Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Artificial intelligence in liver cancer — new tools for research and patient management

Abstract

Liver cancer has high incidence and mortality globally. Artificial intelligence (AI) has advanced rapidly, influencing cancer care. AI systems are already approved for clinical use in some tumour types (for example, colorectal cancer screening). Crucially, research demonstrates that AI can analyse histopathology, radiology and natural language in liver cancer, and can replace manual tasks and access hidden information in routinely available clinical data. However, for liver cancer, few of these applications have translated into large-scale clinical trials or clinically approved products. Here, we advocate for the incorporation of AI in all stages of liver cancer management. We present a taxonomy of AI approaches in liver cancer, highlighting areas with academic and commercial potential, and outline a policy for AI-based liver cancer management, including interdisciplinary training of researchers, clinicians and patients. The potential of AI in liver cancer is immense, but effort is required to ensure that AI can fulfil expectations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of primary liver cancer, clinical challenges during disease progression and where AI can integrate into management.
Fig. 2: Overview of different imaging modalities and subsequent steps for diagnosing primary liver cancer.
Fig. 3: Components of AI pipeline in liver cancer.
Fig. 4: Potential health-care benefits from AI integration in liver cancer management.
Fig. 5: Strategies to improve AI utilization in research and clinical workflows.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Rumgay, H. et al. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer 161, 108–118 (2022).

    Article  PubMed  Google Scholar 

  3. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Article  Google Scholar 

  4. Ducreux, M. et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open. 8, 101567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Echle, A. et al. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br. J. Cancer 124, 686–696 (2021).

    Article  PubMed  Google Scholar 

  6. Friemel, J. et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin. Cancer Res. 21, 1951–1961 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Calderaro, J. et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J. Hepatol. 67, 727–738 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Solinas, A. & Calvisi, D. F. Lessons from rare tumors: hepatic lymphoepithelioma-like carcinomas. World J. Gastroenterol. 21, 3472–3479 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Salomao, M., Yu, W. M., Brown, R. S. Jr, Emond, J. C. & Lefkowitch, J. H. Steatohepatitic hepatocellular carcinoma (SH-HCC): a distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH. Am. J. Surg. Pathol. 34, 1630–1636 (2010).

    Article  PubMed  Google Scholar 

  10. Limousin, W. et al. Molecular-based targeted therapies in patients with hepatocellular carcinoma and hepato-cholangiocarcinoma refractory to atezolizumab/bevacizumab. J. Hepatol. 79, 1450–1458 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Prueksapanich, P. et al. Liver fluke-associated biliary tract cancer. Gut Liver 12, 236–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. European Association for the Study of the Liver. EASL-ILCA clinical practice guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 79, 181–208 (2023).

    Article  Google Scholar 

  13. Vithayathil, M., Bridegwater, J. & Khan, S. A. Medical therapies for intra-hepatic cholangiocarcinoma. J. Hepatol. 75, 981–983 (2021).

    Article  PubMed  Google Scholar 

  14. Nault, J.-C. & Villanueva, A. Biomarkers for hepatobiliary cancers. Hepatology 73, 115–127 (2021).

    Article  PubMed  Google Scholar 

  15. Brunt, E. et al. cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 68, 113–126 (2018).

    Article  PubMed  Google Scholar 

  16. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 29, 101133 (2024).

    Article  PubMed  Google Scholar 

  17. Wong, V. W.-S., Ekstedt, M., Wong, G. L.-H. & Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 79, 842–852 (2023).

    Article  PubMed  Google Scholar 

  18. Clements, O., Eliahoo, J., Kim, J. U., Taylor-Robinson, S. D. & Khan, S. A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 72, 95–103 (2020).

    Article  PubMed  Google Scholar 

  19. Jing, W. et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur. J. Cancer Prev. 21, 24–31 (2012).

    Article  PubMed  Google Scholar 

  20. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    Article  PubMed  Google Scholar 

  21. Wagner, S. J. et al. Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study. Cancer Cell 41, 1650–1661.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khader, F. et al. Multimodal deep learning for integrating chest radiographs and clinical parameters: a case for transformers. Radiology 309, e230806 (2023).

    Article  PubMed  Google Scholar 

  23. Reis-Filho, J. S. & Kather, J. N. Overcoming the challenges to implementation of artificial intelligence in pathology. J. Natl Cancer Inst. 115, 608–612 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat. Cancer 3, 1026–1038 (2022).

    Article  PubMed  Google Scholar 

  25. Cheng, N. et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images. Gastroenterology 162, 1948–1961.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Kiani, A. et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit. Med. 3, 23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Calderaro, J. et al. Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma. Nat. Commun. 14, 8290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung, T. & Park, Y. N. Up-to-date pathologic classification and molecular characteristics of intrahepatic cholangiocarcinoma. Front. Med. 9, 857140 (2022).

    Article  Google Scholar 

  29. Albrecht, T. et al. Deep learning-enabled diagnosis of liver adenocarcinoma. Gastroenterology 165, 1262–1275 (2023).

    Article  PubMed  Google Scholar 

  30. Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Saillard, C. et al. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides. Hepatology 72, 2000–2013 (2020).

    Article  PubMed  Google Scholar 

  32. Shi, J.-Y. et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut 70, 951–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Xie, J. et al. Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images. Comput. Biol. Med. 146, 105520 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Sjöblom, N. et al. Automated image analysis of keratin 7 staining can predict disease outcome in primary sclerosing cholangitis. Hepatol. Res. 53, 322–333 (2023).

    Article  PubMed  Google Scholar 

  35. Cifci, D., Foersch, S. & Kather, J. N. Artificial intelligence to identify genetic alterations in conventional histopathology. J. Pathol. 257, 430–444 (2022).

    Article  PubMed  Google Scholar 

  36. Campanella, G. et al. H&E-based computational biomarker enables universal EGFR screening for lung adenocarcinoma. Preprint at https://doi.org/10.48550/arXiv.2206.10573 (2022).

  37. Echle, A. et al. Artificial intelligence for detection of microsatellite instability in colorectal cancer – a multicentric analysis of a pre-screening tool for clinical application. ESMO Open. 7, 100400 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Echle, A. et al. Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: a systematic literature review. ImmunoInformatics 3–4, 100008 (2021).

    Article  CAS  Google Scholar 

  39. Farahmand, S. et al. Deep learning trained on hematoxylin and eosin tumor region of interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer. Mod. Pathol. 35, 44–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, H. et al. Predicting tumor mutational burden from liver cancer pathological images using convolutional neural network. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (eds Yoo, I., Bi, J. & Hu, X) 920–925 (IEEE, 2019).

  43. Zeng, Q. et al. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol. 1, 116–127 (2022).

    Article  Google Scholar 

  44. Macias, R. I. R. et al. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 71, 1669–1683 (2022).

    CAS  PubMed  Google Scholar 

  45. Zeng, Q. et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol. 24, 1411–1422 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Oh, D.-Y. et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid. https://doi.org/10.1056/EVIDoa2200015 (2022).

  47. Nam, D., Chapiro, J., Paradis, V., Seraphin, T. P. & Kather, J. N. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP Rep. 4, 100443 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Narita, K. et al. Iodine maps derived from sparse-view kV-switching dual-energy CT equipped with a deep learning reconstruction for diagnosis of hepatocellular carcinoma. Sci. Rep. 13, 3603 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, H. J., Kim, J. S., Lee, J. K., Lee, H. A. & Pak, S. Ultra-low-dose hepatic multiphase CT using deep learning-based image reconstruction algorithm focused on arterial phase in chronic liver disease: a non-inferiority study. Eur. J. Radiol. 159, 110659 (2023).

    Article  PubMed  Google Scholar 

  50. Liu, F. et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients. Liver Cancer 9, 397–413 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang, Z. et al. Deep learning-based radiomics based on contrast-enhanced ultrasound predicts early recurrence and survival outcome in hepatocellular carcinoma. World J. Gastrointest. Oncol. 14, 2380–2392 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Müller-Franzes, G. et al. Using machine learning to reduce the need for contrast agents in breast MRI through synthetic images. Radiology 307, e222211 (2023).

    Article  PubMed  Google Scholar 

  53. Ponnoprat, D. et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase CT scans. Med. Biol. Eng. Comput. 58, 2497–2515 (2020).

    Article  PubMed  Google Scholar 

  54. Ryu, H. et al. Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning. Eur. Radiol. 31, 8733–8742 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Laino, M. E. et al. The added value of artificial intelligence to LI-RADS categorization: a systematic review. Eur. J. Radiol. 150, 110251 (2022).

    Article  PubMed  Google Scholar 

  56. Gilbert, S., Harvey, H., Melvin, T., Vollebregt, E. & Wicks, P. Large language model AI chatbots require approval as medical devices. Nat. Med. 29, 2396–2398 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Perincheri, S. et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Mod. Pathol. 34, 1588–1595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saillard, C. et al. Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides. Nat. Commun. 14, 6695 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sandbank, J. et al. Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. NPJ Breast Cancer 8, 129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mori, Y., Neumann, H., Misawa, M., Kudo, S.-E. & Bretthauer, M. Artificial intelligence in colonoscopy – now on the market. What’s next? J. Gastroenterol. Hepatol. 36, 7–11 (2021).

    Article  PubMed  Google Scholar 

  61. Lång, K. et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 24, 936–944 (2023).

    Article  PubMed  Google Scholar 

  62. Oh, J. H. & Jun, D. W. The latest global burden of liver cancer: a past and present threat. Clin. Mol. Hepatol. 29, 355–357 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vogel, A. & Saborowski, A. Medical therapy of HCC. J. Hepatol. 76, 208–210 (2022).

    Article  PubMed  Google Scholar 

  64. Bruix, J., Chan, S. L., Galle, P. R., Rimassa, L. & Sangro, B. Systemic treatment of hepatocellular carcinoma: an EASL position paper. J. Hepatol. 75, 960–974 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Rebouissou, S. & Nault, J.-C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol. 72, 215–229 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Thirunavukarasu, A. J. et al. Large language models in medicine. Nat. Med. 29, 1930–1940 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Singhal, K. et al. Large language models encode clinical knowledge. Nature 620, 172–180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang, L. Y. et al. Health system-scale language models are all-purpose prediction engines. Nature 619, 357–362 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Truhn, D., Reis-Filho, J. S. & Kather, J. N. Large language models should be used as scientific reasoning engines, not knowledge databases. Nat. Med. 29, 2983–2984 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Clusmann, J. et al. The future landscape of large language models in medicine. Commun. Med. 3, 141 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cheng, K. et al. Artificial intelligence in sports medicine: could GPT-4 make human doctors obsolete? Ann. Biomed. Eng. 51, 1658–1662 (2023).

    Article  PubMed  Google Scholar 

  72. Yang, X. et al. A large language model for electronic health records. NPJ Digit. Med. 5, 194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Adams, L. C. et al. Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: a multilingual feasibility study. Radiology 307, e230725 (2023).

    Article  PubMed  Google Scholar 

  74. Lipkova, J. et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40, 1095–1110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Unger, M. & Kather, J. N. A systematic analysis of deep learning in genomics and histopathology for precision oncology. BMC Med. Genomics 17, 48 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen, R. J. et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 40, 865–878.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chaudhary, K., Poirion, O. B., Lu, L. & Garmire, L. X. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24, 1248–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Tu, T. et al. Towards generalist biomedical AI. NEJM AI 1, 3 (2023).

    Google Scholar 

  79. Schneider, L. et al. Integration of deep learning-based image analysis and genomic data in cancer pathology: a systematic review. Eur. J. Cancer 160, 80–91 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Hou, J., Jia, X., Xie, Y. & Qin, W. Integrative histology-genomic analysis predicts hepatocellular carcinoma prognosis using deep learning. Genes 13, 1770 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boehm, K. M. et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat. Cancer 3, 723–733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Foersch, S. et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat. Med. 29, 430–439 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://doi.org/10.48550/arXiv.2303.12712 (2023).

  84. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, C. et al. Can GPT-4V(ision) serve medical applications? Case studies on GPT-4V for multimodal medical diagnosis. Preprint at https://doi.org/10.48550/arXiv.2310.09909 (2023).

  86. Li, L. & Wang, H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett. 379, 191–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Rinaldi, L. et al. Risk of hepatocellular carcinoma after HCV clearance by direct-acting antivirals treatment predictive factors and role of epigenetics. Cancers 12, 1351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Degasperi, E. et al. Factors associated with increased risk of de novo or recurrent hepatocellular carcinoma in patients with cirrhosis treated with direct-acting antivirals for HCV infection. Clin. Gastroenterol. Hepatol. 17, 1183–1191.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, Z. et al. On-treatment risks of cirrhosis and hepatocellular carcinoma among a large cohort of predominantly non-Asian patients with non-cirrhotic chronic hepatitis B. JHEP Rep. 5, 100852 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cotter, T. G. & Rinella, M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology 158, 1851–1864 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Huang, D. Q., El-Serag, H. B. & Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18, 223–238 (2021).

    Article  PubMed  Google Scholar 

  92. Lee, S. et al. CT and MRI liver imaging reporting and data system version 2018 for hepatocellular carcinoma: a systematic review with meta-analysis. J. Am. Coll. Radiol. 17, 1199–1206 (2020).

    Article  PubMed  Google Scholar 

  93. Singal, A. G. et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 78, 1922–1965 (2023).

    Article  PubMed  Google Scholar 

  94. Chen, J. et al. Biomarker discovery and application – an opportunity to resolve the challenge of liver cancer diagnosis and treatment. Pharmacol. Res. 189, 106674 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Reig, M. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J. Hepatol. 76, 681–693 (2022).

    Article  PubMed  Google Scholar 

  96. Belghiti, J. & Kianmanesh, R. Surgical treatment of hepatocellular carcinoma. HPB 7, 42–49 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hyun, M. H. et al. Hepatic resection compared to chemoembolization in intermediate- to advanced-stage hepatocellular carcinoma: a meta-analysis of high-quality studies. Hepatology 68, 977–993 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Kokudo, T. et al. Survival benefit of liver resection for hepatocellular carcinoma associated with portal vein invasion. J. Hepatol. 65, 938–943 (2016).

    Article  PubMed  Google Scholar 

  99. van Lienden, K. P. et al. Portal vein embolization before liver resection: a systematic review. Cardiovasc. Interv. Radiol. 36, 25–34 (2013).

    Article  Google Scholar 

  100. Golfieri, R., Bargellini, I., Spreafico, C. & Trevisani, F. Patients with Barcelona clinic liver cancer stages B and C hepatocellular carcinoma: time for a subclassification. Liver Cancer 8, 78–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, J. H. et al. New intermediate-stage subclassification for patients with hepatocellular carcinoma treated with transarterial chemoembolization. Liver Int. 37, 1861–1868 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Johnson, P. J. et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach – the ALBI grade. J. Clin. Oncol. 33, 550–558 (2015).

    Article  PubMed  Google Scholar 

  103. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Abou-Alfa Ghassan, K. et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 1, EVIDoa2100070 (2022).

    CAS  PubMed  Google Scholar 

  105. Costa, F., Wiedenmann, B., Roderburg, C., Mohr, R. & Abou-Alfa, G. K. Systemic treatment in patients with Child-Pugh B liver dysfunction and advanced hepatocellular carcinoma. Cancer Med. 12, 13978–13990 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Montironi, C. et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 72, 129–140 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 7, 6 (2021).

    Article  PubMed  Google Scholar 

  108. Altman, D. G., Simera, I., Hoey, J., Moher, D. & Schulz, K. EQUATOR: reporting guidelines for health research. Open. Med. 2, e49–e50 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Collins, G. S. & Moons, K. G. M. Reporting of artificial intelligence prediction models. Lancet 393, 1577–1579 (2019).

    Article  PubMed  Google Scholar 

  110. Liu, X. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit. Health 2, e537–e548 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rivera, S. C. et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ 370, m3210 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J. P. A. & Shah, N. H. MINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health care. J. Am. Med. Inform. Assoc. 27, 2011–2015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vasey, B. et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat. Med. 28, 924–933 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Schömig-Markiefka, B. et al. Quality control stress test for deep learning-based diagnostic model in digital pathology. Mod. Pathol. 34, 2098–2108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Castelo-Branco, L. et al. ESMO guidance for reporting oncology real-world evidence (GROW). Ann. Oncol. 34, 1097–1112 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Ng, A. Y. et al. Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nat. Med. 29, 3044–3049 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dembrower, K. et al. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit. Health 5, e703–e711 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Houssami, N. & Marinovich, M. L. AI for mammography screening: enter evidence from prospective trials. Lancet Digital health 5, e641–e642 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Qin, S. et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 402, 1133–1146 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Piha-Paul, S. A. et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer 147, 2190–2198 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Slater, S. & Cunningham, D. Pembrolizumab plus chemotherapy as first-line treatment for advanced biliary tract cancer. Lancet 401, 1826–1827 (2023).

    Article  PubMed  Google Scholar 

  123. World Health Organization. Ethics and governance of artificial intelligence for health: WHO guidance. WHO https://www.who.int/publications/i/item/9789240029200 (2021).

  124. Yang, F. et al. Global trajectories of liver cancer burden from 1990 to 2019 and projection to 2035. Chin. Med. J. 136, 1413–1421 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. European Association for the Study of the Liver, American Association for the Study of Liver Diseases, Latin American Association for the Study of the Liver, Asian Pacific Association for the Study of the Liver Ending stigmatizing language in alcohol and liver disease: a liver societies’ statement. J. Hepatol. 79, 1347–1348 (2023).

    Article  Google Scholar 

  126. Truhn, D., Müller-Franzes, G. & Kather, J. N. The ecological footprint of medical AI. Eur. Radiol. 34, 1176–1178 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Varoquaux, G. & Cheplygina, V. Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit. Med. 5, 48 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. World Health Organization. Regulatory Considerations on Artificial Intelligence for Health (WHO, 2023).

  130. Xia, T.-Y. et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model. Radiology 307, e222729 (2023).

    Article  PubMed  Google Scholar 

  131. Jensen, C. T. et al. Reduced-dose deep learning reconstruction for abdominal CT of liver metastases. Radiology 303, 90–98 (2022).

    Article  PubMed  Google Scholar 

  132. Yamashita, R., Long, J., Saleem, A., Rubin, D. L. & Shen, J. Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images. Sci. Rep. 11, 2047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Peng, J. et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur. Radiol. 30, 413–424 (2020).

    Article  PubMed  Google Scholar 

  134. Zhen, S.-H. et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front. Oncol. 10, 680 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hamm, C. A. et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 29, 3338–3347 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kather, J. N. Artificial intelligence in oncology: chances and pitfalls. J. Cancer Res. Clin. Oncol. 149, 7995–7996 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Derraz, B. et al. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis. Oncol. 8, 23 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.N.K. discloses support for the research of this work from the German Federal Ministry of Health (DEEP LIVER, ZMVI1-2520DAT111), the German Federal Ministry of Education and Research (TRANSFORM LIVER, 031L0312A) and the European Union’s Horizon Europe and innovation programme (GENIAL, 101096312). D.T. discloses support for the research of this work from the German Federal Ministry of Education and Research (TRANSFORM LIVER, 031L0312A).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article. L.Ž. and J.N.K. designed the figures.

Corresponding author

Correspondence to Jakob Nikolas Kather.

Ethics declarations

Competing interests

J.N.K. declares consulting services for Owkin (France), DoMore Diagnostics (Norway), Panakeia (UK), Scailyte (Switzerland), Mindpeak (Germany) and MultiplexDx (Slovakia); furthermore, he holds shares in StratifAI GmbH (Germany), has received a research grant from GSK and has received honoraria by AstraZeneca, Bayer, Eisai, Janssen, MSD, BMS, Roche, Pfizer and Fresenius. D.T. holds shares in StratifAI GmbH (Germany). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Lorenza Rimassa, who co-reviewed with Valentina Zanuso; Pekka Ruusuvuori; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Cancer Genome Atlas: https://www.cancer.gov/ccg/research/genome-sequencing/tcga

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderaro, J., Žigutytė, L., Truhn, D. et al. Artificial intelligence in liver cancer — new tools for research and patient management. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00919-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00919-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing