Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Future direction of total neoadjuvant therapy for locally advanced rectal cancer

Abstract

Despite therapeutic advancements, disease-free survival and overall survival of patients with locally advanced rectal cancer have not improved in most trials as a result of distant metastases. For treatment decision-making, both long-term oncologic outcomes and impact on quality-of-life indices should be considered (for example, bowel function). Total neoadjuvant therapy (TNT), comprised of chemotherapy and radiotherapy or chemoradiotherapy, is now a standard treatment approach in patients with features of high-risk disease to prevent local recurrence and distant metastases. In selected patients who have a clinical complete response, subsequent surgery might be avoided through non-operative management, but patients who do not respond to TNT have a poor prognosis. Refined molecular characterization might help to predict which patients would benefit from TNT and non-operative management. Specifically, integrated analysis of spatiotemporal multi-omics using artificial intelligence and machine learning is promising. Three prospective trials of TNT and non-operative management in Japan, the USA and Germany are collaborating to better understand drivers of response to TNT. Here, we address the future direction for TNT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mapping of collaborating clinical trials of total neoadjuvant therapy for locally advanced rectal cancer.
Fig. 2: Development of artificial intelligence models to predict TNT treatment response utilizing spatiotemporal multi-omics analysis.
Fig. 3: Future treatment strategy for locally advanced rectal cancer with artificial intelligence guidance.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Abualkhair, W. H. et al. Geographic and intra-racial disparities in early-onset colorectal cancer in the SEER 18 registries of the United States. Cancer Med. 9, 9150–9159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spaander, M. C. W. et al. Young-onset colorectal cancer. Nat. Rev. Dis. Primers 9, 21 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meester, R. G. S., Mannalithara, A., Lansdorp-Vogelaar, I. & Ladabaum, U. Trends in incidence and stage at diagnosis of colorectal cancer in adults aged 40 through 49 years, 1975-2015. JAMA 321, 1933–1934 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dozois, E. J. et al. Young-onset colorectal cancer in patients with no known genetic predisposition: can we increase early recognition and improve outcome. Medicine 87, 259–263 (2008).

    Article  PubMed  Google Scholar 

  6. Adam, I. J. et al. Role of circumferential margin involvement in the local recurrence of rectal cancer. Lancet 344, 707–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Heald, R. J., Husband, E. M. & Ryall, R. D. The mesorectum in rectal cancer surgery — the clue to pelvic recurrence? Br. J. Surg. 69, 613–616 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Heald, R. J. & Ryall, R. D. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1, 1479–1482 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Enker, W. E. Potency, cure, and local control in the operative treatment of rectal cancer. Arch. Surg. 127, 1396–1401 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Heald, R. J. & Karanjia, N. D. Results of radical surgery for rectal cancer. World J. Surg. 16, 848–857 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. van der Pas, M. H. et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 14, 210–218 (2013).

    Article  PubMed  Google Scholar 

  12. Jones, K., Qassem, M. G., Sains, P., Baig, M. K. & Sajid, M. S. Robotic total meso-rectal excision for rectal cancer: a systematic review following the publication of the ROLARR trial. World J. Gastrointest. Oncol. 10, 449–464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glynne-Jones, R. et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28, iv22–iv40 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. NCCN Clinical Practice Guidelines in Oncology. Rectal Cancer Version 5, 2023. NCCN https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (2023).

  15. Lambregts, D. M. J. et al. Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them: results of a global online survey and multidisciplinary expert consensus. Eur. Radiol. 32, 4991–5003 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keller, D. S., Berho, M., Perez, R. O., Wexner, S. D. & Chand, M. The multidisciplinary management of rectal cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 414–429 (2020).

    Article  PubMed  Google Scholar 

  17. Fujita, S. et al. Mesorectal excision with or without lateral lymph node dissection for clinical stage II/III lower rectal cancer (JCOG0212): a multicenter, randomized controlled, noninferiority trial. Ann. Surg. 266, 201–207 (2017).

    Article  PubMed  Google Scholar 

  18. Tsukamoto, S. et al. Long-term follow-up of the randomized trial of mesorectal excision with or without lateral lymph node dissection in rectal cancer (JCOG0212). Br. J. Surg. 107, 586–594 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Aschele, C. et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J. Clin. Oncol. 29, 2773–2780 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Gérard, J. P. et al. Clinical outcome of the ACCORD 12/0405 PRODIGE 2 randomized trial in rectal cancer. J. Clin. Oncol. 30, 4558–4565 (2012).

    Article  PubMed  Google Scholar 

  21. Rödel, C. et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 16, 979–989 (2015).

    Article  PubMed  Google Scholar 

  22. Allegra, C. J. et al. Neoadjuvant 5-FU or capecitabine plus radiation with or without oxaliplatin in rectal cancer patients: a phase III randomized clinical trial. J. Natl Cancer Inst. 107, djv248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bosset, J. F. et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol. 15, 184–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Sainato, A. et al. No benefit of adjuvant fluorouracil leucovorin chemotherapy after neoadjuvant chemoradiotherapy in locally advanced cancer of the rectum (LARC): long term results of a randomized trial (I-CNR-RT). Radiother. Oncol. 113, 223–229 (2014).

    Article  PubMed  Google Scholar 

  25. Sharma, R. A comparative examination of colorectal cancer burden in European Union, 1990-2019: estimates from Global Burden of Disease 2019 Study. Int. J. Clin. Oncol. 27, 1309–1320 (2022).

    Article  PubMed  Google Scholar 

  26. Sebag-Montefiore, D. et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 373, 811–820 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peeters, K. C. et al. The TME trial after a median follow-up of 6 years: increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 246, 693–701 (2007).

    Article  PubMed  Google Scholar 

  28. van Gijn, W. et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 12, 575–582 (2011).

    Article  PubMed  Google Scholar 

  29. Rödel, C. et al. Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol. 13, 679–687 (2012).

    Article  PubMed  Google Scholar 

  30. Carvalho, C. & Glynne-Jones, R. Challenges behind proving efficacy of adjuvant chemotherapy after preoperative chemoradiation for rectal cancer. Lancet Oncol. 18, e354–e363 (2017).

    Article  PubMed  Google Scholar 

  31. Bahadoer, R. R. et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol. 22, 29–42 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Conroy, T. et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 22, 702–715 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Jin, J. et al. Multicenter, randomized, phase III trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR). J. Clin. Oncol. 40, 1681–1692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dijkstra, E. A. et al. Locoregional failure during and after short-course radiotherapy followed by chemotherapy and surgery compared to long-course chemoradiotherapy and surgery — a five-year follow-up of the RAPIDO trial. Ann. Surg. 278, e766–e772 (2023).

    Article  PubMed  Google Scholar 

  35. Etienne, P.-L. et al. Total neoadjuvant therapy with mFOLFIRINOX versus preoperative chemoradiation in patients with locally advanced rectal cancer: 7-year results of PRODIGE 23 phase III trial, a UNICANCER GI trial. J. Clin. Oncol. 41, LBA3504 (2023).

    Article  Google Scholar 

  36. Shi, D. D. & Mamon, H. J. Playing with dynamite? A cautious assessment of TNT. J. Clin. Oncol. 39, 103–106 (2021).

    Article  PubMed  Google Scholar 

  37. Glynne-Jones, R. & Harrison, M. Should the RAPIDO schedule represent standard of care in locally advanced rectal cancer? Ann. Oncol. 33, 745–746 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Glynne-Jones, R. & Hollingshead, J. TNT and local recurrence in the RAPIDO trial — untangling the puzzle. Nat. Rev. Clin. Oncol. 20, 357–358 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Emons, G. et al. Gene-expression profiles of pretreatment biopsies predict complete response of rectal cancer patients to preoperative chemoradiotherapy. Br. J. Cancer 127, 766–775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schrag, D. et al. Preoperative treatment of locally advanced rectal cancer. N. Engl. J. Med. 389, 322–334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fokas, E. et al. Randomized phase II trial of chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: CAO/ARO/AIO-12. J. Clin. Oncol. 37, 3212–3222 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Fokas, E. et al. Chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for patients with locally advanced rectal cancer: long-term results of the CAO/ARO/AIO-12 randomized clinical trial. JAMA Oncol. 8, e215445 (2022).

    Article  PubMed  Google Scholar 

  43. Garcia-Aguilar, J. et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J. Clin. Oncol. 40, 2546–2556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verheij, F. S. et al. Long-term results of organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy: the randomized phase II OPRA trial. J. Clin. Oncol. 42, 500–506 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Sauer, R. et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J. Clin. Oncol. 30, 1926–1933 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Folkesson, J. et al. Swedish Rectal Cancer Trial: long lasting benefits from radiotherapy on survival and local recurrence rate. J. Clin. Oncol. 23, 5644–5650 (2005).

    Article  PubMed  Google Scholar 

  47. Roh, M. S. et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J. Clin. Oncol. 27, 5124–5130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ngan, S. Y. et al. Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group Trial 01.04. J. Clin. Oncol. 30, 3827–3833 (2012).

    Article  PubMed  Google Scholar 

  49. Bujko, K. et al. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br. J. Surg. 93, 1215–1223 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. McLachlan, S. A. et al. The impact on health-related quality of life in the first 12 months: a randomised comparison of preoperative short-course radiation versus long-course chemoradiation for T3 rectal cancer (Trans-Tasman Radiation Oncology Group Trial 01.04). Eur. J. Cancer 55, 15–26 (2016).

    Article  PubMed  Google Scholar 

  51. Pietrzak, L. et al. Quality of life, anorectal and sexual functions after preoperative radiotherapy for rectal cancer: report of a randomised trial. Radiother. Oncol. 84, 217–225 (2007).

    Article  PubMed  Google Scholar 

  52. Ciseł, B. et al. Long-course preoperative chemoradiation versus 5×5 Gy and consolidation chemotherapy for clinical T4 and fixed clinical T3 rectal cancer: long-term results of the randomized Polish II study. Ann. Oncol. 30, 1298–1303 (2019).

    Article  PubMed  Google Scholar 

  53. Liao, C. K. et al. Neoadjuvant short-course radiotherapy followed by consolidation chemotherapy before surgery for treating locally advanced rectal cancer: a systematic review and meta-analysis. Curr. Oncol. 29, 3708–3727 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Romesser, P. B. et al. Organ preservation and total neoadjuvant therapy for rectal cancer: investigating long-course chemoradiation versus short-course radiation therapy. J. Clin. Oncol. 41, (Suppl. 4), 10 (2023).

    Article  Google Scholar 

  55. Watanabe, J. et al. Phase III trial of short-course radiotherapy followed by CAPOXIRI versus CAPOX in locally advanced rectal cancer: the ENSEMBLE trial. ESMO Gastrointest. Oncol. 1, 9–14 (2023).

    Article  Google Scholar 

  56. Erlandsson, J. et al. Tumour regression after radiotherapy for rectal cancer — results from the randomised Stockholm III trial. Radiother. Oncol. 135, 178–186 (2019).

    Article  PubMed  Google Scholar 

  57. Benson, A. B. et al. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 16, 874–901 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wo, J. Y. et al. Radiation therapy for rectal cancer: executive summary of an ASTRO clinical practice guideline. Pract. Radiat. Oncol. 11, 13–25 (2021).

    Article  PubMed  Google Scholar 

  59. Garcia-Aguilar, J. et al. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial. Lancet Oncol. 16, 957–966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sauer, R. et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 351, 1731–1740 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Bosset, J. F. et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N. Engl. J. Med. 355, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Gérard, J. P. et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J. Clin. Oncol. 24, 4620–4625 (2006).

    Article  PubMed  Google Scholar 

  63. Gérard, J. P. et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J. Clin. Oncol. 28, 1638–1644 (2010).

    Article  PubMed  Google Scholar 

  64. Valentini, V. et al. The INTERACT trial: long-term results of a randomised trial on preoperative capecitabine-based radiochemotherapy intensified by concomitant boost or oxaliplatin, for cT2 (distal)-cT3 rectal cancer. Radiother. Oncol. 134, 110–118 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Gambacorta, M. A. et al. Timing to achieve the highest rate of pCR after preoperative radiochemotherapy in rectal cancer: a pooled analysis of 3085 patients from 7 randomized trials. Radiother. Oncol. 154, 154–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Deidda, S. et al. Association of delayed surgery with oncologic long-term outcomes in patients with locally advanced rectal cancer not responding to preoperative chemoradiation. JAMA Surg. 156, 1141–1149 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Luo, D., Yang, Y., Zhang, R., Li, Q. & Li, X. Effect of interval between neoadjuvant chemoradiotherapy and surgery on oncological outcomes in poor responders with locally advanced rectal cancer: a retrospective cohort study. Int. J. Surg. 109, 1993–2000 (2023).

    PubMed  PubMed Central  Google Scholar 

  68. Habr-Gama, A. et al. Organ preservation in cT2N0 rectal cancer after neoadjuvant chemoradiation therapy: the impact of radiation therapy dose-escalation and consolidation chemotherapy. Ann. Surg. 269, 102–107 (2019).

    Article  PubMed  Google Scholar 

  69. Smith, J. J. et al. Organ preservation in rectal adenocarcinoma: a phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management. BMC Cancer 15, 767 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lynn, P. B., Strombom, P. & Garcia-Aguilar, J. Organ-preserving strategies for the management of near-complete responses in rectal cancer after neoadjuvant chemoradiation. Clin. Colon Rectal Surg. 30, 395–403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Maas, M. et al. Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: selection for organ-saving treatment. Ann. Surg. Oncol. 22, 3873–3880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fokas, E. et al. International consensus recommendations on key outcome measures for organ preservation after (chemo)radiotherapy in patients with rectal cancer. Nat. Rev. Clin. Oncol. 18, 805–816 (2021).

    Article  PubMed  Google Scholar 

  73. Garcia-Aguilar, J. et al. Preliminary results of the organ preservation of rectal adenocarcinoma (OPRA) trial. J. Clin. Oncol. 38, 4008–4008 (2020).

    Article  Google Scholar 

  74. Maas, M. et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 11, 835–844 (2010).

    Article  PubMed  Google Scholar 

  75. Ortholan, C., Romestaing, P., Chapet, O. & Gerard, J. P. Correlation in rectal cancer between clinical tumor response after neoadjuvant radiotherapy and sphincter or organ preservation: 10-year results of the Lyon R 96-02 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 83, e165–e171 (2012).

    Article  PubMed  Google Scholar 

  76. Valentini, V. et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J. Clin. Oncol. 29, 3163–3172 (2011).

    Article  PubMed  Google Scholar 

  77. Zorcolo, L. et al. Complete pathologic response after combined modality treatment for rectal cancer and long-term survival: a meta-analysis. Ann. Surg. Oncol. 19, 2822–2832 (2012).

    Article  PubMed  Google Scholar 

  78. Capirci, C. et al. Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int. J. Radiat. Oncol. Biol. Phys. 72, 99–107 (2008).

    Article  PubMed  Google Scholar 

  79. Rödel, C. et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J. Clin. Oncol. 23, 8688–8696 (2005).

    Article  PubMed  Google Scholar 

  80. Smith, J. J. et al. Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after neoadjuvant therapy. JAMA Oncol. 5, e185896 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fernandez, L. M. et al. The risk of distant metastases in patients with clinical complete response managed by watch and wait after neoadjuvant therapy for rectal cancer: the influence of local regrowth in the international watch and wait database. Dis. Colon. Rectum 66, 41–49 (2023).

    Article  PubMed  Google Scholar 

  82. Custers, P. A. et al. Long-term quality of life and functional outcome of patients with rectal cancer following a watch-and-wait approach. JAMA Surg. 158, e230146 (2023).

    Article  PubMed  Google Scholar 

  83. Quezada-Diaz, F. F. et al. Patient-reported bowel function in patients with rectal cancer managed by a watch-and-wait strategy after neoadjuvant therapy: a case-control study. Dis. Colon Rectum 20, 897–902 (2020).

    Article  Google Scholar 

  84. Battersby, N. J. et al. Predicting the risk of bowel-related quality-of-life impairment after restorative resection for rectal cancer: a multicenter cross-sectional study. Dis. Colon. Rectum 59, 270–280 (2016).

    Article  PubMed  Google Scholar 

  85. Papke, D. J. Jr. et al. Prevalence of mismatch-repair deficiency in rectal adenocarcinomas. N. Engl. J. Med. 387, 1714–1716 (2022).

    Article  PubMed  Google Scholar 

  86. Alatise, O. I. et al. Molecular and phenotypic profiling of colorectal cancer patients in West Africa reveals biological insights. Nat. Commun. 12, 6821 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cercek, A. et al. Mismatch repair-deficient rectal cancer and resistance to neoadjuvant chemotherapy. Clin. Cancer Res. 26, 3271–3279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kagawa, H. et al. Consensus molecular subtyping improves the clinical usefulness of canonical tumor markers for colorectal cancer. Biomed. Res. 43, 201–209 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Loftus, T. J. et al. Artificial intelligence and surgical decision-making. JAMA Surg. 155, 148–158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Foersch, S. et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat. Med. 29, 430–439 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Itahashi, K. et al. Evaluating clinical genome sequence analysis by watson for genomics. Front. Med. 5, 305 (2018).

    Article  Google Scholar 

  93. Nakamura, Y. et al. SCRUM-Japan GI-SCREEN and MONSTAR-SCREEN: path to the realization of biomarker-guided precision oncology in advanced solid tumors. Cancer Sci. 112, 4425–4432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bando, H., Ohtsu, A. & Yoshino, T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 20, 306–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016).

    Article  PubMed  Google Scholar 

  96. Wang, J. et al. Development and validation of an MRI-based radiomic nomogram to distinguish between good and poor responders in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiotherapy. Abdom. Radiol. 46, 1805–1815 (2021).

    Article  Google Scholar 

  97. Liu, Z. et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin. Cancer Res. 23, 7253–7262 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Li, Z. et al. Radiomics analysis of multi-sequence MR images for predicting microsatellite instability status preoperatively in rectal cancer. Front. Oncol. 11, 697497 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Di Costanzo, G. et al. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. Explor. Target. Antitumor Ther. 4, 406–421 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nicolas, A. M. et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell 40, 168–184.e13 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Kagawa, Y. et al. Short‐term outcomes of a prospective multicenter phase II trial of total neoadjuvant therapy for locally advanced rectal cancer in Japan (ENSEMBLE‐1). Ann. Gastroenterol. Surg. 7, 968–976 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Reel, P. S., Reel, S., Pearson, E., Trucco, E. & Jefferson, E. Using machine learning approaches for multi-omics data analysis: a review. Biotechnol. Adv. 49, 107739 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Ikemura, S. et al. Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations. Proc. Natl Acad. Sci. USA 116, 10025–10030 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luchini, C., Pea, A. & Scarpa, A. Artificial intelligence in oncology: current applications and future perspectives. Br. J. Cancer 126, 4–9 (2022).

    Article  PubMed  Google Scholar 

  105. Akilandeswari, A. et al. Automatic detection and segmentation of colorectal cancer with deep residual convolutional neural network. Evid. Based Complement. Altern. Med. 2022, 3415603 (2022).

    Article  CAS  Google Scholar 

  106. Mansur, A., Saleem, Z., Elhakim, T. & Daye, D. Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions. Front. Oncol. 13, 1065402 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Boggi, U. Precision surgery. Updates Surg. 75, 3–5 (2023).

    Article  PubMed  Google Scholar 

  108. Mazaki, J. et al. A novel predictive model for anastomotic leakage in colorectal cancer using auto-artificial intelligence. Anticancer Res. 41, 5821–5825 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, A. et al. Machine learning of histomorphological features predict response to neoadjuvant therapy in locally advanced rectal cancer. J. Gastrointest. Surg. 27, 162–165 (2023).

    Article  PubMed  Google Scholar 

  110. Shin, J. et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology 303, 351–358 (2022).

    Article  PubMed  Google Scholar 

  111. Zhang, L., Zhao, Y., Che, T., Li, S. & Wang, X. Graph neural networks for image-guided disease diagnosis: a review. iRADIOLOGY 1, 151–166 (2023).

    Article  Google Scholar 

  112. Losurdo, P. et al. microRNAs combined to radiomic features as a predictor of complete clinical response after neoadjuvant radio-chemotherapy for locally advanced rectal cancer: a preliminary study. Surg. Endosc. 37, 3676–3683 (2023).

    Article  PubMed  Google Scholar 

  113. Okagawa, Y., Abe, S., Yamada, M., Oda, I. & Saito, Y. Artificial intelligence in endoscopy. Dig. Dis. Sci. 67, 1553–1572 (2022).

    Article  PubMed  Google Scholar 

  114. Samadi, P. et al. An integrative transcriptome analysis reveals potential predictive, prognostic biomarkers and therapeutic targets in colorectal cancer. BMC Cancer 22, 835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chatila, W. K. et al. Genomic and transcriptomic determinants of response to neoadjuvant therapy in rectal cancer. Nat. Med. 28, 1646–1655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ENSEMBLE was funded by the Japan Agency for Medical Research and Department (AMED, no. 21ck0106687h0001, no. 21ck0106696h0001 and no. 22ck0106870h0001). The Janus Rectal Cancer Trial (NCT05610163) is supported by U10CA180821. P.B.R. is supported by an NIH/NCI grant (K08 CA255574). J.J.S. is supported by an NIH/NCI grant (R37 CA248289).

Author information

Authors and Affiliations

Authors

Contributions

Y.K., J.J.S., E.F., C.R. and T.Y. researched data for the article. Y.K., J.J.S., E.F., J.W., A.C., H.B., P.B.R., N.H., T.K., C.R. and T.Y. contributed substantially to the discussion of content. Y.K., J.J.S., E.F. and T.Y. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Takayuki Yoshino.

Ethics declarations

Competing interests

Y.K. received honoraria for lectures from Johnson & Johnson, Intuitive Surgical Medtronic, Eli Lilly, Chugai, Ono, MSD, Merck Biopharma and Takeda, and received research funding from Ono and Takeda. J.J.S. received travel support for fellow education from Intuitive Surgical (2015). He served as a clinical adviser for Guardant Health (2019) and for Foundation Medicine (2022), and served as a consultant and speaker for Johnson & Johnson (2022). He also serves as a clinical advisor and consultant for GSK (2023). J.W. received honoraria for lectures from Johnson & Johnson, Medtronic, Eli Lilly and Takeda, and received research funding from Medtronic, Terumo, Amco and Stryker Japan outside the submitted work. A.C. is on the advisory board for Bayer, Merck, GSK, Seagen, Roche, Pfizer and Illumina, has received research funding from Seagen and GSK, and has equity in Haystack Oncology. H.B. reports research funding from Ono Pharmaceutical and honoraria from Taiho Pharmaceutical and Eli Lilly, Japan. Q.S. reports a consulting/advisory role from Yiviva Inc., Boehringer Ingelheim Pharmaceuticals, Inc., Regeneron Pharmaceuticals, Inc., Hoosier Cancer Research Network, Kronos Bio and Mirati Therapeutics Inc., a personal honorarium/speaker role from Chugai Pharmaceutical Co., Ltd. and research funds to their institution from Celgene/BMS, Roche/Genentech, Janssen and Novartis. J.G.-A. has relevant disclosures as noted: Johnson & Johnson (honorarium), Medtronic (honorarium) and Intuitive Surgical (honorarium, stock). P.B.R. is a consultant for Natera. N.H. received a lecture fee from Bayer (2022), served as a consultant for Guerbet (2023) and received travel support for a radiology meeting from Guerbet (2023). H.S. has received research funding from Amgen, AstraZeneca, BioMed Valley Discoveries, Bristol Myers Squibb, Exelixis, Pfizer, Rgenix and F Hoffman LaRoche. W.H. is a consultant for Aktis oncology outside of the submitted work, Medical College of Wisconsin holds a provisional patent, inventors William A. Hall and Eric Paulson, number 63/483,252, status is provisional, no aspect of the manuscript is covered in the patent application, the patent is outside of the submitted work. W.H. serves on the clinical steering committee for the Atlantic MR Linac consortium sponsored by Elekta AB and is the pancreatic site lead for this research consortium. Elekta AB provides institutional research and travel support to the Medical College of Wisconsin Department of Radiation Oncology. T.K. reports honoraria from Chugai Pharmaceutical, Takeda Pharmaceutical Company Limited, ONO Pharmaceutical Co., Eli Lilly and Company and Yakult Honsha Company and research funding from Taiho Pharmaceutical. A.D. received consulting fees from HUTCHMED, Takeda, Illumina, Personalis, AAA/Novartis, Ipsen and Sirtex, and research funding (institutional) from HUTCHMED, Xencor, Guardant Health, Eisai, Natera, Enterome and Taiho. T.Y. reports research funding from Taiho, Ono, Chugai, Amgen, MSD, Daiichi-Sankyo, Eisai, FALCO biosystems, Genomedia, Molecular Health, Nippon Boehringer Ingelheim, Pfizer, Roche Diagnostics, Sysmex and Sanofi; honoraria from Bayer, Chugai, Merck Biopharma, MSD, Ono and Takeda; consulting role from Sumitomo Corp.; and consulting fee from Sumitomo Corp. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks S. Pucciarelli, who co-reviewed with G. Spolverato; A. Heriot; A. Grothey; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagawa, Y., Smith, J.J., Fokas, E. et al. Future direction of total neoadjuvant therapy for locally advanced rectal cancer. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00900-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00900-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing