Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origin of human mutation in light of genomic data

An Author Correction to this article was published on 10 August 2021

This article has been updated

Abstract

Despite years of active research into the role of DNA repair and replication in mutagenesis, surprisingly little is known about the origin of spontaneous human mutation in the germ line. With the advent of high-throughput sequencing, genome-scale data have revealed statistical properties of mutagenesis in humans. These properties include variation of the mutation rate and spectrum along the genome at different scales in relation to epigenomic features and dependency on parental age. Moreover, mutations originated in mothers are less frequent than mutations originated in fathers and have a distinct genomic distribution. Statistical analyses that interpret these patterns in the context of known biochemistry can provide mechanistic models of mutagenesis in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources of point mutations.
Fig. 2: Replication converts DNA damage into mutations.
Fig. 3: Determinants of mutation rate variation on different scales.
Fig. 4: Statistical footprints of mutational processes.
Fig. 5: Some CpG>TpG mutations are of replicative origin.
Fig. 6: Sex-specific mutational patterns.

Similar content being viewed by others

Data availability

De novo mutations from trio sequencing studies were obtained from refs110,112,135. The authors used rare polymorphisms from gnomAD v2 (https://gnomad.broadinstitute.org/downloads).

Change history

References

  1. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kosmicki, J. A. et al. Refining the role of de novo protein truncating variants in neurodevelopmental disorders using population reference samples. Nat. Genet. 49, 504–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Huang, M. N. et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 27, 1475–1486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, J. F., Konstantinopoulos, P. A. & Matulonis, U. A. PARP inhibitors in ovarian cancer: current status and future promise. Gynecol. Oncol. 133, 362–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Polak, P. et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurat, C. F., Yeeles, J. T. P., Patel, H., Early, A. & Diffley, J. F. X. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65, 117–130 (2017). This study reports a clever experimental system that recreates replication in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65, 131–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Adar, S., Hu, J., Lieb, J. D. & Sancar, A. Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. Proc. Natl Acad. Sci. USA 113, E2124–E2133 (2016). This study creates a single-nucleotide resolution map of NER activity in UV-irradiated cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mao, P. et al. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nat. Commun. 9, 2626 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zou, X. et al. Validating the concept of mutational signatures with isogenic cell models. Nat. Commun. 9, 1744 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Volkova, N. V. et al. Mutational signatures are jointly shaped by DNA damage and repair. Nat. Commun. 11, 2169 (2020). This article is a comprehensive study of the mutational footprints of DNA mutagens and repair deficiencies in Caenorhabditis elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019). This study creates an encyclopaedia of mutational signatures caused by mutagenic agents in human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Segovia, R., Shen, Y., Lujan, S. A., Jones, S. J. M. & Stirling, P. C. Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. Proc. Natl Acad. Sci. USA 114, 2663–2668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Törmä, L., Burny, C., Nolte, V., Senti, K.-A. & Schlötterer, C. Transcription-coupled repair in Drosophila melanogaster is independent of the mismatch repair pathway. Preprint at bioRxiv https://doi.org/10.1093/bib/bbaa295 (2020).

    Article  Google Scholar 

  19. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franco, I. et al. Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biol. 20, 285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018). This study describes mutational processes that operate in non-dividing neurons.

    Article  CAS  PubMed  Google Scholar 

  25. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  CAS  Google Scholar 

  28. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  29. Harland, C. et al. Frequency of mosaicism points towards mutation-prone early cleavage cell divisions in cattle. Preprint at bioRxiv https://doi.org/10.1101/079863 (2017).

    Article  Google Scholar 

  30. Sasani, T. A. et al. Large, three-generation CEPH families reveal post-zygotic mosaicism and variability in germline mutation accumulation. Preprint at bioRxiv https://doi.org/10.1101/552117 (2019).

    Article  Google Scholar 

  31. Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). This paper is a milestone in the statistical analysis of mutational signatures extracted from cancer genomic data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aitken, S. J. et al. Pervasive lesion segregation shapes cancer genome evolution. Nature 583, 265–270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao, Z., Wyman, M. J., Sella, G. & Przeworski, M. Interpreting the dependence of mutation rates on age and time. PLoS Biol. 14, e1002355 (2016). This paper develops a theory to investigate the relationship between damage-induced mutations and the replication rate.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yeeles, J. T. P., Poli, J., Marians, K. J. & Pasero, P. Rescuing stalled or damaged replication forks. Cold Spring Harb. Perspect. Biol. 5, a012815 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kunkel, T. A. & Erie, D. A. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49, 291–313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, C.-C., Feng, W., Lim, P. X., Kass, E. M. & Jasin, M. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annu. Rev. Cancer Biol. 2, 313–336 (2018).

    Article  PubMed  Google Scholar 

  41. Hsu, G. W., Ober, M., Carell, T. & Beese, L. S. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 431, 217–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, J., Miller, B. F. & Furano, A. V. Repair of naturally occurring mismatches can induce mutations in flanking DNA. eLife 3, e02001 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Goodman, M. F. & Woodgate, R. Translesion DNA polymerases. Cold Spring Harb. Perspect. Biol. 5, a010363 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kochenova, O. V., Daee, D. L., Mertz, T. M. & Shcherbakova, P. V. DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA. PLoS Genet. 11, e1005110 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Supek, F., Lehner, B., Hajkova, P. & Warnecke, T. Hydroxymethylated cytosines are associated with elevated C to G transversion rates. PLoS Genet. 10, e1004585 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Satou, K., Kawai, K., Kasai, H., Harashima, H. & Kamiya, H. Mutagenic effects of 8-hydroxy-dGTP in live mammalian cells. Free Radic. Biol. Med. 42, 1552–1560 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Seplyarskiy, V. B. et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res. 26, 174–182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016). This article is the first systematic study of T-asymmetry and R-asymmetry in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morganella, S. et al. The topography of mutational processes in breast cancer genomes. Nat. Commun. 7, 11383 (2016). This study investigates differences in mutation rate distributions between mutational processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lujan, S. A. et al. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 24, 1751–1764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andrianova, M. A., Bazykin, G. A., Nikolaev, S. I. & Seplyarskiy, V. B. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res. 27, 1336–1343 (2017). This paper provides statistical evidence that MMR is more active on the lagging strand in human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haradhvala, N. J. et al. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat. Commun. 9, 1746 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521, 81–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mao, P., Smerdon, M. J., Roberts, S. A. & Wyrick, J. J. Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer. Genome Res. 30, 12–21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pich, O. et al. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. Cell 175, 1074–1087.e18 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Zheng, C. L. et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep. 9, 1228–1234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu, J., Adebali, O., Adar, S. & Sancar, A. Dynamic maps of UV damage formation and repair for the human genome. Proc. Natl Acad. Sci. USA 114, 6758–6763 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanders, M. A. et al. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood 132, 1526–1534 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zou, X. et al. Dissecting mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Preprint at bioRxiv https://doi.org/10.1101/2020.08.04.234245 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vöhringer, H. & Gerstung, M. Learning mutational signatures and their multidimensional genomic properties with TensorSignatures. Preprint at bioRxiv https://doi.org/10.1101/850453 (2019). This article presents a fascinating tool that uses differences in the spatial distribution of mutational processes to extract mutational signatures from cancer genomes.

    Article  Google Scholar 

  61. Mao, P. et al. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity. Genome Res. 27, 1674–1684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Malkova, A. & Ira, G. Break-induced replication: functions and molecular mechanism. Curr. Opin. Genet. Dev. 23, 271–279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA replication timing. Nat. Genet. 41, 393–395 (2009). This study is the first to find the association between replication timing and the mutation rate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rhind, N. & Gilbert, D. M. DNA replication timing. Cold Spring Harb. Perspect. Biol. 5, a010132 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Agarwal, I. & Przeworski, M. Signatures of replication timing, recombination, and sex in the spectrum of rare variants on the human X chromosome and autosomes. Proc. Natl Acad. Sci. USA 116, 17916–17924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seplyarskiy, V. B. et al. Population sequencing data reveal a compendium of mutational processes in human germline. Preprint at bioRxiv https://doi.org/10.1101/2020.01.10.893024 (2020). This study is the first to use variation in mutational spectra across the genome to extract mutational processes in the human germ line.

    Article  Google Scholar 

  68. Terekhanova, N. V., Seplyarskiy, V. B., Soldatov, R. A. & Bazykin, G. A. Evolution of local mutation rate and its determinants. Mol. Biol. Evol. 34, 1100–1109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, T. C. A., Arndt, P. F. & Eyre-Walker, A. Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans. PLoS Genet. 14, e1007254 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 363, eaau1043 (2019). This study provides direct genome-wide data on the relation between crossovers, complex crossovers and the mutation rate.

    Article  CAS  PubMed  Google Scholar 

  71. Arbeithuber, B., Betancourt, A. J., Ebner, T. & Tiemann-Boege, I. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc. Natl Acad. Sci. USA 112, 2109–2114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, S.-W., Friedman, R., Yu, N., Yu, A. & Li, W.-H. How strong is the mutagenicity of recombination in mammals? Mol. Biol. Evol. 22, 426–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Kessler, M. D. et al. De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. Proc. Natl Acad. Sci. USA 117, 2560–2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duret, L. & Arndt, P. F. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet. 4, e1000071 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Spencer, C. C. A. et al. The influence of recombination on human genetic diversity. PLoS Genet 2, e148 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zou, X. et al. Short inverted repeats contribute to localized mutability in human somatic cells. Nucleic Acids Res. 45, 11213–11221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Löytynoja, A. & Goldman, N. Short template switch events explain mutation clusters in the human genome. Genome Res. 27, 1039–1049 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364, eaaw2872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, C. & Luscombe, N. M. Nucleosome positioning stability is a modulator of germline mutation rate variation across the human genome. Nat. Commun. 11, 1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brown, A. J., Mao, P., Smerdon, M. J., Wyrick, J. J. & Roberts, S. A. Nucleosome positions establish an extended mutation signature in melanoma. PLoS Genet 14, e1007823 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532, 264–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Perera, D. et al. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature 532, 259–263 (2016). Together with Sabarinathan et al. (2016), this article shows that the damage-induced mutation rate is increased at transcription factor-binding sites, probably due to the interference between NER and transcription factor binding.

    Article  CAS  PubMed  Google Scholar 

  83. Vierstra, J. et al. Global reference mapping of human transcription factor footprints. Nature 583, 729–736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goriely, A. & Wilkie, A. O. M. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am. J. Hum. Genet. 90, 175–200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodgkinson, A., Ladoukakis, E. & Eyre-Walker, A. Cryptic variation in the human mutation rate. PLoS Biol. 7, e1000027 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Seplyarskiy, V. B., Kharchenko, P., Kondrashov, A. S. & Bazykin, G. A. Heterogeneity of the transition/transversion ratio in Drosophila and Hominidae genomes. Mol. Biol. Evol. 29, 1943–1955 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Johnson, P. L. F. & Hellmann, I. Mutation rate distribution inferred from coincident SNPs and coincident substitutions. Genome Biol. Evol. 3, 842–850 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, T. et al. Extensive variation in the mutation rate between and within human genes associated with Mendelian disease. Hum. Mutat. 37, 488–494 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Aggarwala, V. & Voight, B. F. An expanded sequence context model broadly explains variability in polymorphism levels across the human genome. Nat. Genet. 48, 349–355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Carlson, J. et al. Extremely rare variants reveal patterns of germline mutation rate heterogeneity in humans. Nat. Commun. 9, 3753 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Montgomery, S. B. et al. The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Res. 23, 749–761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).

    Article  CAS  PubMed  Google Scholar 

  93. Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47, 822–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klein, H. L. Stressed DNA replication generates stressed DNA. Proc. Natl Acad. Sci. USA 117, 10108–10110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Seplyarskiy, V. B. et al. Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nat. Genet. 51, 36–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Poulos, R. C., Olivier, J. & Wong, J. W. H. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res. 45, 7786–7795 (2017). This study shows that deficiency of co-replicative repair increases the rate of CpG mutations in cancer genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Böckler, B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 129 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Fang, H. et al. Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer. PLoS Genet. 16, e1008572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Robinson, P. S. et al. Elevated somatic mutation burdens in normal human cells due to defective DNA polymerases. Preprint at bioRxiv https://doi.org/10.1101/2020.06.23.167668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kim, S.-H., Elango, N., Warden, C., Vigoda, E. & Yi, S. V. Heterogeneous genomic molecular clocks in primates. PLoS Genet. 2, e163 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Moorjani, P., Amorim, C. E. G., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA 113, 10607–10612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Petronzelli, F. et al. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J. Biol. Chem. 275, 32422–32429 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Schermerhorn, K. M. & Delaney, S. A chemical and kinetic perspective on base excision repair of DNA. Acc. Chem. Res. 47, 1238–1246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sassa, A., Çağlayan, M., Dyrkheeva, N. S., Beard, W. A. & Wilson, S. H. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J. Biol. Chem. 289, 13996–14008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015). This paper classifies mutational processes in cancers into processes that scale with time and processes that do not scale with time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams, N. et al. Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution. Preprint at bioRxiv https://doi.org/10.1101/2020.11.09.374710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gao, Z. et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl Acad. Sci. USA 116, 9491–9500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jónsson, H. et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Goldmann, J. M. et al. Parent-of-origin-specific signatures of de novo mutations. Nat. Genet. 48, 935–939 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Yu, B. et al. Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem Cell Rep. 9, 397–407 (2017).

    Article  CAS  Google Scholar 

  112. Jónsson, H. et al. Multiple transmissions of de novo mutations in families. Nat. Genet. 50, 1674–1680 (2018).

    Article  PubMed  CAS  Google Scholar 

  113. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Polak, P. & Arndt, P. F. Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res. 18, 1216–1223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xia, B. et al. Widespread transcriptional scanning in the testis modulates gene evolution rates. Cell 180, 248–262.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jinks-Robertson, S. & Bhagwat, A. S. Transcription-associated mutagenesis. Annu. Rev. Genet. 48, 341–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, C.-L. et al. Replication-associated mutational asymmetry in the human genome. Mol. Biol. Evol. 28, 2327–2337 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Shinbrot, E. et al. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res. 24, 1740–1750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yurchenko, A. A. et al. XPC deficiency increases risk of hematologic malignancies through mutator phenotype and characteristic mutational signature. Preprint at bioRxiv https://doi.org/10.1101/2020.07.13.200667 (2020).

    Article  Google Scholar 

  120. Wong, W. S. W. et al. New observations on maternal age effect on germline de novo mutations. Nat. Commun. 7, 10486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goldmann, J. M. et al. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nat. Genet. 50, 487–492 (2018). Together with Jónsson et al. (2017), this paper describes a localized increase of clustered mutations in human oocytes.

    Article  CAS  PubMed  Google Scholar 

  122. Oktay, K., Turan, V., Titus, S., Stobezki, R. & Liu, L. BRCA mutations, DNA repair deficiency, and ovarian aging. Biol. Reprod. 93, 67 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Titus, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5, 172ra21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ma, W., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet. 7, e1002059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goldmann, J. M., Veltman, J. A. & Gilissen, C. De novo mutations reflect development and aging of the human germline. Trends Genet. 35, 828–839 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Goldmann, J. M. et al. Stochasticity explains differences in the number of de novo mutations between families. Preprint at bioRxiv https://doi.org/10.1101/2020.09.18.303727 (2020).

    Article  Google Scholar 

  128. Kaplanis, J. et al. Identifying and characterising germline hypermutators [abstract]. Eur. J. Hum. Genet. 28 (Suppl. 1), 712 https://doi.org/10.1038/s41431-020-00739-z (2020).

  129. Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T. & Hurles, M. E. Similarities and differences in patterns of germline mutation between mice and humans. Nat. Commun. 10, 4053 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rodin, R. E. et al. The landscape of mutational mosaicism in autistic and normal human cerebral cortex. Preprint at bioRxiv https://doi.org/10.1101/2020.02.11.944413 (2020).

  132. Ju, Y. S. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543, 714–718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988).

    Article  CAS  PubMed  Google Scholar 

  134. Smith, T. B. et al. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J. Cell. Sci. 126, 1488–1497 (2013).

    CAS  PubMed  Google Scholar 

  135. An, J.-Y. et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362, eaat6576 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hedglin, M. & Benkovic, S. J. Eukaryotic translesion DNA synthesis on the leading and lagging strands: unique detours around the same obstacle. Chem. Rev. 117, 7857–7877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pagès, V. & Fuchs, R. P. How DNA lesions are turned into mutations within cells? Oncogene 21, 8957–8966 (2002).

    Article  PubMed  CAS  Google Scholar 

  140. Varga, Á., Marcus, A. P., Himoto, M., Iwai, S. & Szüts, D. Analysis of CPD ultraviolet lesion bypass in chicken DT40 cells: polymerase η and PCNA ubiquitylation play identical roles. PLoS ONE 7, e52472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chan, K., Resnick, M. A. & Gordenin, D. A. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair 12, 878–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Simonelli, V., Narciso, L., Dogliotti, E. & Fortini, P. Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. 33, 4404–4411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761–770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wilfert, A. B., Sulovari, A., Turner, T. N., Coe, B. P. & Eichler, E. E. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med. 9, 101 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive selection in human cancers. Nat. Genet. 49, 1785–1788 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Dietlein, F. et al. Identification of cancer driver genes based on nucleotide context. Nat. Genet. 52, 208–218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  153. Kellis, M. et al. Defining functional DNA elements in the human genome. Proc. Natl Acad. Sci. USA 111, 6131–6138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015). This study shows that the cancer cell of origin can be inferred from mutational patterns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517–523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Gilissen, F. Supek and the other, anonymous, reviewers for valuable discussions. This work was supported by US National Institutes of Health grants R35GM127131, R01MH101244 and U01HG009088.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Shamil Sunyaev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks C. Gilissen, F. Supek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Germline mutation

Nucleotide substitutions accumulated in the germ line that, thus, could be transmitted to the offspring.

Somatic mutations

Nucleotide substitutions accumulated during cell divisions of somatic cells in human tissues.

R-asymmetry

The direction of the replication fork creates a natural asymmetry between the two DNA strands, which provides a very informative statistic, similar to T-asymmetry.

Bulky lesions

Characterized by DNA helix distortion, DNA damage that is detectable for global genomic nucleotide excision repair. Usually, bulky lesions are a serious obstacle for replication forks and transcription.

Replication timing

Human DNA replication is a complex process involving hundreds of thousands of origins. Despite firing of individual replication origins being stochastic, genomic loci have a tendency to be replicated early or late in S phase.

T-asymmetry

The direction of transcription creates a natural asymmetry between the two DNA strands. Although it is not always possible to estimate the mutation rate separately on the transcribed and the non-transcribed strands, because fixed mutations affect both strands, it is easy to calculate the imbalance between reverse complementary mutations located on one of the strands. For example, if lesions leading to A>G mutations are depleted on the transcribed strand, then the A>G rate would be higher than the T>C rate on this strand. If the aetiology of the damaging agent and resulting types of mutations are known, one may estimate differences in the mutation rate between the two strands.

R-loops

DNA–RNA hybrids that are usually formed co-transcriptionally on the transcribed strand. R-loops are important in the context of mutagenesis, because they stabilize non-transcribed strands in the single-stranded state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskiy, V.B., Sunyaev, S. The origin of human mutation in light of genomic data. Nat Rev Genet 22, 672–686 (2021). https://doi.org/10.1038/s41576-021-00376-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00376-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing