Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of histone variants in fine-tuning chromatin organization and function

Abstract

Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core histones, their variants and associated chaperone/remodeller machineries.
Fig. 2: Variant-containing nucleosomes influence nucleosome stability and chromatin properties.
Fig. 3: Variant-containing nucleosomes influence chromatin through various mechanisms.
Fig. 4: Expression of histone variants during embryonic development.
Fig. 5: ATRX-dependent mechanisms in physiology, cancer and human genetic disease.

Similar content being viewed by others

References

  1. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Fyodorov, D. V., Zhou, B.-R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Sauer, P. V. et al. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res. 46, 9907–9917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Talbert, P. B. & Henikoff, S. Histone variants — ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Maehara, K. et al. Tissue-specific expression of histone H3 variants diversified after species separation. Epigenetics Chromatin 8, 35 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Long, M. et al. A novel histone H4 variant H4G regulates rDNA transcription in breast cancer. Nucleic Acids Res. 47, 8399–8409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang, M. Y. H., Sun, X., Ausió, J. & Ishibashi, T. Histone H4 variant, H4G, drives ribosomal RNA transcription and breast cancer cell proliferation by loosening nucleolar chromatin structure. J. Cell. Physiol. https://doi.org/10.1002/jcp.29770 (2020).

    Article  PubMed  Google Scholar 

  8. Cavalli, G. & Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Buschbeck, M. & Hake, S. B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. 18, 299–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Long, H. et al. H2A.Z facilitates licensing and activation of early replication origins. Nature 577, 576–581 (2019).

    Article  PubMed  CAS  Google Scholar 

  12. Clynes, D. & Gibbons, R. J. ATRX and the replication of structured DNA. Curr. Opin. Genet. Dev. 23, 289–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Strobino, M., Wenda, J. M. & Steiner, F. A. Loss of histone H3.3 results in DNA replication defects and altered origin dynamics in C. elegans. Preprint at bioRxiv https://doi.org/10.1101/854455 (2019).

  14. Hammond, C. M., Strømme, C. B., Huang, H., Patel, D. J. & Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141–158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martire, S. et al. Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation. Nat. Genet. 51, 941–946 (2019). This work demonstrates that a single amino acid phosphorylation (H3.3 Ser 31 phosphorylation) can integrate signalling information and impact genome regulation globally and together with Sitbon et al. (2020) links H3.3 Ser 31 phosphorylation to H3 Lys27 acetylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armache, A. et al. Phosphorylation of the ancestral histone variant H3.3 amplifies stimulation-induced transcription. Preprint at bioRxiv https://doi.org/10.1101/808048 (2019).

    Article  Google Scholar 

  17. Hake, S. B. et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl Acad. Sci. USA 102, 6344–6349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, F. T. M. et al. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells. Nucleic Acids Res. 43, 2603–2614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sitbon, D., Boyarchuk, E., Dingli, F., Loew, D. & Almouzni, G. Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nat. Commun. 11, 1256 (2020). This work demonstrates a critical developmental role for H3.3 Ser31, identifies interacting proteins that may depend on this amino acid, and together with Martire et al. (2019) links its phosphorylation to histone acetylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tachiwana, H. et al. Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. D. Biol. Crystallogr. 67, 578–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Ha, M., Kraushaar, D. C. & Zhao, K. Genome-wide analysis of H3.3 dissociation reveals high nucleosome turnover at distal regulatory regions of embryonic stem cells. Epigenetics Chromatin 7, 38 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Deaton, A. M. et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5, e15316 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong, C. et al. UBN1/2 of HIRA complex is responsible for recognition and deposition of H3.3 at cis-regulatory elements of genes in mouse ES cells. BMC Biol. 16, 110 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Sarai, N. et al. WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition. EMBO J. 32, 2392–2406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44, 928–941 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Soni, S., Pchelintsev, N., Adams, P. D. & Bieker, J. J. Transcription factor EKLF (KLF1) recruitment of the histone chaperone HIRA is essential for β-globin gene expression. Proc. Natl Acad. Sci. USA 111, 13337–13342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, H. et al. RPA interacts with HIRA and regulates H3.3 deposition at gene regulatory elements in mammalian cells. Mol. Cell 65, 272–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ricketts, M. D. et al. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat. Commun. 6, 7711 (2015).

    Article  PubMed  Google Scholar 

  31. Banumathy, G. et al. Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells. Mol. Cell. Biol. 29, 758–770 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ray-Gallet, D. et al. Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. Nat. Commun. 9, 3103 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Torné, J. et al. Two distinct HIRA-dependent pathways handle H3.3 de novo deposition and recycling during transcription. Preprint at bioRxiv https://doi.org/10.1101/2019.12.18.880716 (2019). This study demonstrates the flexibility of histone variant chaperone complexes and downstream functional consequences for maintenance of chromatin states.

    Article  Google Scholar 

  34. Lewis, P. W., Elsaesser, S. J., Noh, K.-M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong, L. H. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20, 351–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drané, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Elsässer, S. J., Noh, K.-M., Diaz, N., Allis, C. D. & Banaszynski, L. A. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522, 240–244 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. He, Q. et al. The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation. Cell Stem Cell 17, 273–286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sadic, D. et al. Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep. 16, 836–850 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoelper, D., Huang, H., Jain, A. Y., Patel, D. J. & Lewis, P. W. Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX. Nat. Commun. 8, 1193 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Elsässer, S. J. et al. DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition. Nature 491, 560–565 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Liu, C.-P. et al. Structure of the variant histone H3.3–H4 heterodimer in complex with its chaperone DAXX. Nat. Struct. Mol. Biol. 19, 1287–1292 (2012). This work and Elsässer et al. (2012) provide the structural basis for DAXX recognition of H3.3 over H3.1 or H3.2. See Ricketts et al. (2015) and Hu et al. (2011) for comparative structures of UBN1 bound to H3.3 and CENP-A bound to HJURP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeNizio, J. E., Elsässer, S. J. & Black, B. E. DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res. 42, 4318–4331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Banaszynski, L. A. et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 155, 107–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Witt, O., Albig, W. & Doenecke, D. Testis-specific expression of a novel human H3 histone gene. Exp. Cell Res. 229, 301–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Schenk, R., Jenke, A., Zilbauer, M., Wirth, S. & Postberg, J. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 120, 275–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Wiedemann, S. M. et al. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J. Cell Biol. 190, 777–791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zink, L.-M. et al. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements. Nucleic Acids Res. 45, 5691–5706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kujirai, T. et al. Structure and function of human histone H3.Y nucleosome. Nucleic Acids Res. 45, 3612–3612 (2017).

    Article  PubMed  Google Scholar 

  50. Gambogi, C. W. & Black, B. E. The nucleosomes that mark centromere location on chromosomes old and new. Essays Biochem. 63, 15–27 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370, 555–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8, 458–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat. Rev. Mol. Cell Biol. 12, 320–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hori, T., Shang, W.-H., Takeuchi, K. & Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu, H. et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 25, 901–906 (2011). This work together with Ricketts et al. (2015) and Liu et al. (2012) demonstrates the convergence of modes of H3 variant–chaperone structural interactions in the absence of sequence conservation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bönisch, C. & Hake, S. B. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. 40, 10719–10741 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Belotserkovskaya, R. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Okuwaki, M., Kato, K., Shimahara, H., I. Tate, S. & Nagata, K. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I. Mol. Cell. Biol. 25, 10639–10651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsunaka, Y., Fujiwara, Y., Oyama, T., Hirose, S. & Morikawa, K. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev. 30, 673–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hondele, M. et al. Structural basis of histone H2A–H2B recognition by the essential chaperone FACT. Nature 499, 111–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Giaimo, B. D., Ferrante, F., Herchenröther, A., Hake, S. B. & Borggrefe, T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Eirín-López, J. M., González-Romero, R., Dryhurst, D., Ishibashi, T. & Ausió, J. The evolutionary differentiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2) is mediated by a stepwise mutation process that affects three amino acid residues. BMC Evol. Biol. 9, 31 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dryhurst, D. et al. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol. 7, 86 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Matsuda, R. et al. Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant. Nucleic Acids Res. 38, 4263–4273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bönisch, C. et al. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res. 40, 5951–5964 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Greenberg, R. S., Long, H. K., Swigut, T. & Wysocka, J. Single amino acid change underlies distinct roles of H2A.Z subtypes in human syndrome. Cell 178, 1421–1436 (2019). This work demonstrates how the FHS pathology could be attributed to one of the three amino acids that differ between H2A.Z.1 and H2A.Z.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dunn, C. J. et al. Histone hypervariants H2A.Z.1 and H2A.Z.2 play independent and context-specific roles in neuronal activity-induced transcription of Arc/Arg3.1 and other immediate early genes. eNeuro https://doi.org/10.1523/ENEURO.0040-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Semer, M. et al. DNA repair complex licenses acetylation of H2A.Z.1 by KAT2A during transcription. Nat. Chem. Biol. 15, 992–1000 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Ruhl, D. D. et al. Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45, 5671–5677 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Liang, X. et al. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1. Nat. Struct. Mol. Biol. 23, 317–YL323 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Creyghton, M. P. et al. H2AZ is enriched at Polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135, 649–661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong, M. M., Cox, L. K. & Chrivia, J. C. The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J. Biol. Chem. 282, 26132–26139 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Luk, E. et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143, 725–736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mao, Z. et al. Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z. Cell Res. 4, 389–399 (2014).

    Article  CAS  Google Scholar 

  80. Obri, A. et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature 505, 648–653 (2014). Collectively, this work, Luk et al. (2010) and Papamichos-Chronakis et al. (2011) identify the remodellers and chaperones that both deposit and evict H2A.Z from nucleosomes.

    Article  CAS  PubMed  Google Scholar 

  81. Ku, M. et al. H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biol. 13, R85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu, G. et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell 12, 180–192 (2013). This study provides support for the hypothesis that H2A.Z deposition at nucleosomes facilitates transcription factor and chromatin complex association with chromatin.

    Article  CAS  PubMed  Google Scholar 

  83. Weber, C. M., Ramachandran, S. & Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53, 819–830 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104,, 525–530 (2007).

    Article  Google Scholar 

  85. Hou, H. et al. Histone variant H2A.Z regulates centromere silencing and chromosome segregation in fission yeast. J. Biol. Chem. 285, 1909–1918 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Krogan, N. J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc. Natl Acad. Sci. USA 101, 13513–13518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rangasamy, D., Greaves, I. & Tremethick, D. J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat. Struct. Mol. Biol. 11, 650–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Sun, Z. et al. Transcription-associated histone pruning demarcates macroH2A chromatin domains. Nat. Struct. Mol. Biol. 25, 958–970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun, Z. & Bernstein, E. Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem. 63, 59–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A. G. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 12, 624–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Karras, G. I. et al. The macro domain is an ADP-ribose binding module. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Timinszky, G. et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat. Struct. Mol. Biol. 16, 923–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Douet, J. et al. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J. Cell Sci. 130, 1570–1582 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Buschbeck, M. et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16, 1074–1079 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kozlowski, M. et al. MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Rep. 19, e44445 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yelagandula, R. et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Probst, A. V., Desvoyes, B. & Gutierrez, C. Similar yet critically different: the distribution, dynamics and function of histone variants. J. Exp. Bot. https://doi.org/10.1093/jxb/eraa230 (2020).

    Article  PubMed  Google Scholar 

  99. Bao, Y. et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23, 3314–3324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soboleva, T. A. et al. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat. Struct. Mol. Biol. 19, 25–30 (2011).

    Article  PubMed  CAS  Google Scholar 

  101. Soboleva, T. A. et al. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B. PLoS Genet. 13, e1006633 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jiang, X., Soboleva, T. A. & Tremethick, D. J. Short histone H2A variants: small in stature but not in function. Cells 9, 867 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  103. Syed, S. H. et al. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res. 37, 4684–4695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Piquet, S. et al. The Histone Chaperone FACT Coordinates H2A.X-Dependent Signaling and Repair of DNA Damage. Mol. Cell 72, 888–901 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hauer, M. H. & Gasser, S. M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 31, 2204–2221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maze, I., Noh, K.-M., Soshnev, A. A. & Allis, C. D. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K. & Hansen, J. C. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Arimura, Y. et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci. Rep. 3, 3510 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhou, J., Fan, J. Y., Rangasamy, D. & Tremethick, D. J. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat. Struct. Mol. Biol. 14, 1070–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Park, Y.-J., Dyer, P. N., Tremethick, D. J. & Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 279, 24274–24282 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Fan, J. Y., Gordon, F., Luger, K., Hansen, J. C. & Tremethick, D. J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat. Struct. Biol. 9, 172–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, Y. et al. Histone variants H2A.Z and H3.3 coordinately regulate PRC2-dependent H3K27me3 deposition and gene expression regulation in mES cells. BMC Biol. 16, 107 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ryan, D. P. & Tremethick, D. J. The interplay between H2A.Z and H3K9 methylation in regulating HP1α binding to linker histone-containing chromatin. Nucleic Acids Res. 46, 9353–9366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fan, J. Y., Rangasamy, D., Luger, K. & Tremethick, D. J. H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding. Mol. Cell 16, 655–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Vernì, F. & Cenci, G. The drosophila histone variant H2A.V works in concert with HP1 to promote kinetochore-driven microtubule formation. Cell Cycle 14, 577–588 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bagchi, D. N., Battenhouse, A. M., Park, D. & Iyer, V. R. The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription. Nucleic Acids Res. 48, 157–170 (2019).

    PubMed Central  Google Scholar 

  117. Nekrasov, M. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Biol. 19, 1076–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jin, C. et al. H3.3/H2A.Z double variant–containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Iwafuchi-Doi, M. et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell 62, 79–91 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kraushaar, D. C. et al. The gene repressor complex NuRD interacts with the histone variant H3.3 at promoters of active genes. Genome Res. 28, 1646–1655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Harada, A. et al. Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration. Nat. Commun. 9, 1400 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Dunleavy, E. M., Almouzni, G. & Karpen, G. H. H3. 3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus 2, 146–157 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lacoste, N. et al. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol. Cell 53, 631–644 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476, 232–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Melters, D. P., Rakshit, T., Grigoryev, S. A., Sturgill, D. & Dalal, Y. The ratio between centromeric proteins CENP-A and CENP-C maintains homeostasis of human centromeres. Preprint at bioRxiv https://doi.org/10.1101/604223 (2019).

    Article  Google Scholar 

  127. Cancer Genome Atlas Research Network. et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  128. McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA 101, 1525–1530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gehre, M. et al. Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nat. Genet. 52, 273–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, T., Zhang, Z., Dong, Q., Xiong, J. & Zhu, B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 21, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jacob, Y. et al. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343, 1249–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang, D. & Berger, F. DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science 357, 1146–1149 (2017). This work shows that H3.3-enriched genes protect against heterochromatization during DNA replication in plants by inhibiting (through specific H3.3 Thr31) the methyltransferases ATXR5 and ATXR6.

    Article  CAS  PubMed  Google Scholar 

  133. Guo, R. et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 56, 298–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wen, H. et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508, 263–268 (2014). This work and Guo et al. (2014) identify ZMYND11 as an H3.3-specific reader of H3K36me3 that links histone variant-mediated transcription elongation control to tumour suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jang, C.-W., Shibata, Y., Starmer, J., Yee, D. & Magnuson, T. Histone H3.3 maintains genome integrity during mammalian development. Genes Dev. 29, 1377–1392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wong, L. H. et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res. 19, 404–414 (2008).

    Article  CAS  Google Scholar 

  137. Sawicka, A. & Seiser, C. Sensing core histone phosphorylation — a matter of perfect timing. Biochim. Biophys. Acta 1839, 711–718 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Srivastava, S. & Foltz, D. R. Posttranslational modifications of CENP-A: marks of distinction. Chromosoma 127, 279–290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Udugama, M. et al. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res. 43, 10227–10237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ratnakumar, K. et al. ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression. Genes Dev. 26, 433–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vardabasso, C. et al. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol. Cell 59, 75–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Valdes-Mora, F. et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res. 22, 307–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Draker, R., Sarcinella, E. & Cheung, P. USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res. 39, 3529–3542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sarcinella, E., Zuzarte, P. C., Lau, P. N. I., Draker, R. & Cheung, P. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol. Cell. Biol. 27, 6457–6468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tang, M. C. W. et al. Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice. PLoS Genet. 11, e1004964 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hoghoughi, N., Barral, S., Vargas, A., Rousseaux, S. & Khochbin, S. Histone variants: essential actors in male genome programming. J. Biochem. 163, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Molaro, A., Young, J. M. & Malik, H. S. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res. 28, 460–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Barral, S. et al. Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol. Cell 66, 89–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Govin, J. et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J. Cell Biol. 176, 283–294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Montellier, E. et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 27, 1680–1692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ueda, J. et al. Testis-specific histone variant H3t gene is essential for entry into spermatogenesis. Cell Rep. 18, 593–600 (2017). Collectively, this work, Barral et al. (2017) and Montellier et al. (2013) demonstrate the importance of histone variants as ‘transitional’ proteins required for chromatin condensation during sperm maturation.

    Article  CAS  PubMed  Google Scholar 

  154. Tachiwana, H. et al. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc. Natl Acad. Sci. USA 107, 10454–10459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Erkek, S. et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat. Struct. Mol. Biol. 20, 868–875 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Torres-Padilla, M.-E., Bannister, A. J., Hurd, P. J., Kouzarides, T. & Zernicka-Goetz, M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 50, 455–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Akiyama, T., Suzuki, O., Matsuda, J. & Aoki, F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet. 7, e1002279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kong, Q. et al. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J. Biol. Chem. 293, 3829–3838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tanaka, M., Hennebold, J. D., Macfarlane, J. & Adashi, E. Y. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128, 655–664 (2001).

    CAS  PubMed  Google Scholar 

  161. Boulard, M. et al. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Epigenetics Chromatin 3, 8 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Celeste, A. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Anuar, N. D. et al. Gene editing of the multi-copy H2A.B gene and its importance for fertility. Genome Biol. 20, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sakai, A., Schwartz, B. E., Goldstein, S. & Ahmad, K. Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr. Biol. 19, 1816–1820 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hödl, M. & Basler, K. Transcription in the absence of histone H3.3. Curr. Biol. 19, 1221–1226 (2009).

    Article  PubMed  CAS  Google Scholar 

  166. Couldrey, C., Carlton, M. B. L., Nolan, P. M., Colledge, W. H. & Evans, M. J. A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum. Mol. Genet. 8, 2489–2495 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Tang, M. C. W., Jacobs, S. A., Wong, L. H. & Mann, J. R. Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 51, 142–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Bush, K. M. et al. Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics Chromatin 6, 7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Roberts, C. et al. Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol. Cell. Biol. 22, 2318–2328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Garrick, D. et al. Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet. 2, e58 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Michaelson, J. S., Bader, D., Kuo, F., Kozak, C. & Leder, P. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev. 13, 1918–1923 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Loppin, B. et al. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Santenard, A. et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 853–862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liu, Z. et al. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J. 39, e103697 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wen, D. et al. Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc. Natl Acad. Sci. USA 111, 7325–7330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jullien, J. et al. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 5, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nashun, B. et al. Continuous histone replacement by Hira is essential for normal transcriptional regulation and De Novo DNA methylation during mouse oogenesis. Mol. Cell 60, 611–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nashun, B., Yukawa, M., Liu, H., Akiyama, T. & Aoki, F. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 137, 3785–3794 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Pehrson, J. R., Changolkar, L. N., Costanzi, C. & Leu, N. A. Mice without macroH2A histone variants. Mol. Cell. Biol. 34, 4523–4533 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Creppe, C. et al. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol. Cell. Biol. 32, 1442–1452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chang, C.-C. et al. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev. Biol. 278, 367–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xia, W. & Jiao, J. Histone variant H3.3 orchestrates neural stem cell differentiation in the developing brain. Cell Death Differ. 24, 1548–1563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Maze, I. et al. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87, 77–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Stefanelli, G. et al. Learning and age-related changes in genome-wide H2A.Z binding in the mouse hippocampus. Cell Rep. 22, 1124–1131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zovkic, I. B., Paulukaitis, B. S., Day, J. J., Etikala, D. M. & David Sweatt, J. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature 515, 582–586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Piña, B. & Suau, P. Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev. Biol. 123, 51–58 (1987).

    Article  PubMed  Google Scholar 

  188. Michod, D. et al. Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74, 122–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. McCARREY, J. R., Geyer, C. B. & Yoshioka, H. Epigenetic regulation of testis-specific gene expression. Ann. N. Y. Acad. Sci. 1061, 226–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Wang, T., Gao, H., Li, W. & Liu, C. Essential role of histone replacement and modifications in male fertility. Front. Genet. 10, 962 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Morgan, M. A. & Shilatifard, A. Chromatin signatures of cancer. Genes Dev. 29, 238–249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012). This study identifies recurrent mutations in the histone H3.3 gene at or near sites of post-translational modification in paediatric and young adult patients with glioblastoma, providing evidence that such modifications have important implications for human health.

    Article  CAS  PubMed  Google Scholar 

  193. Behjati, S. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45, 1479–1482 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fang, D. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352, 1344–1348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang, X. & Zhang, Z. Oncohistone mutations in diffuse intrinsic pontine glioma. Trends Cancer Res. 5, 799–808 (2019).

    Article  CAS  Google Scholar 

  198. Nagaraja, S. et al. Histone variant and cell context determine H3K27M reprogramming of the enhancer landscape and oncogenic state. Mol. Cell 76, 965–980 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gomes, A. P. et al. Dynamic incorporation of histone H3 variants into chromatin is essential for acquisition of aggressive traits and metastatic colonization. Cancer Cell 36, 402–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Corujo, D. & Buschbeck, M. Post-translational modifications of H2A histone variants and their role in cancer. Cancers 10, 59 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  201. Kapoor, A. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Longhitano, L. et al. MacroH2A variant suppress uveal melanoma progression and rewires cancer metabolic phenotype. FASEB J. 33, 790.8 (2019).

    Google Scholar 

  203. Dardenne, E. et al. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat. Struct. Mol. Biol. 19, 1139–1146 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Valdés-Mora, F. et al. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat. Commun. 8, 1346 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Domaschenz, R., Kurscheid, S., Nekrasov, M., Han, S. & Tremethick, D. J. The histone variant H2A.Z is a master regulator of the epithelial-mesenchymal transition. Cell Rep. 21, 943–952 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Yang, H. D. et al. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget 7, 11412–11423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rispal, J. et al. The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Nat. Commun. 10, 1827 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Svotelis, A., Gévry, N., Grondin, G. & Gaudreau, L. H2A.Z overexpression promotes cellular proliferation of breast cancer cells. Cell Cycle 9, 364–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Arimura, Y. et al. Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome. Nucleic Acids Res. 46, 10007–10018 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Mattera, L. et al. The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 28, 1506–1517 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Sharma, A. B., Dimitrov, S., Hamiche, A. & Van Dyck, E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res. 47, 1051–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Zhang, W. et al. Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat. Commun. 7, 12619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Turinetto, V. & Giachino, C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 43, 2489–2498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lovejoy, C. A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Law, M. J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0236-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Wang, Y. et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat. Commun. 10, 943 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Huh, M. S. et al. Stalled replication forks within heterochromatin require ATRX for protection. Cell Death Dis. 7, e2220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Clynes, D. et al. ATRX dysfunction induces replication defects in primary mouse cells. PLoS One 9, e92915 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    Article  PubMed  Google Scholar 

  224. Kim, J. et al. The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening. Nat. Struct. Mol. Biol. 26, 213–219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ramamoorthy, M. & Smith, S. Loss of ATRX suppresses resolution of telomere cohesion to control recombination in ALT cancer cells. Cancer Cell 28, 357–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Iwase, S. et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat. Struct. Mol. Biol. 18, 769–776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18, 777–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Qadeer, Z. A. et al. ATRX in-frame fusion neuroblastoma is sensitive to EZH2 inhibition via modulation of neuronal gene signatures. Cancer Cell 36, 512–527 (2019). This study identifies DAXX-independent ATRX truncations with neomorphic function in neuroblastoma, adding to evidence that ATRX and DAXX have functions that are independent of each other and may be independent of their role in H3.3 deposition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Quénet, D. Histone variants and disease. Int. Rev. Cell Mol. Biol. 335, 1–39 (2018).

    Article  PubMed  CAS  Google Scholar 

  230. Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).

    Article  CAS  PubMed  Google Scholar 

  231. Watson, L. A. et al. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J. Clin. Invest. 123, 2049–2063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gibbons, R. J. et al. Mutations in the chromatin-associated protein ATRX. Hum. Mutat. 29, 796–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  234. Horikoshi, N. et al. Structural polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2. Acta Crystallogr. Sect. D. Biol. Crystallogr. 69, 2431–2439 (2013).

    Article  CAS  Google Scholar 

  235. Shin, H. et al. Transcriptional regulation mediated by H2A.Z via ANP32e-dependent inhibition of protein phosphatase 2A. Biochim. Biophys. Acta 1861, 481–496 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  236. Ray-Gallet, D. et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell 9, 1091–1100 (2002).

    Article  CAS  PubMed  Google Scholar 

  237. Gessi, M. et al. H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J. Neurooncol. 112, 67–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Shrestha, R. L. et al. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells. Oncotarget 8, 46781–46800 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  242. Tolstorukov, M. Y. et al. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol. Cell 47, 596–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ueda, T. et al. Critical role of the p400/mDomino chromatin-remodeling ATPase in embryonic hematopoiesis. Genes Cell 12, 581–592 (2007).

    Article  CAS  Google Scholar 

  244. Reilly, P. T. et al. Generation and characterization of the Anp32e-deficient mouse. PLoS One 5, e13597 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Qiu, Z. et al. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol. 14, 18 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, l1 (2013).

    Article  CAS  Google Scholar 

  247. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  248. Li, Z. et al. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation. Cell 151, 1608–1616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Leatham-Jensen, M. et al. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet. 15, e1007932 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Fang, H.-T. et al. Global H3.3 dynamic deposition defines its bimodal role in cell fate transition. Nat. Commun. 9, 1537 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Tanasijevic, B. & Rasmussen, T. P. X chromosome inactivation and differentiation occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS One 6, e21512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Barrero, M. J., Sese, B., Martí, M. & Izpisua Belmonte, J. C. Macro histone variants are critical for the differentiation of human pluripotent cells. J. Biol. Chem. 288, 16110–16116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Pasque, V., Gillich, A., Garrett, N. & Gurdon, J. B. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 30, 2373–2387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Gaspar-Maia, A. et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 4, 1565 (2013).

    Article  PubMed  CAS  Google Scholar 

  255. Wu, T. et al. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell 15, 281–294 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Duncan and the reviewers for critical comments on this manuscript. L.A.B. is a Virginia Murchison Linthicum Scholar in Medical Research (University of Texas Southwester Medical Center Endowed Scholars Program in Medical Science) and a Peterson Investigator of the Neuroendocrine Research Foundation. This work was supported in part by grants form the Cancer Prevention and Research Institute of Texas (RR140042), the Welch Foundation (I-2025), the US Department of Defense (KCRP KC170230) and the NIH (R35 GM124958) to L.A.B., the American-Italian Cancer Foundation (S.M.) and the Green Center for Reproductive Biology Sciences.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Laura A. Banaszynski.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks M. Buschbeck, F. Berger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endogenous retroviral elements

Subset of transposable elements (up to 8% of the total genome) with long terminal repeats, which can act as transcriptional elements.

Imprinted regions

Regions of the genome that harbour genes that are expressed in a parental origin-specific manner.

Micrococcal nuclease

Non-specific DNA and RNA endo–exonuclease that preferentially digests non-nucleosomal DNA.

G-quadruplex

Guanine-rich DNA sequence that can fold into four-stranded, non-canonical secondary structures and is involved in genome functions such as replication and genome stability.

Centromere-associated network (CCAN) proteins

Subcomplex in the kinetochore that binds centromeric chromatin and functions as a foundation for kinetochore formation.

Poly(ADP-ribose)

Reversible post-translational modification resulting in the covalent attachment of polymers of ADP-ribose units on target proteins.

Polycomb repressive complex

Repressor family of protein complexes important for developmental gene regulation and embryo patterning through enzymatic activity on histone proteins.

Facultative heterochromatin

Type of heterochromatin that has the ability to become transcriptionally active again (that is, the inactive X chromosome in mammals), typically marked by Polycomb group protein activity.

Liquid–liquid phase separation

Physical process by which cells create non-membrane-bound compartments (biomolecular condensates) that have been implicated in various cellular processes from signalling to gene regulation.

Heterochromatin protein 1

Family of chromodomain proteins that bind to H3K9me3 and are required for the formation of transcriptionally inactive heterochromatin.

+1 nucleosome

The first (+1) nucleosome positioned after a promoter-associated nucleosome-free region.

Alternative lengthening of telomeres (ALT) pathway

Telomerase-independent mechanism (homologous recombination-mediated DNA replication based) by which a number of human tumours maintain their telomeres.

Mitotic bookmark

Binding by transcription and chromatin regulators at regulatory elements during mitosis to convey gene regulatory information to daughter cells.

Protamines

Small proteins that replace histones during spermatogenesis, allowing denser packaging of DNA in the sperm than would be achieved with histones.

Pronucleus

Cell nucleus characterized by a haploid set of chromosomes resulting from meiosis (female pronucleus) or just before fertilization (male pronucleus).

Zygotic genome activation

Also known as maternal-to-zygotic transition, refers to the process that enables zygotic gene products to replace the maternal supply that initiated development.

Trophoblast

Part of the outer trophectoderm layer. These cells contribute to extraembryonic tissues such as fetal placenta and to processes of early development.

X chromosome inactivation

Transcriptional silencing of a random X chromosome in female mammalian cells that equalizes the dosage of gene products from the X chromosome between XX females and XY males.

Epithelial–mesenchymal transition

Process that occurs during both development and cancer progression in which epithelial cells lose their adhesive properties to become invasive mesenchymal cells.

Homologous recombination-dependent telomere sister chromatid exchange

Telomere extension events with crossover formation between sister chromatids, which are used as a template to repair homology-directed damaged telomeres.

α-Thalassaemia X-linked mental retardation syndrome

Rare X-linked recessive syndrome caused by mutations in the ATRX gene, characterized by intellectual disability and reduced production of haemoglobin.

Floating-Harbor syndrome

(FHS). Rare autosomal dominant disease caused by mutations in the SRCAP gene, characterized by a distinctive facial appearance, various skeletal malformations, delayed bone age and expressive and receptive language delays.

Neural crest

Transient developmental structure unique to vertebrates that gives rise to diverse lineages, including melanocytes, craniofacial cartilage and bone, and most of the peripheral nervous system.

Promyelocytic leukaemia nuclear bodies

Nuclear matrix-associated structures with characteristics of biomolecular condensates that contain promyelocytic leukaemia proteins, which are required for the assembly of a number of nuclear structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martire, S., Banaszynski, L.A. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 21, 522–541 (2020). https://doi.org/10.1038/s41580-020-0262-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0262-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing