Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of dietary fibre on metabolic health and obesity

Abstract

Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.

Key points

  • Obesity is a complex chronic progressive disease characterized by excess body weight and dysregulation in enteroendocrine and neurohormonal signalling pathways favouring increased appetite and energy storage.

  • Therapeutics based on the manipulation of enteroendocrine pathways in the gastrointestinal tract are the most efficacious for weight loss and improving metabolic function.

  • Prospective and epidemiological studies have demonstrated associations between fibre consumption and metabolic health, highlighting the role of the gut microbiota in linking dietary intake of fibre with beneficial effects.

  • Microbiota-derived metabolites, including short-chain fatty acids, indole derivatives and bile acids, have been implicated in the pathogenesis of obesity and metabolic dysregulation.

  • Heterogeneity exists between fibres in terms of their chemical and physical structures, which determines the effects of fibre on the gastrointestinal tract, the gut microbiota and energy homeostasis.

  • Increased consumption of dietary fibre has the potential to induce structural, physicochemical and gastrointestinal site-specific benefits that are relevant for the treatment of obesity and metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of action of short-chain fatty acids on energy homeostasis.
Fig. 2: Interactions between the microbiota and the gut in obesity.
Fig. 3: Physiological effects of dietary fibres along the gastrointestinal tract.

Similar content being viewed by others

References

  1. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Obesity. Obesity Atlas 2023. World Obesity https://data.worldobesity.org/publications/?cat=19 (2023).

  3. Ward, Z. J. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019).

    Article  PubMed  Google Scholar 

  4. Ricardo-Silgado, M. L., McRae, A. & Acosta, A. Role of enteroendocrine hormones in appetite and glycemia. Obes. Med. 23, 100332 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crooks, B., Stamataki, N. S. & McLaughlin, J. T. Appetite, the enteroendocrine system, gastrointestinal disease and obesity. Proc. Nutr. Soc. 80, 50–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. de Heredia, F. P., Gomez-Martinez, S. & Marcos, A. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 71, 332–338 (2012).

    Article  PubMed  Google Scholar 

  7. Brown, S. S. G., Westwater, M. L., Seidlitz, J., Ziauddeen, H. & Fletcher, P. C. Hypothalamic volume is associated with body mass index. Neuroimage Clin. 39, 103478 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. She, Y., Mangat, R., Tsai, S., Proctor, S. D. & Richard, C. The interplay of obesity, dyslipidemia and immune dysfunction: a brief overview on pathophysiology, animal models, and nutritional modulation. Front. Nutr. 9, 840209 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lassenius, M. I. et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34, 1809–1815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boutagy, N. E., McMillan, R. P., Frisard, M. I. & Hulver, M. W. Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie 124, 11–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Camargo, A. et al. Postprandial endotoxemia may influence the development of type 2 diabetes mellitus: from the CORDIOPREV study. Clin. Nutr. 38, 529–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Pussinen, P. J., Havulinna, A. S., Lehto, M., Sundvall, J. & Salomaa, V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34, 392–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Mah, E., Liska, D. J., Goltz, S. & Chu, Y. The effect of extracted and isolated fibers on appetite and energy intake: a comprehensive review of human intervention studies. Appetite 180, 106340 (2023).

    Article  PubMed  Google Scholar 

  18. Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Clemmensen, C. et al. Gut–brain cross-talk in metabolic control. Cell 168, 758–774 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michalowska, J., Miller-Kasprzak, E. & Bogdanski, P. Incretin hormones in obesity and related cardiometabolic disorders: the clinical perspective. Nutrients 13, 351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grosse, J. et al. Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proc. Natl Acad. Sci. USA 111, 11133–11138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellis, A. C. et al. Circulating ghrelin and GLP-1 are not affected by habitual diet. Regul. Pept. 176, 1–5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hengist, A., Sciarrillo, C. M., Guo, J., Walter, M. & Hall, K. D. Discordance between gut-derived appetite hormones and energy intake in humans. Preprint at medRxiv https://doi.org/10.1101/2023.05.10.23289718 (2023).

  25. Becetti, I. et al. The neurobiology of eating behavior in obesity: mechanisms and therapeutic targets: a report from the 23rd Annual Harvard Nutrition Obesity symposium. Am. J. Clin. Nutr. 118, 314–328 (2023).

    Article  PubMed  Google Scholar 

  26. Lanfray, D. & Richard, D. Emerging signaling pathway in arcuate feeding-related neurons: role of the Acbd7. Front. Neurosci. 11, 328 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Steuernagel, L. et al. HypoMap—a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su, Z., Alhadeff, A. L. & Betley, J. N. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 21, 2724–2736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jais, A. et al. PNOC(ARC) neurons promote hyperphagia and obesity upon high-fat-diet feeding. Neuron 106, 1009–1025.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lavoie, O., Michael, N. J. & Caron, A. A critical update on the leptin–melanocortin system. J. Neurochem. 165, 467–486 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

    Article  PubMed  Google Scholar 

  32. Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain–gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Meek, C. L., Lewis, H. B., Reimann, F., Gribble, F. M. & Park, A. J. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides 77, 28–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Di Vincenzo, A. et al. Body weight reduction by bariatric surgery reduces the plasma levels of the novel orexigenic gut hormone insulin-like peptide 5 in patients with severe obesity. J. Clin. Med. 12, 3752 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang, J. et al. Change in adipokines and gastrointestinal hormones after bariatric surgery: a meta-analysis. Obes. Surg. 33, 789–806 (2023).

    Article  PubMed  Google Scholar 

  36. Liu, Y. et al. The weight-loss effect of GLP-1RAs glucagon-like peptide-1 receptor agonists in non-diabetic individuals with overweight or obesity: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Am. J. Clin. Nutr. 118, 614–626 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Jones, P. M., Hobai, I. A. & Murphy, P. M. Anesthesia and glucagon-like peptide-1 receptor agonists: proceed with caution! Can. J. Anaesth. 70, 1281–1286 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Talmor-Barkan, Y. et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat. Med. 28, 295–302 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Rothschild, D. et al. An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents. PLoS ONE 17, e0265756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rinott, E. et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med. 14, 29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 41, 1099–1105 (2017).

    Article  CAS  Google Scholar 

  48. Chen, J. P., Chen, G. C., Wang, X. P., Qin, L. & Bai, Y. Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. Nutrients 10, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Tremblay, A. et al. Dietary fibres and the management of obesity and metabolic syndrome: the RESOLVE study. Nutrients 12, 2911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maimaitiyiming, M. et al. The association of obesity-related dietary patterns and main food groups derived by reduced-rank regression with cardiovascular diseases incidence and all-cause mortality: findings from 116,711 adults. Eur. J. Nutr. 62, 2605–2619 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Tilg, H., Zmora, N., Adolph, T. E. & Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20, 40–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M. & Clement, K. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 160, 573–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  PubMed  Google Scholar 

  56. Anhe, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020).

    Article  PubMed  Google Scholar 

  57. Massier, L. et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69, 1796–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Xu, Z. et al. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes Nutr. 17, 2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Montenegro, J. et al. Exploring the influence of gut microbiome on energy metabolism in humans. Adv. Nutr. 14, 840–857 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le Chatelier E, N. T. & Qin, J. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  PubMed  Google Scholar 

  61. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68, 70–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Fromentin, S. et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 28, 303–314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Org, E. et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Surowiec, I. et al. Metabolomic and lipidomic assessment of the metabolic syndrome in Dutch middle-aged individuals reveals novel biological signatures separating health and disease. Metabolomics 15, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Kaisar, M. M. M., Pelgrom, L. R., van der Ham, A. J., Yazdanbakhsh, M. & Everts, B. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front. Immunol. 8, 1429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. He, J. et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21176356 (2020).

  71. Boets, E. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J. Physiol. 595, 541–555 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. van der Beek, C. M. et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130, 2073–2082 (2016).

    Article  Google Scholar 

  74. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).

    Article  CAS  Google Scholar 

  76. Larraufie, P. et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 8, 74 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brooks, L. et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab. 6, 48–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Freeland, K. R. & Wolever, T. M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. Br. J. Nutr. 103, 460–466 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Canfora, E. E. et al. Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men. Gut Microbes 14, 2009297 (2022).

    Article  PubMed  Google Scholar 

  80. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Nohr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    Article  PubMed  Google Scholar 

  82. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  Google Scholar 

  83. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut–brain neural circuit. Gut 67, 1269–1279 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Goswami, C., Iwasaki, Y. & Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57, 130–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Fock, E. & Parnova, R. Mechanisms of blood–brain barrier protection by microbiota-derived short-chain fatty acids. Cells https://doi.org/10.3390/cells12040657 (2023).

  87. Hoyles, L. et al. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome 6, 55 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Knox, E. G. et al. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood–brain barrier function. iScience 25, 105648 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van de Wouw, M., Schellekens, H., Dinan, T. G. & Cryan, J. F. Microbiota–gut–brain axis: modulator of host metabolism and appetite. J. Nutr. 147, 727–745 (2017).

    Article  PubMed  Google Scholar 

  90. Byrne, C. S. et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am. J. Clin. Nutr. 104, 5–14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bachmann, C., Colombo, J. P. & Beruter, J. Short chain fatty acids in plasma and brain: quantitative determination by gas chromatography. Clin. Chim. Acta 92, 153–159 (1979).

    Article  CAS  PubMed  Google Scholar 

  92. Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Seltzer, M. A. et al. Radiation dose estimates in humans for 11C-acetate whole-body PET. J. Nucl. Med. 45, 1233–1236 (2004).

    CAS  PubMed  Google Scholar 

  94. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  PubMed  Google Scholar 

  95. Goossens, G. H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 94, 206–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Aberdein, N., Schweizer, M. & Ball, D. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes. Adipocyte 3, 121–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jocken, J. W. E. et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front. Endocrinol. 8, 372 (2017).

    Article  Google Scholar 

  98. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Al-Lahham, S. H. et al. Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Invest. 40, 401–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Zaibi, M. S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584, 2381–2386 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Ohira, H. et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J. Atheroscler. Thromb. 20, 425–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Al-Lahham, S. et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur. J. Clin. Invest. 42, 357–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Kim, K. N., Yao, Y. & Ju, S. Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. Nutrients https://doi.org/10.3390/nu11102512 (2019).

  104. Liu, H. et al. Butyrate: a double-edged sword for health? Adv. Nutr. 9, 21–29 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  106. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    Article  PubMed  Google Scholar 

  107. Rahat-Rozenbloom, S., Fernandes, J., Gloor, G. B. & Wolever, T. M. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int. J. Obes. 38, 1525–1531 (2014).

    Article  CAS  Google Scholar 

  108. Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. M. & Comelli, E. M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Teixeira, T. F. et al. Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br. J. Nutr. 109, 914–919 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Barczynska, R. et al. Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Pol. J. Microbiol. 67, 339–345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Murugesan, S. et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1337–1346 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Muller, M. et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci. Rep. 9, 12515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jakobsdottir, G., Xu, J., Molin, G., Ahrne, S. & Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE 8, e80476 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Env. Microbiol. 19, 29–41 (2017).

    Article  CAS  Google Scholar 

  116. Li, X. et al. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 7, 305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jones, T. E. et al. Plasma lactate as a marker of metabolic health: implications of elevated lactate for impairment of aerobic metabolism in the metabolic syndrome. Surgery 166, 861–866 (2019).

    Article  PubMed  Google Scholar 

  118. Serena, C. et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 12, 1642–1657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu, J. et al. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J. Cell. Physiol. 235, 8938–8950 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Iraporda, C. et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220, 1161–1169 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Errea, A. et al. Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. PLoS ONE 11, e0163694 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Gilissen, J., Jouret, F., Pirotte, B. & Hanson, J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol. Ther. 159, 56–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. de Castro Fonseca, M., Aguiar, C. J., da Rocha Franco, J. A., Gingold, R. N. & Leite, M. F. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun. Signal. 14, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Vasan, S. K. et al. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study. Diabetologia 62, 2079–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Monfort-Ferre, D. et al. The gut microbiota metabolite succinate promotes adipose tissue browning in Crohn’s disease. J. Crohns Colitis 16, 1571–1583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. McCreath, K. J. et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 64, 1154–1167 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Villanueva-Carmona, T. et al. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab. 35, 601–619.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Keiran, N. et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat. Immunol. 20, 581–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Trauelsen, M. et al. Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep. 35, 109246 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. De Vadder, F. et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 24, 151–157 (2016).

    Article  PubMed  Google Scholar 

  133. Kalantar-Zadeh, K., Berean, K. J., Burgell, R. E., Muir, J. G. & Gibson, P. R. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat. Rev. Gastroenterol. Hepatol. 16, 733–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Wachsmuth, H. R., Weninger, S. N. & Duca, F. A. Role of the gut–brain axis in energy and glucose metabolism. Exp. Mol. Med. 54, 377–392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cuddihey, H., MacNaughton, W. K. & Sharkey, K. A. Role of the endocannabinoid system in the regulation of intestinal homeostasis. Cell. Mol. Gastroenterol. Hepatol. 14, 947–963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. O’Riordan, K. J. et al. Short chain fatty acids: microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

    Article  PubMed  Google Scholar 

  137. Chen, Y., Xu, J. & Chen, Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients https://doi.org/10.3390/nu13062099 (2021).

  138. Gabanyi, I. et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science 376, eabj3986 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. de Wouters d’Oplinter, A. et al. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. Microbiome 11, 94 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. de Wouters d’Oplinter, A. et al. Gut microbes participate in food preference alterations during obesity. Gut Microbes 13, 1959242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jones, J. M. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr. J. 13, 34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 57, 3543–3564 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Cantu-Jungles, T. M. & Hamaker, B. R. New view on dietary fiber selection for predictable shifts in gut microbiota. mBio https://doi.org/10.1128/mBio.02179-19 (2020).

  144. McRorie, J. W. Jr & McKeown, N. M. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 117, 251–264 (2017).

    Article  PubMed  Google Scholar 

  145. Stewart, M. L. & Slavin, J. L. Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation. Mol. Nutr. food Res. 50, 971–976 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Deehan, E. C. et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome 10, 77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Puhlmann, M. L. & de Vos, W. M. Intrinsic dietary fibers and the gut microbiome: rediscovering the benefits of the plant cell matrix for human health. Front. Immunol. 13, 954845 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Holland, C., Ryden, P., Edwards, C. H. & Grundy, M. M. Plant cell walls: impact on nutrient bioaccessibility and digestibility. Foods https://doi.org/10.3390/foods9020201 (2020).

  150. Guo, Q. Understanding the oral processing of solid foods: insights from food structure. Compr. Rev. Food Sci. Food Saf. 20, 2941–2967 (2021).

    Article  PubMed  Google Scholar 

  151. Lasschuijt, M. P., Mars, M., de Graaf, C. & Smeets, P. A. M. Endocrine cephalic phase responses to food cues: a systematic review. Adv. Nutr. 11, 1364–1383 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Franck, A. Technological functionality of inulin and oligofructose. Br. J. Nutr. 87, S287–S291 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Hallfrisch, J., Scholfield, D. J. & Behall, K. M. Glucose and insulin responses to a new zero-energy fiber source. J. Am. Coll. Nutr. 21, 410–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Grundy, M. M. et al. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr. 116, 816–833 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Miehle, E., Melanie, H., Stephanie, B.-M. & Eisner, P. The role of hydration properties of souble dietary fibers on glucose diffusion. Food Hydrocoll. 131, 107822 (2022).

    Article  CAS  Google Scholar 

  156. Chen, M. et al. The effect of viscous soluble dietary fiber on nutrient digestion and metabolic responses I: in vitro digestion processes. Food Hydrocoll. 107, 105971 (2020).

    Article  CAS  Google Scholar 

  157. Massa, M., Compari, C. & Fisicaro, E. On the mechanism of the cholesterol lowering ability of soluble dietary fibers: interaction of some bile salts with pectin, alginate, and chitosan studied by isothermal titration calorimetry. Front. Nutr. 9, 968847 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fogelson, K. A., Dorrestein, P. C., Zarrinpar, A. & Knight, R. The gut microbial bile acid modulation and its relevance to digestive health and diseases. Gastroenterology 164, 1069–1085 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Calderon, G. et al. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 55, 102759 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Weninger, S. N. et al. Oligofructose improves small intestinal lipid-sensing mechanisms via alterations to the small intestinal microbiota. Microbiome 11, 169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Leung, R. & Covasa, M. Do gut microbes taste? Nutrients https://doi.org/10.3390/nu13082581 (2021).

  164. van Baar, A. C. G. et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut 69, 295–303 (2020).

    Article  PubMed  Google Scholar 

  165. de Oliveira, G. H. P. et al. Metabolic effects of endoscopic duodenal mucosal resurfacing: a systematic review and meta-analysis. Obes. Surg. 31, 1304–1312 (2021).

    Article  PubMed  Google Scholar 

  166. Meiring, S. et al. A changed gut microbiota diversity is associated with metabolic improvements after duodenal mucosal resurfacing with glucagon-like-peptide-1 receptor agonist in type 2 diabetes in a pilot study. Front. Clin. Diabetes Healthc. 3, 856661 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Makki, K., Deehan, E. C., Walter, J. & Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Nguyen, N. K. et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome 8, 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems https://doi.org/10.1128/mSystems.00031-18 (2018).

  171. Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome — what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021).

    Article  PubMed  Google Scholar 

  172. Corbin, K. D. et al. Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nat. Commun. 14, 3161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kaur, A., Rose, D. J., Rumpagaporn, P., Patterson, J. A. & Hamaker, B. R. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using “slowly fermentable” dietary fibers. J. Food Sci. 76, H137–H142 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Korpela, K. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annu. Rev. Food Sci. Technol. 9, 65–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Smith, E. A. & Macfarlane, G. T. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol. Ecol. 25, 355–368 (1998).

    Article  CAS  Google Scholar 

  176. Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27, 389–404.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11, 411–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Prochazkova, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Chung, W. S. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Vandeputte, D. et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66, 1968–1974 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Benitez-Paez, A. et al. A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans. mSystems https://doi.org/10.1128/mSystems.00209-19 (2019).

  183. Holmes, Z. C. et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, 114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Goh, Y. J. & Klaenhammer, T. R. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu. Rev. Food Sci. Technol. 6, 137–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Depommier, C. et al. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 13, 1994270 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gilijamse, P. W. et al. Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 6, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Koopen, A. et al. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut 71, 1577–1587 (2022).

    CAS  PubMed  Google Scholar 

  189. Li, X. et al. Distinct factors associated with short-term and long-term weight loss induced by low-fat or low-carbohydrate diet intervention. Cell Rep. Med. 3, 100870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Diener, C. et al. Baseline gut metagenomic functional gene signature associated with variable weight loss responses following a healthy lifestyle intervention in humans. mSystems 6, e0096421 (2021).

    Article  PubMed  Google Scholar 

  191. Jie, Z. et al. The baseline gut microbiota directs dieting-induced weight loss trajectories. Gastroenterology 160, 2029–2042.e16 (2021).

    Article  PubMed  Google Scholar 

  192. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hjorth, M. F. et al. Pretreatment Prevotella-to-Bacteroides ratio and markers of glucose metabolism as prognostic markers for dietary weight loss maintenance. Eur. J. Clin. Nutr. 74, 338–347 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Christensen, L. et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J. Nutr. 149, 2174–2181 (2019).

    Article  PubMed  Google Scholar 

  195. Hjorth, M. F. et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int. J. Obes. 43, 149–157 (2019).

    Article  CAS  Google Scholar 

  196. Christensen, L. et al. Microbial enterotypes beyond genus level: Bacteroides species as a predictive biomarker for weight change upon controlled intervention with arabinoxylan oligosaccharides in overweight subjects. Gut Microbes 12, 1847627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cifuentes, L. et al. Phenotype tailored lifestyle intervention on weight loss and cardiometabolic risk factors in adults with obesity: a single-centre, non-randomised, proof-of-concept study. EClinicalMedicine 58, 101923 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Acosta, A. et al. Selection of antiobesity medications based on phenotypes enhances weight loss: a pragmatic trial in an obesity clinic. Obesity 29, 662–671 (2021).

    Article  PubMed  Google Scholar 

  200. Blanco-Rojo, R. et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia 59, 67–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Trouwborst, I. et al. Cardiometabolic health improvements upon dietary intervention are driven by tissue-specific insulin resistance phenotype: a precision nutrition trial. Cell Metab. 35, 71–83.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Robertson, M. D. et al. Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, 3326–3332 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Huwiler, V. V. et al. Prolonged isolated soluble dietary fibre supplementation in overweight and obese patients: a systematic review with meta-analysis of randomised controlled trials. Nutrients https://doi.org/10.3390/nu14132627 (2022).

  205. Lancaster, S. M. et al. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe 30, 848–862 e847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. Jane, M., McKay, J. & Pal, S. Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: a critical review. Nutrition 57, 84–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Haghikia, A. et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur. Heart J. 43, 518–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Ranaivo, H. et al. Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk. Gut Microbes 14, 2044722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cantu-Jungles, T. M. et al. Dietary fiber hierarchical specificity: the missing link for predictable and strong shifts in gut bacterial communities. mBio 12, e0102821 (2021).

    Article  PubMed  Google Scholar 

  211. Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91–95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yao, T. et al. Differences in fine arabinoxylan structures govern microbial selection and competition among human gut microbiota. Carbohydr. Polym. 316, 121039 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Swanson, K. S. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Krumbeck, J. A. et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6, 121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hadi, A., Alizadeh, K., Hajianfar, H., Mohammadi, H. & Miraghajani, M. Efficacy of synbiotic supplementation in obesity treatment: a systematic review and meta-analysis of clinical trials. Crit. Rev. Food Sci. Nutr. 60, 584–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Beserra, B. T. et al. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin. Nutr. 34, 845–858 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Perraudeau, F. et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care https://doi.org/10.1136/bmjdrc-2020-001319 (2020).

  219. Mocanu, V. et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27, 1272–1279 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Rinott, E. et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 160, 158–173.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Poutanen, K. S. et al. Recommendations for characterization and reporting of dietary fibers in nutrition research. Am. J. Clin. Nutr. 108, 437–444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Obradovic, M. et al. Leptin and obesity: role and clinical implication. Front. Endocrinol. 12, 585887 (2021).

    Article  Google Scholar 

  223. Khoramipour, K. et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients https://doi.org/10.3390/nu13041180 (2021).

  224. Drucker, D. J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 57, 101351 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Zhihong, Y. et al. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 162, 170955 (2023).

    Article  PubMed  Google Scholar 

  226. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  227. Lee, Y. S. et al. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production. Mol. Metab. 5, 263–270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Karen L. Madsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Hannah Holscher, Seiichiro Aoe, Emanuel Canfora and João Felipe Mota for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deehan, E.C., Mocanu, V. & Madsen, K.L. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol 21, 301–318 (2024). https://doi.org/10.1038/s41575-023-00891-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00891-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing