Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell senescence in liver diseases: pathological mechanism and theranostic opportunity

Abstract

The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.

Key points

  • Senescent hepatocytes undergo morphological changes and metabolic alterations, negatively affecting liver function and promoting disease progression.

  • Structural and functional changes in senescent liver sinusoidal endothelial cells contribute to liver disease.

  • In the initial stages of liver disease, hepatic stellate cells undergo senescence, facilitating liver regeneration and fibrosis regression. Conversely, during cirrhosis, the increase in their number induces inflammation, promoting hepatocellular carcinoma (HCC).

  • Senescence has a role in the development and progression of metabolic dysfunction-associated steatotic liver disease and viral hepatitis, contributing to liver injury, inflammation, fibrosis and HCC.

  • Senescence can protect against HCC, inhibiting the growth of damaged cells; it can also lead to HCC progression by promoting inflammation and creating a pro-tumoural microenvironment within the liver.

  • Senotherapeutic strategies, drug repurposing, and lifestyle interventions hold potential as therapies for liver disease by targeting and eliminating senescent cells and counteracting the harmful effects of senescence and ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of senescence in liver diseases.
Fig. 2: Therapeutic strategies targeting cell senescence in ageing and liver diseases.

Similar content being viewed by others

References

  1. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  PubMed  Google Scholar 

  3. Aravinthan, A. D. & Alexander, G. J. M. Senescence in chronic liver disease: is the future in aging? J. Hepatol. 65, 825–834 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Maeso-Díaz, R. & Gracia-Sancho, J. Aging and chronic liver disease. Semin. Liver Dis. 40, 373–384 (2020).

    Article  PubMed  Google Scholar 

  5. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature Hepatology 78, 1966–1986 (2023).

  6. Schmucker, D. L. Age-related changes in liver structure and function: implications for disease. Exp. Gerontol. 40, 650–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Koehler, E. M. et al. Prevalence and risk factors of non-alcoholic fatty liver disease in the elderly: results from the Rotterdam study. J. Hepatol. 57, 1305–1311 (2012).

    Article  PubMed  Google Scholar 

  8. Gracia-Sancho, J., Marrone, G. & Fernández-Iglesias, A. Hepatic microcirculation and mechanisms of portal hypertension. Nat. Rev. Gastroenterol. Hepatol. 16, 221–234 (2019).

    Article  PubMed  Google Scholar 

  9. Gibert-Ramos, A. et al. The hepatic sinusoid in chronic liver disease: the optimal milieu for cancer. Cancers 13, 5719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ginès, P. et al. Liver cirrhosis. Lancet 398, 1359–1376 (2021).

    Article  PubMed  Google Scholar 

  11. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).

    Article  PubMed  Google Scholar 

  12. Pimpin, L. et al. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. 69, 718–735 (2018).

    Article  PubMed  Google Scholar 

  13. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  14. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  Google Scholar 

  16. Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sherr, C. J. Ink4-Arf locus in cancer and aging. WIREs Dev. Biol. 1, 731–741 (2012).

    Article  CAS  Google Scholar 

  20. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  21. Zhang, R. et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8, 19–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy, A. L. et al. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust senescence associated heterochromatin foci. Cell Div. 5, 16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol. 13, 292–302 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 5, 99–118 (2010).

    Article  Google Scholar 

  25. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Udomsinprasert, W., Sobhonslidsuk, A., Jittikoon, J., Honsawek, S. & Chaikledkaew, U. Cellular senescence in liver fibrosis: implications for age-related chronic liver diseases. Expert. Opin. Ther. Targets 25, 799–813 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, A. et al. DNA damage signaling triggers degradation of histone methyltransferases through APC/CCdh1 in senescent cells. Mol. Cell 45, 123–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gulen, M. F. et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robbins, E., Levine, E. M. & Eagle, H. Morphologic changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131, 1211–1222 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, B. Y. et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Evangelou, K. et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16, 192–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Kohli, J. et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat. Protoc. 16, 2471–2498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, P. et al. Hepatocellular senescence: immunosurveillance and future senescence-induced therapy in hepatocellular carcinoma. Front. Oncol. 10, 589908 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seo, E., Kang, H., Choi, H., Choi, W. & Jun, H. S. Reactive oxygen species-induced changes in glucose and lipid metabolism contribute to the accumulation of cholesterol in the liver during aging. Aging Cell 18, e12895 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aravinthan, A. et al. Selective insulin resistance in hepatocyte senescence. Exp. Cell Res. 331, 38–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Brunt, E. M., Walsh, S. N., Hayashi, P. H., Labundy, J. & Di Bisceglie, A. M. Hepatocyte senescence in end-stage chronic liver disease: a study of cyclin-dependent kinase inhibitor p21 in liver biopsies as a marker for progression to hepatocellular carcinoma. Liver Int. 27, 662–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Paradis, V. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum. Pathol. 32, 327–332 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hoare, M., Das, T. & Alexander, G. Ageing, telomeres, senescence, and liver injury. J. Hepatol. 53, 950–961 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, C. et al. The extent of liver injury determines hepatocyte fate toward senescence or cancer. Cell Death Dis. 9, 575 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aravinthan, A. et al. Hepatocyte expression of the senescence marker p21 is linked to fibrosis and an adverse liver-related outcome in alcohol-related liver disease. PLoS ONE 8, e72904 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marshall, A. et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology 128, 33–42 (2005).

    Article  PubMed  Google Scholar 

  46. Tachtatzis, P. M. et al. Chronic hepatitis B virus infection: the relation between hepatitis B antigen expression, telomere length, senescence, inflammation and fibrosis. PloS ONE 10, e01257511 (2015).

    Google Scholar 

  47. Wijayasiri, P. et al. Role of hepatocyte senescence in the activation of hepatic stellate cells and liver fibrosis progression. Cells 11, 2221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, H. et al. Lipid accumulation-induced hepatocyte senescence regulates the activation of hepatic stellate cells through the Nrf2-antioxidant response element pathway. Exp. Cell Res. 405, 112689 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Irvine, K. M. et al. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J. Gastroenterol. 20, 17851 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rudolph, K. L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R. A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253–1258 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Jin, J., Iakova, P., Jiang, Y., Medrano, E. E. & Timchenko, N. A. The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology 54, 989–998 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Imai, Y. et al. Crosstalk between the Rb pathway and AKT signaling forms a quiescence-senescence switch. Cell Rep. 7, 194–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Ishigami, T. et al. Regulatory effects of senescence marker protein 30 on the proliferation of hepatocytes. Pathol. Int. 51, 491–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Diehl, A. M. et al. Adenovirus-mediated transfer of CCAAT/enhancer-binding protein-ɑ identifies a dominant antiproliferative role for this isoform in hepatocytes. J. Biol. Chem. 271, 7343–7350 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, H. et al. C/EBPɑ arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell 8, 817–828 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019).

    Article  PubMed  Google Scholar 

  59. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. De Leeuw, A. M., Brouwer, A. & Knook, D. L. Sinusoidal endothelial cells of the liver: fine structure and function in relation to age. J. Electron. Microsc. Tech. 14, 218–236 (1990).

    Article  PubMed  Google Scholar 

  61. Maeso-Díaz, R. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17, e12829 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ito, Y. et al. Age-related changes in the hepatic microcirculation in mice. Exp. Gerontol. 42, 789–797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vats, R. et al. Intravital imaging reveals inflammation as a dominant pathophysiology of age-related hepatovascular changes. Am. J. Physiol. Cell Physiol. 322, C508–C520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maeso-Díaz, R. et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis. 10, 684–698 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grosse, L. & Bulavin, D. V. LSEC model of aging. Aging 12, 11152–11160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Le Couteur, D. G. et al. Pseudocapillarization and associated energy limitation in the aged rat liver. Hepatology 33, 537–543 (2001).

    Article  PubMed  Google Scholar 

  67. Gracia-Sancho, J., Caparrós, E., Fernández-Iglesias, A. & Francés, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 18, 411–431 (2021).

    Article  PubMed  Google Scholar 

  68. McLean, A. J. et al. Age-related pseudocapillarization of the human liver. J. Pathol. 200, 112–117 (2003).

    Article  PubMed  Google Scholar 

  69. Warren, A. et al. Hepatic pseudocapillarization in aged mice. Exp. Gerontol. 40, 807–812 (2005).

    Article  PubMed  Google Scholar 

  70. Mohamad, M. et al. Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance. Aging Cell 15, 706–715 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duan, J.-L. et al. Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. Nat. Aging 3, 258–274 (2022).

    Article  PubMed  Google Scholar 

  72. Hide, D. et al. Ischemia/reperfusion injury in the aged liver: the importance of the sinusoidal endothelium in developing therapeutic strategies for the elderly. J. Gerontol. A. Biol. Sci. Med. Sci. 75, 268–277 (2020).

    CAS  PubMed  Google Scholar 

  73. Koudelkova, P., Weber, G. & Mikulits, W. Liver sinusoidal endothelial cells escape senescence by loss of p19ARF. PLoS ONE 10, e0142134 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Grosse, L. et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Sun, X. & Harris, E. N. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am. J. Physiol. Cell Physiol. 318, C1200–C1213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duan, J.-L. et al. Notch-regulated c-Kit–positive liver sinusoidal endothelial cells contribute to liver zonation and regeneration. Cell. Mol. Gastroenterol. Hepatol. 13, 1741–1756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bloom, S. I., Islam, M. T., Lesniewski, L. A. & Donato, A. J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20, 38–51 (2023).

    Article  PubMed  Google Scholar 

  78. Chala, N. et al. Mechanical fingerprint of senescence in endothelial cells. Nano Lett. 21, 4911–4920 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Simon-Santamaria, J. et al. Age-related changes in scavenger receptor-mediated endocytosis in rat liver sinusoidal endothelial cells. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 951–960 (2010).

    Article  PubMed  Google Scholar 

  80. Baiocchi, L. et al. Impact of aging on liver cells and liver disease: focus on the biliary and vascular compartments. Hepatol. Commun. 5, 1125–1137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hilmer, S. N. et al. Age-related changes in the hepatic sinusoidal endothelium impede lipoprotein transfer in the rat. Hepatology 42, 1349–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wan, Y. et al. Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J. 36, e22125 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Duan, J.-L. et al. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatology 75, 584–599 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Yin, K. et al. Senescence-induced endothelial phenotypes underpin immune-mediated senescence surveillance. Genes. Dev. 36, 533–549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saile, B. et al. Rat liver myofibroblasts and hepatic stellate cells differ in CD95-mediated apoptosis and response to TNF-α. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G435–G444 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Verma, S. et al. Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver. Hepatology 56, 1510–1520 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Warren, A. et al. The effects of old age on hepatic stellate cells. Curr. Gerontol. Geriatr. Res. 2011, 439835 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Kamm, D. R. & McCommis, K. S. Hepatic stellate cells in physiology and pathology. J. Physiol. 600, 1825–1837 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Schnabl, B., Purbeck, C. A., Choi, Y. H., Hagedorn, C. H. & Brenner, D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37, 653–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 135, 190 (2008).

    Article  CAS  Google Scholar 

  93. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Cogliati, B., Yashaswini, C. N., Wang, S., Sia, D. & Friedman, S. L. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat. Rev. Gastroenterol. Hepatol. 20, 647–661 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Jin, H. et al. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell. Cell. Signal. 33, 79–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Huang, Y.-H. et al. Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p53 pathway to attenuate liver fibrosis. Cell. Signal. 66, 109445 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Bilzer, M., Roggel, F. & Gerbes, A. L. Role of Kupffer cells in host defense and liver disease. Liver Int. 26, 1175–1186 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Dixon, L. J., Barnes, M., Tang, H., Pritchard, M. T. & Nagy, L. E. Kupffer cells in the liver. Compr. Physiol. 3, 785 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hilmer, S. N., Cogger, V. C. & Le Couteur, D. G. Basal activity of Kupffer cells increases with old age. J. Gerontol. A. Biol. Sci. Med. Sci. 62, 973–978 (2007).

    Article  PubMed  Google Scholar 

  102. Yang, X. et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget 7, 1084 (2016).

    Article  PubMed  Google Scholar 

  103. Wan, J., Benkdane, M., Alons, E., Lotersztajn, S. & Pavoine, C. M2 Kupffer cells promote hepatocyte senescence: an IL-6-dependent protective mechanism against alcoholic liver disease. Am. J. Pathol. 184, 1763–1772 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Stahl, E. C., Haschak, M. J., Popovic, B. & Brown, B. N. Macrophages in the aging liver and age-related liver disease. Front. Immunol. 9, 2795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Radonjić, T. et al. Aging of liver in its different diseases. Int. J. Mol. Sci. 23, 13085 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes. Dev. 28, 99 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. de Oliveira da Silva, B., Ramos, L. F. & Moraes, K. C. M. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol. Int. 41, 946–959 (2017).

    Article  PubMed  Google Scholar 

  108. Bird, T. G. et al. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. Med. 10, eaan1230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lagnado, A. et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS‐dependent manner. EMBO J. 40, e106048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loo, T. M. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 7, 522–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Takasugi, M., Yoshida, Y., Hara, E. & Ohtani, N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J. 290, 1348–1361 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. He, Y. et al. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res. Rev. 84, 101833 (2023).

    Article  PubMed  Google Scholar 

  114. Gong, Z., Tas, E., Yakar, S. & Muzumdar, R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol. Cell. Endocrinol. 455, 115–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Sheedfar, F., Biase, S. D., Koonen, D. & Vinciguerra, M. Liver diseases and aging: friends or foes? Aging Cell 12, 950–954 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Noureddin, M. et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology 58, 1644–1654 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Sepe, A., Tchkonia, T., Thomou, T., Zamboni, M. & Kirkland, J. L. Aging and regional differences in fat cell progenitors – a mini-review. Gerontology 57, 66–75 (2011).

    Article  PubMed  Google Scholar 

  118. Lohr, K. et al. Reduced mitochondrial mass and function add to age‐related susceptibility toward diet‐induced fatty liver in C57BL/6J mice. Physiol. Rep. 4, e12988 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huang, Y. L., Shen, Z. Q., Huang, C. H., Lin, C. H. & Tsai, T. F. Cisd2 slows down liver aging and attenuates age-related metabolic dysfunction in male mice. Aging Cell 20, e135523 (2021).

    Article  Google Scholar 

  120. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fontana, L. et al. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology 57, 995–1004 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Ogrodnik, M. & Jurk, D. Senescence explains age- and obesity-related liver steatosis. Cell Stress. 1, 70–72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bonnet, L. et al. Cellular senescence in hepatocytes contributes to metabolic disturbances in NASH. Front. Endocrinol. 13, 957616 (2022).

    Article  Google Scholar 

  124. Aravinthan, A. et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58, 549–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Baboota, R. K. et al. Chronic hyperinsulinemia promotes human hepatocyte senescence. Mol. Metab. 64, 101558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dabravolski, S. A., Bezsonov, E. E. & Orekhov, A. N. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed. Pharmacother. 142, 112041 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Karakousis, N. D., Papatheodoridi, A., Chatzigeorgiou, A. & Papatheodoridis, G. Cellular senescence and hepatitis B-related hepatocellular carcinoma: an intriguing link. Liver Int. 40, 2917–2927 (2020).

    Article  PubMed  Google Scholar 

  128. Wandrer, F. et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment. Pharmacol. Ther. 48, 270–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Schirdewahn, T. et al. The third signal cytokine interleukin 12 rather than immune checkpoint inhibitors contributes to the functional restoration of hepatitis D virus-specific T cells. J. Infect. Dis. 215, 139–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Calado, R. T. et al. A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS ONE 4, e7926 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  132. Aravinthan, A. et al. The senescent hepatocyte gene signature in chronic liver disease. Exp. Gerontol. 60, 37–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Aravinthan, A. D. & Alexander, G. J. M. Hepatocyte senescence explains conjugated bilirubinaemia in chronic liver failure. J. Hepatol. 63, 532–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Odagiri, N. et al. Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells. Mol. Cell. Biochem. 455, 7–19 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Liu, B. et al. Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma. J. Immunother. Cancer 10, e003069 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  137. Cai, X., Guillot, A. & Liu, H. Cellular senescence in hepatocellular carcinoma: the passenger or the driver? Cells 12, 132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Huang, Y. et al. The hepatic senescence-associated secretory phenotype promotes hepatocarcinogenesis through Bcl3-dependent activation of macrophages. Cell Biosci. 11, 173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rey, S. et al. Liver damage and senescence increases in patients developing hepatocellular carcinoma. J. Gastroenterol. Hepatol. 32, 1480–1486 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Wuestefeld, A. et al. A pro-regenerative environment triggers premalignant to malignant transformation of senescent hepatocytes. Cancer Res. 83, 428–440 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, F. et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat. Cell Biol. 22, 728–739 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Watanabe, Y. et al. Navitoclax improves acute-on-chronic liver failure by eliminating senescent cells in mice. Hepatol. Res. 53, 460–472 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Yang, Z. et al. TUBB4B is a novel therapeutic target in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J. Pathol. 260, 71–83 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  148. Fuhrmann-Stroissnigg, H., Niedernhofer, L. J. & Robbins, P. D. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle Georget. Tex. 17, 1048–1055 (2018).

    Article  CAS  Google Scholar 

  149. Ma, B. et al. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal. Transduct. Target. Ther. 8, 229 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Kulkarni, A. S., Gubbi, S. & Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15–30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hunt, N. J. et al. The effects of metformin on age-related changes in the liver sinusoidal endothelial cell. J. Gerontol. A. Biol. Sci. Med. Sci. 75, 278–285 (2020).

    CAS  PubMed  Google Scholar 

  155. Ota, H. et al. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the akt pathway. Arterioscler. Thromb. Vasc. Biol. 30, 2205–2211 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Trebicka, J. et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology 46, 242–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Marrone, G. et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial–stellate cell deactivation induced by statins. J. Hepatol. 58, 98–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Marongiu, F., Serra, M. P., Sini, M., Angius, F. & Laconi, E. Clearance of senescent hepatocytes in a neoplastic-prone microenvironment delays the emergence of hepatocellular carcinoma. Aging 6, 26–34 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao, Y. et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 36, 101635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, X. et al. Exercise counters the age-related accumulation of senescent cells. Exerc. Sport. Sci. Rev. 50, 213–221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J. & Robbins, P. D. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. 290, 1362–1383 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Luo, X. et al. Sirtuin 1 ameliorates defenestration in hepatic sinusoidal endothelial cells during liver fibrosis via inhibiting stress-induced premature senescence. Cell Prolif. 54, e12991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Smoliga, J. M., Baur, J. A. & Hausenblas, H. A. Resveratrol and health – a comprehensive review of human clinical trials. Mol. Nutr. Food Res. 55, 1129–1141 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Wong, Y. T. et al. Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: protection by chronic oral intake of resveratrol. Free. Radic. Biol. Med. 46, 799–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Yang, S. J. & Lim, Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 63, 693–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Qi, X. et al. Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non-alcoholic fatty liver disease. Cell Prolif. 54, e13107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shi, T. et al. Activated carbon N-acetylcysteine microcapsule protects against nonalcoholic fatty liver disease in young rats via activating telomerase and inhibiting apoptosis. PLoS ONE 13, e0189856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Liu, Z. Y. et al. Protection against ischemia-reperfusion injury in aged liver donor by the induction of exogenous human telomerase reverse transcriptase gene. Transplant. Proc. 46, 1567–1572 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Senturk, S. et al. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52, 966–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. El-Shorbagy, A. A., Shafaa, M. W., Salah Elbeltagy, R., El-Hennamy, R. E. & Nady, S. Liposomal IL-22 ameliorates liver fibrosis through miR-let7a/STAT3 signaling in mice. Int. Immunopharmacol. 124, 111015 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Hwang, S. et al. Novel treatment of acute and acute-on-chronic liver failure: Interleukin-22. Liver Int. https://doi.org/10.1111/liv.15619 (2023).

  176. Xiang, X. et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. J. Hepatol. 72, 736–745 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Greten, T. F. & Eggert, T. Cellular senescence associated immune responses in liver cancer. Hepatic Oncol. 4, 123–127 (2017).

    Article  Google Scholar 

  178. Hunt, N. J. et al. Quantum dot nanomedicine formulations dramatically improve pharmacological properties and alter uptake pathways of metformin and nicotinamide mononucleotide in aging mice. ACS Nano 15, 4710–4727 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Pinto, C. et al. Aging and the biological response to liver injury. Semin. Liver Dis. 40, 225–232 (2020).

    Article  PubMed  Google Scholar 

  180. Kim, I. H., Kisseleva, T. & Brenner, D. A. Aging and liver disease. Curr. Opin. Gastroenterol. 31, 184–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lazo, M. & Clark, J. M. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin. Liver Dis. 28, 339–350 (2008).

    Article  PubMed  Google Scholar 

  182. Forrest, E. H. et al. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut 54, 1174–1179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Poynard, T. et al. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C. J. Hepatol. 34, 730–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Wong, G. L. Prediction of fibrosis progression in chronic viral hepatitis. Clin. Mol. Hepatol. 20, 228–236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lockart, I. et al. HCC incidence after hepatitis C cure among patients with advanced fibrosis or cirrhosis: a meta-analysis. Hepatology 76, 139–154 (2022).

    Article  PubMed  Google Scholar 

  186. Cotreau, M. M., Von Moltke, L. L. & Greenblatt, D. J. The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin. Pharmacokinet. 44, 33–60 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.G.-S. is supported by the Instituto de Salud Carlos III (FIS PI23/00945 and DTS22/00010, co-funded by the European Union), the CIBEREHD, the Swiss National Science Foundation (320030_189252), the Novartis Foundation for Medical-Biological Research, the Foundation Suisse Contre le Cancer du Foie and the AGAUR-Generalitat de Catalunya (2021 SGR 01322 and 2021 PROD 00036). CIBEREHD is funded by the Instituto de Salud Carlos III. D.S.-R. acknowledges the support of the Spanish Ministry of Universities through the FPU fellowship FPU19/03098. A.G.-R. acknowledges the support of the Instituto de Salud Carlos III through the Sara Borrell fellowship CD22/00097.

Author information

Authors and Affiliations

Authors

Contributions

D.S.-R. and A.G.-R. researched data for the article. J.G.-S. conceptualized and coordinated the work. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jordi Gracia-Sancho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Vassilis Gorgoulis, Naoko Ohtani and Chunfeng Lu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanfeliu-Redondo, D., Gibert-Ramos, A. & Gracia-Sancho, J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00913-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00913-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing