Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatic glucose metabolism in the steatotic liver

Abstract

The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.

Key points

  • Hepatic glucose metabolism can be studied by measuring metabolite fluxes (fluxomics) based on in vivo infusion of non-radioactive labelled compounds and using metabolic mathematical modelling.

  • The liver is the major contributor to endogenous glucose production via gluconeogenesis and glycogenolysis, and is the greatest reserve of glucose as glycogen.

  • Hepatic glucose metabolism is mainly regulated by glucoregulatory hormones, including insulin and glucagon and by substrate availability.

  • Hepatic extraction and clearance of insulin modulates peripheral insulin action and has a role in hyperinsulinaemia in steatotic liver disease.

  • Abnormal increase in gluconeogenesis and impaired glycogen metabolism are observed in steatotic liver disease and related metabolic conditions such as obesity and type 2 diabetes.

  • Hepatic and peripheral insulin resistance and hyperglucagonaemia contribute to altered glucose metabolism and the pathogenesis of steatotic liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the techniques currently used to investigate glucose fluxes in humans.
Fig. 2: The role of insulin resistance in altered glucose metabolism in steatotic liver disease.
Fig. 3: Overview of glucose metabolic pathways in the hepatocyte.

Similar content being viewed by others

References

  1. Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 78, 1966–1986 (2023).

    Article  Google Scholar 

  3. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023).

    Article  PubMed  Google Scholar 

  4. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gastaldelli, A. Measuring and estimating insulin resistance in clinical and research settings. Obesity 30, 1549–1563 (2022).

    Article  PubMed  Google Scholar 

  6. Wolfe, R. R. Calculation of substrate turnover rate in stable isotope tracer studies. Am. J. Physiol. 246, E463 (1984).

    CAS  PubMed  Google Scholar 

  7. Tserng, K. Y. & Kalhan, S. C. Calculation of substrate turnover rate in stable isotope tracer studies. Am. J. Physiol. 245, E308–E311 (1983).

    CAS  PubMed  Google Scholar 

  8. Wolfe, R. R. & Chinkes, D. L. Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis (Wiley, 2004).

  9. Macdonald, I. A. Arterio-venous differences to study macronutrient metabolism: introduction and overview. Proc. Nutr. Soc. 58, 871–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh, P. S., Moore, M. C., Neal, D. W. & Cherrington, A. D. Importance of the hepatic arterial glucose level in generation of the portal signal in conscious dogs. Am. J. Physiol. Endocrinol. Metab. 279, E284–E292 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Iozzo, P. et al. Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs. Gastroenterology 132, 531–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ferrannini, E. et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34, 580–588 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Cobelli, C., Toffolo, G. & Ferrannini, E. A model of glucose kinetics and their control by insulin, compartmental and noncompartmental approaches. Math. Biosci. 72, 291–315 (1984).

    Article  CAS  Google Scholar 

  14. Gastaldelli, A. et al. Glucose kinetics in interstitial fluid can be predicted by compartmental modeling. Am. J. Physiol. 272, E494–E505 (1997).

    CAS  PubMed  Google Scholar 

  15. Groop, L. C. et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Invest. 84, 205–213 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hellerstein, M. K. & Neese, R. A. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am. J. Physiol. 263, E988–E1001 (1992).

    CAS  PubMed  Google Scholar 

  17. Landau, B. R. Quantifying the contribution of gluconeogenesis to glucose production in fasted human subjects using stable isotopes. Proc. Nutr. Soc. 58, 963–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Schumann, W. C. et al. Determination of the enrichment of the hydrogen bound to carbon 5 of glucose on 2H2O administration. Anal. Biochem. 297, 195–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Gastaldelli, A. et al. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49, 1367–1373 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, J. G., Solomon, M. A., Cole, S. M., Sherry, A. D. & Malloy, C. R. An integrated 2H and 13C NMR study of gluconeogenesis and TCA cycle flux in humans. Am. J. Physiol. Endocrinol. Metab. 281, E848–E856 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Perry, R. J. et al. Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nat. Commun. 8, 798 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rothman, D. L., Magnusson, I., Katz, L. D., Shulman, R. G. & Shulman, G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254, 573–576 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Foster, B., Bagci, U., Mansoor, A., Xu, Z. & Mollura, D. J. A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014).

    Article  PubMed  Google Scholar 

  24. Nolting, D. D., Nickels, M. L., Guo, N. & Pham, W. Molecular imaging probe development: a chemistry perspective. Am. J. Nucl. Med. Mol. Imaging 2, 273–306 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Katz, J. Determination of gluconeogenesis in vivo with 14C-labeled substrates. Am. J. Physiol. 248, R391–R399 (1985).

    CAS  PubMed  Google Scholar 

  26. Cook, D. J. & Nielsen, J. Genome-scale metabolic models applied to human health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, e1393 (2017).

    Article  Google Scholar 

  27. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sen, P. et al. Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease. iScience 25, 104949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).

    Article  PubMed  Google Scholar 

  30. Mardinoglu, A. et al. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13, 916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hyotylainen, T. et al. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat. Commun. 7, 8994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antoniewicz, M. R. A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. Med. 50, 1–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Martin, H. G. et al. A method to constrain genome-scale models with 13C labeling data. PLoS Comput. Biol. 11, e1004363 (2015).

    Article  PubMed  Google Scholar 

  34. Moiz, B., Sriram, G. & Clyne, A. M. Interpreting metabolic complexity via isotope-assisted metabolic flux analysis. Trends Biochem. Sci. 48, 553–567 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Cappel, D. A. et al. Pyruvate-carboxylase-mediated anaplerosis promotes antioxidant capacity by sustaining TCA cycle and redox metabolism in liver. Cell Metab. 29, 1291–1305.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Utzschneider, K. M., Kahn, S. E. & Polidori, D. C. Hepatic insulin extraction in NAFLD is related to insulin resistance rather than liver fat content. J. Clin. Endocrinol. Metab. 104, 1855–1865 (2019).

    Article  PubMed  Google Scholar 

  37. Bugianesi, E. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48, 634–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Seppala-Lindroos, A. et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87, 3023–3028 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Petersen, K. F. et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kotronen, A., Juurinen, L., Tiikkainen, M., Vehkavaara, S. & Yki-Jarvinen, H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135, 122–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Krssak, M. et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53, 3048–3056 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Rosso, C. et al. Peripheral insulin resistance predicts liver damage in nondiabetic subjects with nonalcoholic fatty liver disease. Hepatology 63, 107–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Brouwers, B. et al. Metabolic disturbances of non-alcoholic fatty liver resemble the alterations typical for type 2 diabetes. Clin. Sci. 131, 1905–1917 (2017).

    Article  CAS  Google Scholar 

  44. Ter Horst, K. W. et al. Hepatic diacylglycerol-associated protein kinase cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 19, 1997–2004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bril, F. et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65, 1132–1144 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Gastaldelli, A. et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 133, 496–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Vanni, E. et al. Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C. Hepatology 50, 697–706 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Petersen, K. F. et al. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am. J. Physiol. 276, E529–E535 (1999).

    CAS  PubMed  Google Scholar 

  49. Bugianesi, E., Kalhan, S., Burkett, E., Marchesini, G. & McCullough, A. Quantification of gluconeogenesis in cirrhosis: response to glucagon. Gastroenterology 115, 1530–1540 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Gaggini, M. et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5, 1544–1560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. DeFronzo, R. A., Ferrannini, E. & Simonson, D. C. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 38, 387–395 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Weyer, C., Bogardus, C. & Pratley, R. E. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 48, 2197–2203 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Saponaro, C. et al. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int. 42, 2418–2427 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mevorach, M. et al. Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J. Clin. Invest. 102, 744–753 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Massillon, D., Barzilai, N., Chen, W., Hu, M. & Rossetti, L. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J. Biol. Chem. 271, 9871–9874 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Ter Horst, K. W. et al. Hepatic insulin resistance is not pathway selective in humans with nonalcoholic fatty liver disease. Diabetes Care 44, 489–498 (2021).

    Article  PubMed  Google Scholar 

  59. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381–16385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Samuel, V. T. & Shulman, G. I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Cantley, J. L. et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc. Natl Acad. Sci. USA 110, 1869–1874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lyu, K. et al. A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance. Cell Metab. 32, 654–664.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chaurasia, B. & Summers, S. A. Ceramides – lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Apostolopoulou, M. et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care 41, 1235–1243 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Najjar, S. M., Caprio, S. & Gastaldelli, A. Insulin clearance in health and disease. Annu. Rev. Physiol. 85, 363–381 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Puhakainen, I., Koivisto, V. A. & Yki-Jarvinen, H. Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 75, 789–794 (1992).

    CAS  PubMed  Google Scholar 

  70. Gelding, S. V., Coldham, N., Niththyananthan, R., Anyaoku, V. & Johnston, D. G. Insulin resistance with respect to lipolysis in non-diabetic relatives of European patients with type 2 diabetes. Diabet. Med. 12, 66–73 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Satapati, S. et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 53, 1080–1092 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fletcher, J. A. et al. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 5, e127737 (2019).

    Article  PubMed  Google Scholar 

  75. Klein, S., Gastaldelli, A., Yki-Jarvinen, H. & Scherer, P. E. Why does obesity cause diabetes? Cell Metab. 34, 11–20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, X., Iqbal, N. & Boden, G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J. Clin. Invest. 103, 365–372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lewis, G. F., Vranic, M., Harley, P. & Giacca, A. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes 46, 1111–1119 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Sindelar, D. K. et al. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 46, 187–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Roden, M. et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Engfeldt, P. & Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl. 19, 26–29 (1988).

    CAS  PubMed  Google Scholar 

  82. Meek, S. E., Nair, K. S. & Jensen, M. D. Insulin regulation of regional free fatty acid metabolism. Diabetes 48, 10–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Nielsen, S., Guo, Z., Johnson, C. M., Hensrud, D. D. & Jensen, M. D. Splanchnic lipolysis in human obesity. J. Clin. Invest. 113, 1582–1588 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Iozzo, P. et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139, 846–856.E6 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Gastaldelli, A. et al. Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J. Clin. Endocrinol. Metab. 89, 3914–3921 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Marchesini, G. et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50, 1844–1850 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Gastaldelli, A. et al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Riddle, M. C. et al. Consensus report: definition and interpretation of remission in type 2 diabetes. Diabetes Care 44, 2438–2444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koutoukidis, D. A. et al. The effect of the magnitude of weight loss on non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 115, 154455 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Romero-Gomez, M., Zelber-Sagi, S. & Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 67, 829–846 (2017).

    Article  PubMed  Google Scholar 

  91. Verrastro, O. et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. Lancet 401, 1786–1797 (2023).

    Article  PubMed  Google Scholar 

  92. European Association for the Study of the Liver, European Association for the Study of Diabetes & European Association for the Study of Obesity EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Article  Google Scholar 

  93. Sandforth, A. et al. Mechanisms of weight loss-induced remission in people with prediabetes: a post-hoc analysis of the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS). Lancet Diabetes Endocrinol. 11, 798–810 (2023).

    Article  PubMed  Google Scholar 

  94. Gastaldelli, A. et al. PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH. Liver Int. 41, 2659–2670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chevalier, S. et al. The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes 55, 675–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Muller, C. et al. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese non-diabetic patients. Diabetologia 40, 463–468 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Basu, R., Chandramouli, V., Dicke, B., Landau, B. & Rizza, R. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes 54, 1942–1948 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gerich, J. E. & Nurjhan, N. Gluconeogenesis in type 2 diabetes. Adv. Exp. Med. Biol. 334, 253–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Gaggini, M. et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology 67, 145–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Ma, Y. L. et al. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front. Endocrinol. 14, 1133991 (2023).

    Article  Google Scholar 

  102. Felig, P., Wahren, J. & Hendler, R. Influence of maturity-onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes 27, 121–126 (1978).

    Article  CAS  PubMed  Google Scholar 

  103. Snell, K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem. Soc. Trans. 8, 205–213 (1980).

    Article  CAS  PubMed  Google Scholar 

  104. Felig, P., Wahren, J., Hendler, R. & Brundin, T. Splanchnic glucose and amino acid metabolism in obesity. J. Clin. Invest. 53, 582–590 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fisher, S. J. & Kahn, C. R. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J. Clin. Invest. 111, 463–468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jelenik, T. et al. Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver. Diabetes 66, 2241–2253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Samuel, V. T. et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc. Natl Acad. Sci. USA 106, 12121–12126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Williamson, J. R., Kreisberg, R. A. & Felts, P. W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc. Natl Acad. Sci. USA 56, 247–254 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chai, P. et al. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol. Cell 82, 4116–4130.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Cai, C., Song, X., Chen, Y., Chen, X. & Yu, C. Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Hepatol. Int. 14, 115–126 (2020).

    Article  PubMed  Google Scholar 

  112. Shulman, G. I. & Landau, B. R. Pathways of glycogen repletion. Physiol. Rev. 72, 1019–1035 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Konig, M., Bulik, S. & Holzhutter, H. G. Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism. PLoS Comput. Biol. 8, e1002577 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Petersen, K. F., Laurent, D., Rothman, D. L., Cline, G. W. & Shulman, G. I. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Invest. 101, 1203–1209 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clore, J. N., Post, E. P., Bailey, D. J., Nestler, J. E. & Blackard, W. G. Evidence for increased liver glycogen in patients with noninsulin-dependent diabetes mellitus after a 3-day fast. J. Clin. Endocrinol. Metab. 74, 660–666 (1992).

    CAS  PubMed  Google Scholar 

  116. Wise, S., Nielsen, M. & Rizza, R. Effects of hepatic glycogen content on hepatic insulin action in humans: alteration in the relative contributions of glycogenolysis and gluconeogenesis to endogenous glucose production. J. Clin. Endocrinol. Metab. 82, 1828–1833 (1997).

    CAS  PubMed  Google Scholar 

  117. Smajis, S. et al. Metabolic effects of a prolonged, very-high-dose dietary fructose challenge in healthy subjects. Am. J. Clin. Nutr. 111, 369–377 (2020).

    Article  PubMed  Google Scholar 

  118. Ciapaite, J. et al. Functioning of oxidative phosphorylation in liver mitochondria of high-fat diet fed rats. Biochim. Biophys. Acta 1772, 307–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Shum, M., Ngo, J., Shirihai, O. S. & Liesa, M. Mitochondrial oxidative function in NAFLD: friend or foe? Mol. Metab. 50, 101134 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Owen, O. E., Kalhan, S. C. & Hanson, R. W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277, 30409–30412 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Fromenty, B. & Roden, M. Mitochondrial alterations in fatty liver diseases. J. Hepatol. 78, 415–429 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Sunny, N. E., Bril, F. & Cusi, K. Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol. Metab. 28, 250–260 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Jin, E. S. et al. Influence of liver triglycerides on suppression of glucose production by insulin in men. J. Clin. Endocrinol. Metab. 100, 235–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Satapati, S. et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Invest. 125, 4447–4462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Browning, J. D. & Horton, J. D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114, 147–152 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Ajaz, S. et al. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion 57, 119–130 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Moore, M. P. et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology 76, 1452–1465 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Miele, L. et al. Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by 13C-octanoate breath test. Am. J. Gastroenterol. 98, 2335–2336 (2003).

    Article  PubMed  Google Scholar 

  130. Patterson, R. E. et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. Am. J. Physiol. Endocrinol. Metab. 310, E484–E494 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Luukkonen, P. K. et al. Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 76, 526–535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Eslam, M. & George, J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat. Rev. Gastroenterol. Hepatol. 17, 40–52 (2020).

    Article  PubMed  Google Scholar 

  133. Laakso, M. & Fernandes Silva, L. Genetics of type 2 diabetes: past, present, and future. Nutrients 14, 3201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zaharia, O. P. et al. Role of patatin-like phospholipase domain-containing 3 gene for hepatic lipid content and insulin resistance in diabetes. Diabetes Care 43, 2161–2168 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Krarup, N. T. et al. The PNPLA3 rs738409 G-allele associates with reduced fasting serum triglyceride and serum cholesterol in Danes with impaired glucose regulation. PLoS ONE 7, e40376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, Z., Ji, G. & Li, M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front. Endocrinol. 14, 1247611 (2023).

    Article  Google Scholar 

  137. Sparso, T. et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 51, 70–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Barata, L. et al. Insulin resistance exacerbates genetic predisposition to nonalcoholic fatty liver disease in individuals without diabetes. Hepatol. Commun. 3, 894–907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bechmann, L. P. et al. Glucokinase links Kruppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology 55, 1083–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Meroni, M. et al. Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes. EBioMedicine 52, 102658 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhou, Y. et al. Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J. Hepatol. 62, 657–663 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Ojha, A., Ojha, U., Mohammed, R., Chandrashekar, A. & Ojha, H. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin. Pharmacol. 11, 57–65 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Smith, G. I. et al. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J. Clin. Invest. 130, 3305–3314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Polidori, D. C., Bergman, R. N., Chung, S. T. & Sumner, A. E. Hepatic and extrahepatic insulin clearance are differentially regulated: results from a novel model-based analysis of intravenous glucose tolerance data. Diabetes 65, 1556–1564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gastaldelli, A., Abdul Ghani, M. & DeFronzo, R. A. Adaptation of insulin clearance to metabolic demand is a key determinant of glucose tolerance. Diabetes 70, 377–385 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Lewis, G. F., Carpentier, A. C., Pereira, S., Hahn, M. & Giacca, A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab. 33, 709–720 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Lewis, G. F., Zinman, B., Groenewoud, Y., Vranic, M. & Giacca, A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes 45, 454–462 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Rebrin, K., Steil, G. M., Mittelman, S. D. & Bergman, R. N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest. 98, 741–749 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Staehr, P. et al. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis. Diabetes 52, 260–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. O-Sullivan, I. et al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6, 7079 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18, 388–395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Titchenell, P. M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, S. P., Ellmerer, M., Kirkman, E. L. & Bergman, R. N. β-Cell “rest” accompanies reduced first-pass hepatic insulin extraction in the insulin-resistant, fat-fed canine model. Am. J. Physiol. Endocrinol. Metab. 292, E1581–E1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Trico, D. et al. Intrahepatic fat, irrespective of ethnicity, is associated with reduced endogenous insulin clearance and hepatic insulin resistance in obese youths: a cross-sectional and longitudinal study from the Yale Pediatric NAFLD cohort. Diabetes Obes. Metab. 22, 1628–1638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Galderisi, A. et al. Lower insulin clearance parallels a reduced insulin sensitivity in obese youths and is associated with a decline in β-cell function over time. Diabetes 68, 2074–2084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ghosh, S. et al. Mice with null mutation of Ceacam I develop nonalcoholic steatohepatitis. Hepat. Med. 2010, 69–78 (2010).

    PubMed  Google Scholar 

  158. Rodgers, R. L. Glucagon, cyclic AMP, and hepatic glucose mobilization: a half-century of uncertainty. Physiol. Rep. 10, e15263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Muller, W. A., Faloona, G. R. & Unger, R. H. The effect of alanine on glucagon secretion. J. Clin. Invest. 50, 2215–2218 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dean, E. D. et al. Interrupted glucagon signaling reveals hepatic ɑ cell axis and role for L-glutamine in ɑ cell proliferation. Cell Metab. 25, 1362–1373.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Holst, J. J., Wewer Albrechtsen, N. J., Pedersen, J. & Knop, F. K. Glucagon and amino acids are linked in a mutual feedback cycle: the liver–ɑ-cell axis. Diabetes 66, 235–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Knop, F. K. EJE PRIZE 2018: a gut feeling about glucagon. Eur. J. Endocrinol. 178, R267–R280 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Knop, F. K. et al. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes. Metab. 14, 500–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Suppli, M. P. et al. Glucagon resistance at the level of amino acid turnover in obese subjects with hepatic steatosis. Diabetes 69, 1090–1099 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Junker, A. E., Gluud, L., Holst, J. J., Knop, F. K. & Vilsboll, T. Diabetic and nondiabetic patients with nonalcoholic fatty liver disease have an impaired incretin effect and fasting hyperglucagonaemia. J. Intern. Med. 279, 485–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Wewer Albrechtsen, N. J. et al. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G91–G96 (2018).

    Article  PubMed  Google Scholar 

  167. Wewer Albrechtsen, N. J. et al. The liver–ɑ-cell axis and type 2 diabetes. Endocr. Rev. 40, 1353–1366 (2019).

    Article  PubMed  Google Scholar 

  168. Guzman, C. B. et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1521–1528 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Vergari, E. et al. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat. Commun. 10, 139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Honzawa, N., Fujimoto, K. & Kitamura, T. Cell autonomous dysfunction and insulin resistance in pancreatic ɑ cells. Int. J. Mol. Sci. 20, 3699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep. 25, 1127–1134.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Armstrong, M. J. et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J. Hepatol. 64, 399–408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gastaldelli, A. et al. Exenatide improves both hepatic and adipose tissue insulin resistance: a dynamic positron emission tomography study. Hepatology 64, 2028–2037 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Seghieri, M. et al. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia 56, 156–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE−/− mice. Endocrinology 154, 127–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Yaribeygi, H., Sathyapalan, T. & Sahebkar, A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sci. 234, 116776 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Drucker, D. J., Habener, J. F. & Holst, J. J. Discovery, characterization, and clinical development of the glucagon-like peptides. J. Clin. Invest. 127, 4217–4227 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Gastaldelli, A. & Marchesini, G. Time for glucagon like peptide-1 receptor agonists treatment for patients with NAFLD? J. Hepatol. 64, 262–264 (2016).

    Article  PubMed  Google Scholar 

  181. Bi, Y. et al. Effects of exenatide, insulin, and pioglitazone on liver fat content and body fat distributions in drug-naive subjects with type 2 diabetes. Acta Diabetol. 51, 865–873 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Shao, N. et al. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 30, 521–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Klonoff, D. C. et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr. Med. Res. Opin. 24, 275–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Gastaldelli, A. et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes. Metab. 22, 393–403 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Liu, L. et al. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 36, e3292 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Matikainen, N. et al. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single-centre randomized controlled study. Diabetes Obes. Metab. 21, 84–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Gluud, L. L., Knop, F. K. & Vilsboll, T. Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of randomised controlled trials on patients with type 2 diabetes. BMJ Open. 4, e005325 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Newsome, P. et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment. Pharmacol. Ther. 50, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cusi, K. et al. Dulaglutide decreases plasma aminotransferases in people with type 2 diabetes in a pattern consistent with liver fat reduction: a post hoc analysis of the AWARD programme. Diabet. Med. 35, 1434–1439 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Cui, J. et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: a randomized controlled trial. J. Hepatol. 65, 369–376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Watanabe, T. et al. Effects of sitagliptin on ectopic fat contents and glucose metabolism in type 2 diabetic patients with fatty liver: a pilot study. J. Diabetes Investig. 6, 164–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Joy, T. R. et al. Sitagliptin in patients with non-alcoholic steatohepatitis: a randomized, placebo-controlled trial. World J. Gastroenterol. 23, 141–150 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cersosimo, E. et al. Effect of exenatide on splanchnic and peripheral glucose metabolism in type 2 diabetic subjects. J. Clin. Endocrinol. Metab. 96, 1763–1770 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Muscelli, E. et al. Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 2818–2826 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Muscogiuri, G., DeFronzo, R. A., Gastaldelli, A. & Holst, J. J. Glucagon-like peptide-1 and the central/peripheral nervous system: crosstalk in diabetes. Trends Endocrinol. Metab. 28, 88–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Gastaldelli, A. et al. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 10, 393–406 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Heise, T. et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 10, 418–429 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Romero-Gomez, M. et al. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J. Hepatol. 79, 888–897 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Jungnik, A. et al. Phase I studies of the safety, tolerability, pharmacokinetics and pharmacodynamics of the dual glucagon receptor/glucagon-like peptide-1 receptor agonist BI 456906. Diabetes Obes. Metab. 25, 1011–1023 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Ambery, P. et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391, 2607–2618 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Rosenstock, J. et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 402, 529–544 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity – a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Farooqui, N., Elhence, A. & Shalimar, A. Current understanding of bile acids in chronic liver disease. J. Clin. Exp. Hepatol. 12, 155–173 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Lake, A. D. et al. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol. Appl. Pharmacol. 268, 132–140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Puri, P. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67, 534–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Shapiro, H., Kolodziejczyk, A. A., Halstuch, D. & Elinav, E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 215, 383–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Trauner, M., Claudel, T., Fickert, P., Moustafa, T. & Wagner, M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig. Dis. 28, 220–224 (2010).

    Article  PubMed  Google Scholar 

  209. Pineda Torra, I. et al. Bile acids induce the expression of the human peroxisome proliferator-activated receptor ɑ gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17, 259–272 (2003).

    Article  PubMed  Google Scholar 

  210. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.G. acknowledges the financial support from the European Union’s Horizon 2020 Research and Innovation Programme (IMI) for the projects LITMUS (grant no. 777377) and SOPHIA (grant no. 875534) and Horizon Europe project PAS GRAS (grant no. 101080329). This communication reflects the author’s views. Neither IMI nor the European Union, EFPIA, or any associated partners are responsible for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Amalia Gastaldelli.

Ethics declarations

Competing interests

A.G. has served as a consultant for Boehringer Ingelheim, Eli Lilly and Company, Metadeq Diagnostics and Fractyl Health; has participated on advisory boards for Boehringer Ingelheim, Merck Sharp & Dohme, Novo Nordisk, Metadeq Diagnostics and Pfizer; and has received speaker’s honoraria and other fees from Eli Lilly and Company, Merck Sharp & Dohme, Novo Nordisk and Pfizer. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Andreas Birkenfeld and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scoditti, E., Sabatini, S., Carli, F. et al. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 21, 319–334 (2024). https://doi.org/10.1038/s41575-023-00888-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00888-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing