 and is required for DNAme at intergenic regions.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu, W. et al. DNMT3A reads and connects histone H3K36me2 to DNA methylation. Protein Cell 11, 150–154 (2020).

    PubMed  Google Scholar 

  160. Jin, B. et al. Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells. Cell Rep. 2, 1411–1424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Morselli, M. et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife 4, e06205 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Xu, Q. et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 51, 844–856 (2019).

    CAS  PubMed  Google Scholar 

  163. Sotos, J. F., Dodge, P. R., Muirhead, D., Crawford, J. D. & Talbot, N. B. Cerebral gigantism in childhood: a syndrome of excessively rapid growth with acromegalic features and a nonprogressive neurologic disorder. N. Engl. J. Med. 271, 109–116 (1964).

    CAS  PubMed  Google Scholar 

  164. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    CAS  PubMed  Google Scholar 

  165. Qiao, Q. et al. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J. Biol. Chem. 286, 8361–8368 (2010).

    PubMed  PubMed Central  Google Scholar 

  166. Choufani, S. et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun. 6, 10207 (2015).

    CAS  PubMed  Google Scholar 

  167. Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jeffries, A. R. et al. Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging. Genome Res. 29, 1057–1066 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Luscan, A. et al. Mutations in SETD2 cause a novel overgrowth condition. J. Med. Genet. 51, 512–517 (2014).

    CAS  PubMed  Google Scholar 

  170. Lumish, H. S., Wynn, J., Devinsky, O. & Chung, W. K. Brief report: SETD2 mutation in a child with autism, intellectual disabilities and epilepsy. J. Autism Dev. Disord. 45, 3764–3770 (2015).

    PubMed  Google Scholar 

  171. Xu, G.-L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    CAS  PubMed  Google Scholar 

  172. Heyn, H. et al. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics 7, 542–550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gatto, S. et al. ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing. Nucleic Acids Res. 45, 5739–5756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Stec, I. et al. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the wolf-hirschhorn syndrome critical region and is fused to IgH in t(1;14) multiple myeloma. Hum. Mol. Genet. 7, 1071–1082 (1998).

    CAS  PubMed  Google Scholar 

  175. Rayasam, G. V. et al. NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J. 22, 3153–3163 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Nimura, K. et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf–Hirschhorn syndrome. Nature 460, 287–291 (2009).

    CAS  PubMed  Google Scholar 

  177. Kuo, A. J. et al. NSD2 links dimethylation of histone h3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Yang, Z., Jones, A., Widschwendter, M. & Teschendorff, A. E. An integrative pan-cancer-wide analysis of epigenetic enzymes reveals universal patterns of epigenomic deregulation in cancer. Genome Biol. 16, 140 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Sendžikaitė, G., Hanna, C. W., Stewart-Morgan, K. R., Ivanova, E. & Kelsey, G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat. Commun. 10, 1884 (2019).

    PubMed  PubMed Central  Google Scholar 

  180. Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019). This study identified a pathogenic GoF mutation in the PWWP domain of DNMT3A in patients with microcephalic dwarfism that abrogates binding to H3K36me2/me3 and leads to altered DNAme.

    CAS  PubMed  Google Scholar 

  181. Rabin, R. et al. Genotype-phenotype correlation at codon 1740 of SETD2. Am. J. Med. Genet. A 182, 2037–2048 (2020).

    CAS  PubMed  Google Scholar 

  182. Rosenfeld, J. A. et al. Further evidence of contrasting phenotypes caused by reciprocal deletions and duplications: duplication of nsd1 causes growth retardation and microcephaly. Mol. Syndromol. 3, 247–254 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Dikow, N. et al. The phenotypic spectrum of duplication 5q35.2-q35.3 encompassing NSD1: is it really a reversed Sotos syndrome? Am. J. Med. Genet. A 161A, 2158–2166 (2013).

    PubMed  Google Scholar 

  184. Sachwitz, J. et al. NSD1 duplication in Silver–Russell syndrome (SRS): molecular karyotyping in patients with SRS features: NSD1 duplication in SRS. Clin. Genet. 91, 73–78 (2016).

    PubMed  Google Scholar 

  185. Peeters, S. et al. DNA methylation profiling and genomic analysis in 20 children with short stature who were born small-for-gestational age. J. Clin. Endocrinol. Metab. 105, e4730–e4741 (2020).

    Google Scholar 

  186. Brennan, K. et al. NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci. Rep. 7, 17064 (2017).

    PubMed  PubMed Central  Google Scholar 

  187. Papillon-Cavanagh, S. et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat. Genet 49, 180–185 (2017). This study reveals that NSD1 and H3K36M mutations show a similar DNAme signature in head and neck squamous cell carcinomas.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Farhangdoost, N. et al. Chromatin dysregulation associated with NSD1 mutation in head and neck squamous cell carcinoma. Cell Rep. 34, 108769 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    CAS  Google Scholar 

  190. Fang, D. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352, 1344–1348 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Russler-Germain, D. A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Cancer Genome Atlas Research Network. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    PubMed Central  Google Scholar 

  194. Lu, R. et al. A model system for studying the DNMT3A hotspot mutation (DNMT3AR882) demonstrates a causal relationship between its dominant-negative effect and leukemogenesis. Cancer Res. 79, 3583–3594 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Spencer, D. H. et al. CpG Island hypermethylation mediated by DNMT3A Is a consequence of AML progression. Cell 168, 801–816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  197. Riising, E. M. et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG Islands genome wide. Mol. Cell 55, 347–360 (2014).

    CAS  PubMed  Google Scholar 

  198. Blackledge, N. P., Rose, N. R. & Klose, R. J. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat. Rev. Mol. Cell Biol. 16, 643–649 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Mierlo, G., van, Veenstra, G. J. C., Vermeulen, M. & Marks, H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 29, 660–671 (2019).

    PubMed  Google Scholar 

  200. Lindroth, A. M. et al. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet. 4, e1000145 (2008).

    PubMed  PubMed Central  Google Scholar 

  201. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Jermann, P., Hoerner, L., Burger, L. & Schübeler, D. Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. Proc. Natl Acad. Sci. USA 111, E3415–E3421 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Perino, M. et al. MTF2 recruits polycomb repressive complex 2 by helical-shape-selective DNA binding. Nat. Genet. 50, 1002–1010 (2018).

    CAS  PubMed  Google Scholar 

  205. Cooper, S. et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a Role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7, 1456–1470 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Farcas, A. M. et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    PubMed  PubMed Central  Google Scholar 

  208. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012). Using sequential ChIP-bisulfite sequencing, this study shows that H3K27me3 and DNAme are mutually exclusive at CGIs. In addition, it reveals altered H3K27me3 levels in Dnmt triple-knockout mESCs, indicating an antagonistic relationship between H3K27me3 and DNAme.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Reddington, J. P. et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol. 14, R25 (2013).

    PubMed  PubMed Central  Google Scholar 

  210. King, A. D. et al. Reversible regulation of promoter and enhancer histone landscape by DNA methylation in mouse embryonic stem cells. Cell Rep. 17, 289–302 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Manzo, M. et al. Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. EMBO J. 36, 3421–3434 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. McLaughlin, K. et al. DNA methylation directs polycomb-dependent 3D genome re-organization in naive pluripotency. Cell Rep. 29, 1974–1985 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, Y. et al. Targets and genomic constraints of ectopic Dnmt3b expression. eLife 7, e40757 (2018).

    PubMed  PubMed Central  Google Scholar 

  214. Murphy, P. J. et al. Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc. Natl Acad. Sci. USA 110, 7772–7777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat. Genet. 44, 1207–1214 (2012).

    CAS  PubMed  Google Scholar 

  216. Statham, A. L. et al. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Gu, T. et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 19, 88 (2018).

    PubMed  PubMed Central  Google Scholar 

  219. Gibson, W. T. et al. Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet. 90, 110–118 (2011).

    PubMed  Google Scholar 

  220. Cohen, A. S. A. et al. A novel mutation in EED associated with overgrowth. J. Hum. Genet. 60, 339–342 (2015).

    CAS  PubMed  Google Scholar 

  221. Imagawa, E. et al. Novel SUZ12 mutations in Weaver-like syndrome. Clin. Genet. 94, 461–466 (2018).

    CAS  PubMed  Google Scholar 

  222. Imagawa, E. et al. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum. Mutat. 38, 637–648 (2017).

    CAS  PubMed  Google Scholar 

  223. Cohen, A. S. A. et al. Weaver syndrome-associated EZH2 protein variants show impaired histone methyltransferase function in vitro. Hum. Mutat. 37, 301–307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Lee, C.-H. et al. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol. Cell 70, 422–434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Lui, J. C. et al. Ezh2 mutations found in the Weaver overgrowth syndrome cause a partial loss of H3K27 histone methyltransferase activity. J. Clin. Endocrinol. Metab. 103, 1470–1478 (2018).

    PubMed  Google Scholar 

  226. Choufani, S. et al. DNA methylation signature for EZH2 functionally classifies sequence variants in three PRC2 complex genes. Am. J. Hum. Genet. 106, 596–610 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Laugesen, A., Højfeldt, J. W. & Helin, K. Role of the Polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med. 6, a026575 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    CAS  PubMed  Google Scholar 

  229. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ueda, T. et al. EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26, 2557–2560 (2012).

    CAS  PubMed  Google Scholar 

  231. Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Wojcik, J. B. et al. Epigenomic reordering induced by polycomb loss drives oncogenesis but leads to therapeutic vulnerabilities in malignant peripheral nerve sheath tumors. Cancer Res. 79, 3205–3219 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Gal-Yam, E. N. et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl Acad. Sci. USA 105, 12979–12984 (2008).

    PubMed  PubMed Central  Google Scholar 

  234. Reddington, J. P., Sproul, D. & Meehan, R. R. DNA methylation reprogramming in cancer: does it act by re-configuring the binding landscape of Polycomb repressive complexes? Bioessays 36, 134–140 (2013).

    PubMed  PubMed Central  Google Scholar 

  235. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  236. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Bender, S. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672 (2013).

    CAS  PubMed  Google Scholar 

  238. Chan, K.-M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat. Commun. 10, 1262 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Streubel, G. et al. The H3K36me2 methyltransferase Nsd1 demarcates PRC2-mediated H3K27me2 and H3K27me3 domains in embryonic stem cells. Mol. Cell 70, 371–379 (2018). This study shows that loss of NSD1-mediated H3K36me2 leads to expansion of H3K27me3 domains and is among the first studies to indicate antagonistic interplay between H3K36me2 and H3K27me3.

    CAS  PubMed  Google Scholar 

  241. Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011). This study reveals that H3K27me3 and H3K36me2/me3 rarely co-exist on the same histone tail and that PRC2 activity is inhibited by H3K36 methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Zheng, Y. et al. Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc. Natl Acad. Sci. USA 109, 13549–13554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    CAS  PubMed  Google Scholar 

  246. Jani, K. S. et al. Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. Proc. Natl Acad. Sci. USA 116, 8295–8300 (2019). This study demonstrates that EZH2 can sense the H3K36 methylation state, with unmodified H3K36 promoting PRC2 enzymatic activity towards H3K27.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Finogenova, K. et al. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 9, e61964 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Hosogane, M., Funayama, R., Shirota, M. & Nakayama, K. Lack of transcription triggers H3K27me3 accumulation in the gene body. Cell Rep. 16, 696–706 (2016).

    CAS  PubMed  Google Scholar 

  249. Brumbaugh, J. et al. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat. Cell Biol. 21, 1449–1461 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Abe, S., Nagatomo, H., Sasaki, H. & Ishiuchi, T. A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation. Epigenetics https://doi.org/10.1080/15592294.2020.1841873 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Rajagopalan, K. N. et al. Depletion of H3K36me2 recapitulates epigenomic and phenotypic changes induced by the H3.3K36M oncohistone mutation. Proc. Natl Acad. Sci. USA 118, e2021795118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Behjati, S. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45, 1479–1482 (2013).

    CAS  PubMed  Google Scholar 

  253. Zhang, Y. et al. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation. Sci. Rep. 7, 43906 (2017).

    PubMed  PubMed Central  Google Scholar 

  254. Shi, L., Shi, J., Shi, X., Li, W. & Wen, H. Histone H3.3 G34 mutations alter histone H3K36 and H3K27 methylation in cis. J. Mol. Biol. 430, 1562–1565 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Jain, S. U. et al. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc. Natl Acad. Sci. USA 117, 27354–27364 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Sankaran, S. M. & Gozani, O. Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells. Epigenetics 12, 917–922 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Stafford, J. M. et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci. Adv. 4, eaau5935 (2018). This study shows that the loss of H3K27me3 observed in diffuse intrinsic pontine gliomas that harbour the H3K27M mutation is accompanied by a gain in H3K36me2.

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Harutyunyan, A. S. et al. H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep. 33, 108390 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Deshmukh, S., Ptack, A., Krug, B. & Jabado, N. Oncohistones: a roadmap to stalled development. FEBS J. https://doi.org/10.1111/febs.15963 (2021).

    Article  PubMed  Google Scholar 

  261. Weinberg, D. N. et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat. Genet 53, 794–800 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Kato, Y. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16, 2272–2280 (2007).

    CAS  PubMed  Google Scholar 

  263. Dobrinić, P., Szczurek, A. T. & Klose, R. J. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.10.09.333294v1 (2020).

  264. Strom, A. R. et al. HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. eLife 10, e63972 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Yan, Q., Cho, E., Lockett, S. & Muegge, K. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol. Cell Biol. 23, 8416–8428 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Culver-Cochran, A. E. & Chadwick, B. P. Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics 14, 740 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Bogutz, T. Baubec and J. Majewski for critical reading of the manuscript. This work was supported by CIHR grants PJT-153049 and PJT-166170. The authors apologize to the many colleagues who have made significant contributions to the field but whose work could not be cited or discussed owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Matthew C. Lorincz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks Scott Rothbart, Duncan Sproul, Francesca Taglini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

DNA methyltransferases

(DNMTs). A family of enzymes that deposit a methyl group on cytosine DNA nucleotides, mainly in the context of cytosine–guanine dinucleotides.

Transposable elements

(TEs). Also known as ‘jumping genes’, DNA sequences that can insert in new positions in the genome. The vast majority of TEs in the genome are no longer mobile, as they have accumulated mutations over evolutionary time.

CpG islands

(CGIs). Regions in the genome with high GC content that are enriched for CpG dinucleotides.

Imprinted gametic differentially methylated regions

(gDMRs). Regions marked by parent of origin-specific DNA methylation on one of the two parental alleles in the offspring, resulting in monoallelic gene expression. Imprints are established in the parental germ line and maintained after fertilization.

Inner cell mass

(ICM). Pluripotent cells residing in the blastocyst, which can be isolated and cultured in vitro as embryonic stem cells.

Dnmt triple-knockout mESCs

Mouse embryonic stem cells (mESCs) that lack de novo and maintenance DNA methylation owing to genetic deletions of the DNA methyltransferase genes Dnmt3a, Dnmt3b and Dnmt1.

Epiblast

The pluripotent primary lineage that arises from the inner cell mass of the blastocyst.

Bivalent

The dual presence of histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3, mainly found in the promoter regions of developmentally important transcription factors.

Retrotransposons

A class of transposable elements that are transcribed into mRNA and then reverse transcribed into DNA before integrating in the genome.

Krüppel-associated box domain zinc-finger proteins

(KRAB-ZFPs). The largest family of ZFP-based transcription factors in mouse and human genomes.

2i medium

Medium supplemented with leukaemia inhibitory factor and two small-molecule kinase inhibitors (of MEK and GSK3) to establish mouse embryonic stem cells (mESCs) in a naive-like ground state that is characterized by global DNA hypomethylation.

Epiblast-like cells

An in vitro model of epiblast cells. They are derived by culturing mouse embryonic stem cells (mESCs) in the presence of activin A and basic fibroblast growth factor and are characterized by global DNA hypermethylation.

PGC-like cells

An in vitro model of primordial germ cells (PGCs). They are derived by culturing epiblast-like cells in the presence of bone morphogenetic protein, leukaemia inhibitory factor, stem cell factor and epidermal growth factor. They are characterized by global DNA hypomethylation.

DNMT3C

DNA methyltransferase 3C (DNMT3C) is a recently discovered rodent-specific DNMT3 paralogue that is responsible for de novo DNA methylation of evolutionarily young retrotransposons in male germ cells.

Prospermatogonia

(PSG). Quiescent prenatal male germ cells derived from primordial germ cells.

Hutchinson–Gilford progeria syndrome

(HGPS). A premature ageing syndrome caused by a de novo heterozygous mutation in the lamin A (LMNA) gene.

Heterochromatin protein 1

(HP1). A family of three HP1 paralogues (HP1α, HP1β and HP1γ, encoded by CBX5, CBX1 and CBX3 genes, respectively) that can bind to H3K9me2/me3 and are involved in heterochromatin formation and gene silencing.

Partially methylated domains

(PMDs). Large undermethylated, genomic regions localized in heterochromatic/lamina-associated domains. PMDs are generally gene poor and characterized by late replication timing, H3K9me3 enrichment and low CpG density.

Oncohistone

Cancer-associated mutations in histone genes, including H3.1 and H3.3 genes, that affect residues in the histone tail near or overlapping with residues that harbour post-translational modifications in wild-type histones.

DNA methylation valleys

(DMVs). Large genomic regions with low levels of DNA methylation. Also called DNA methylation canyons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssen, S.M., Lorincz, M.C. Interplay between chromatin marks in development and disease. Nat Rev Genet 23, 137–153 (2022). https://doi.org/10.1038/s41576-021-00416-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00416-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing