Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease

Abstract

Recompensation has gained increasing attention in the field of cirrhosis, particularly in chronic liver disease with a definite aetiology. The current global prevalence of obesity and nonalcoholic fatty liver disease (NAFLD) is increasing, but there is currently a lack of a clear definition for recompensation in NAFLD-related cirrhosis. Here, we provide an up-to-date perspective on the natural history of NAFLD, emphasizing the reversible nature of the disease, summarizing possible mechanisms underlying recompensation in NAFLD, discussing challenges that need to be addressed and outlining future research directions in the field. Recompensation is a promising goal in patients with NAFLD-related cirrhosis, and further studies are needed to explore its underlying mechanisms and uncover its clinical features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The up-to-date natural history of NAFLD.
Fig. 2: Possible main mechanisms of recompensation in nonalcoholic fatty liver disease-related cirrhosis.

Similar content being viewed by others

References

  1. Schuppan, D. & Afdhal, N. H. Liver cirrhosis. Lancet 371, 838–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mauro, E. & Gadano, A. What’s new in portal hypertension? Liver Int. 40, 122–127 (2020).

    PubMed  Google Scholar 

  3. Xu, X. et al. Recompensation factors for patients with decompensated cirrhosis: a multicentre retrospective case-control study. BMJ Open 11, e043083 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Cheung, M. C. M. et al. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol. 65, 741–747 (2016).

    CAS  PubMed  Google Scholar 

  5. Gentile, I. et al. Treatment with direct-acting antivirals improves the clinical outcome in patients with HCV-related decompensated cirrhosis: results from an Italian real-life cohort (Liver Network Activity–LINA cohort). Hepatol. Int. 13, 66–74 (2019).

    PubMed  Google Scholar 

  6. Lens, S. et al. Clinical outcome and hemodynamic changes following HCV eradication with oral antiviral therapy in patients with clinically significant portal hypertension. J. Hepatol. 73, 1415–1424 (2020).

    PubMed  Google Scholar 

  7. Gadiparthi, C. et al. NAFLD epidemiology, emerging pharmacotherapy, liver transplantation implications and the trends in the United States. J. Clin. Transl. Hepatol. 8, 215–221 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Le, M. H. et al. 2019 global NAFLD prevalence: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 20, 2809–2817.e28 (2022).

    PubMed  Google Scholar 

  9. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023). This study proposes a thoughtful renaming and redefinition of NAFLD through a rigorous Delphi process involving extensive international expert consensus, aiming to establish a nomenclature that is informative, systematic and non-stigmatizing.

    PubMed  Google Scholar 

  10. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. https://doi.org/10.1016/j.jhep.2023.06.003 (2023).

    Article  PubMed  Google Scholar 

  11. Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73, 202–209 (2020).

    PubMed  Google Scholar 

  12. Singh, S. P., Anirvan, P., Khandelwal, R. & Satapathy, S. K. Nonalcoholic fatty liver disease (NAFLD) name change: requiem or reveille. J. Clin. Transl. Hepatol. 9, 931–938 (2021).

    PubMed  PubMed Central  Google Scholar 

  13. Feng, G. et al. Bioinformatics analysis reveals novel core genes associated with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Gene 742, 144549 (2020).

    CAS  PubMed  Google Scholar 

  14. Younossi, Z. M. & Henry, L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep. 3, 100305 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Gutierrez-Cuevas, J., Lucano-Landeros, S., Lopez-Cifuentes, D., Santos, A. & Armendariz-Borunda, J. Epidemiologic, genetic, pathogenic, metabolic, epigenetic aspects involved in NASH-HCC: current therapeutic strategies. Cancers 15, 23 (2022).

    PubMed  PubMed Central  Google Scholar 

  16. Wong, R. J. & Singal, A. K. Trends in liver disease etiology among adults awaiting liver transplantation in the United States, 2014-2019. JAMA Netw. Open 3, e1920294 (2020).

    PubMed  Google Scholar 

  17. Noureddin, M. et al. NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am. J. Gastroenterol. 113, 1649–1659 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Stepanova, M. et al. Nonalcoholic steatohepatitis is the most common indication for liver transplantation among the elderly: data from the United States scientific registry of transplant recipients. Hepatol. Commun. 6, 1506–1515 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Sun, Y. M., Chen, S. Y. & You, H. Regression of liver fibrosis: evidence and challenges. Chin. Med. J. 133, 1696–1702 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pose, E. et al. A notable proportion of liver transplant candidates with alcohol-related cirrhosis can be delisted because of clinical improvement. J. Hepatol. 75, 275–283 (2021).

    PubMed  Google Scholar 

  21. Aravinthan, A. D. et al. Characteristics of liver transplant candidates delisted following recompensation and predictors of such delisting in alcohol-related liver disease: a case-control study. Transpl. Int. 30, 1140–1149 (2017).

    PubMed  Google Scholar 

  22. de Franchis, R. et al. Baveno VII – renewing consensus in portal hypertension. J. Hepatol. 76, 959–974 (2022). This article provides a summary of the most important conclusions/recommendations from the Baveno VII workshop.

    PubMed  Google Scholar 

  23. Zheng, K. I. et al. From NAFLD to MAFLD: a “redefining” moment for fatty liver disease. Chin. Med. J. 133, 2271–2273 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Sun, D. Q. et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. Hepatobiliary Surg. Nutr. 12, 386–403 (2023).

    PubMed  PubMed Central  Google Scholar 

  25. Balcar, L. et al. Patterns of acute decompensation in hospitalized patients with cirrhosis and course of acute-on-chronic liver failure. United European Gastroenterol. J. 9, 427–437 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, J. et al. Analysis of the dose-response relationship between the international normalized ratio and hepatic encephalopathy in patients with liver cirrhosis using restricted cubic spline functions. Front. Public Health 10, 919549 (2022).

    PubMed  PubMed Central  Google Scholar 

  27. Jang, J. W. et al. Effects of virologic response to treatment on short- and long-term outcomes of patients with chronic hepatitis B virus infection and decompensated cirrhosis. Clin. Gastroenterol. Hepatol. 16, 1954–1963.e3 (2018).

    PubMed  Google Scholar 

  28. Kim, T. H. et al. Determinants of re-compensation in patients with hepatitis B virus-related decompensated cirrhosis starting antiviral therapy. Aliment. Pharmacol. Ther. 55, 83–96 (2022). This article describes a combined scoring system including six clinical parameters, α-fetoprotein and the timing of antiviral therapy to accurately predict early recompensation in patients with HBV infection-related decompensated cirrhosis.

    CAS  PubMed  Google Scholar 

  29. He, Z. et al. Two-year free of complications during antiviral therapy predicts stable re-compensation in immediate-treatment HBV-related decompensated cirrhosis. Scand. J. Gastroenterol. 58, 403–411 (2023).

    PubMed  Google Scholar 

  30. Wang, Q. et al. Validation of Baveno VII criteria for recompensation in entecavir-treated patients with hepatitis B-related decompensated cirrhosis. J. Hepatol. 77, 1564–1572 (2022). In this study, over 50% of patients with decompensated cirrhosis secondary to HBV infection showed recompensation after antiviral treatment, and the study proposes laboratory criteria that could be utilized to define recompensation.

    CAS  PubMed  Google Scholar 

  31. El-Sherif, O. et al. Baseline factors associated with improvements in decompensated cirrhosis after direct-acting antiviral therapy for hepatitis C virus infection. Gastroenterology 154, 2111–2121.e8 (2018).

    CAS  PubMed  Google Scholar 

  32. Belli, L. S. et al. Impact of DAAs on liver transplantation: major effects on the evolution of indications and results. An ELITA study based on the ELTR registry. J. Hepatol. 69, 810–817 (2018).

    CAS  PubMed  Google Scholar 

  33. Reiberger, T. & Hofer, B. S. The Baveno VII concept of cirrhosis recompensation. Dig. Liver Dis. 55, 431–441 (2023).

    PubMed  Google Scholar 

  34. Hofer, B. S. et al. Hepatic recompensation according to Baveno VII criteria is linked to a significant survival benefit in decompensated alcohol-related cirrhosis. Liver Int. 43, 2220–2231 (2023).

    PubMed  Google Scholar 

  35. Rinella, M. E., Tacke, F., Sanyal, A. J. & Anstee, Q. M. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J. Hepatol. 71, 823–833 (2019). This report summarizes important findings from ongoing and completed trials, defines the scientific evidence supporting distinct end points and provides guidance for future trial design.

    PubMed  Google Scholar 

  36. Boyle, M., Masson, S. & Anstee, Q. M. The bidirectional impacts of alcohol consumption and the metabolic syndrome: cofactors for progressive fatty liver disease. J. Hepatol. 68, 251–267 (2018).

    PubMed  Google Scholar 

  37. Berzigotti, A. et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology 65, 1293–1305 (2017).

    PubMed  Google Scholar 

  38. Noureddin, M. & Wong, V. W. A revisit of the natural history of nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 21, 1152–1153 (2023).

    PubMed  Google Scholar 

  39. Tanaka, N. et al. Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J. Gastroenterol. 25, 163–177 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Calcaterra, V. et al. Benefits of physical exercise as approach to prevention and reversion of non-alcoholic fatty liver disease in children and adolescents with obesity. Children 9, 1174 (2022).

    PubMed  PubMed Central  Google Scholar 

  41. Vuppalanchi, R., Noureddin, M., Alkhouri, N. & Sanyal, A. J. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 18, 373–392 (2021).

    PubMed  Google Scholar 

  42. Trepo, E. & Valenti, L. Update on NAFLD genetics: from new variants to the clinic. J. Hepatol. 72, 1196–1209 (2020).

    CAS  PubMed  Google Scholar 

  43. Bence, K. K. & Birnbaum, M. J. Metabolic drivers of non-alcoholic fatty liver disease. Mol. Metab. 50, 101143 (2021).

    CAS  PubMed  Google Scholar 

  44. Ferguson, D. & Finck, B. N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 17, 484–495 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    CAS  PubMed  Google Scholar 

  46. Loomba, R. et al. Semaglutide 2.4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 511–522 (2023).

    PubMed  Google Scholar 

  47. Brown, G. T. & Kleiner, D. E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism 65, 1080–1086 (2016).

    CAS  PubMed  Google Scholar 

  48. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    PubMed  Google Scholar 

  49. Jayakumar, S. et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: analysis of data from a phase II trial of selonsertib. J. Hepatol. 70, 133–141 (2019).

    PubMed  Google Scholar 

  50. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    CAS  PubMed  Google Scholar 

  51. Francque, S. M. et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. N. Engl. J. Med. 385, 1547–1558 (2021).

    CAS  PubMed  Google Scholar 

  52. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    CAS  PubMed  Google Scholar 

  53. Karim, G. & Bansal, M. B. Resmetirom: an orally administered, smallmolecule, liver-directed, beta-selective THR agonist for the treatment of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. touchREV Endocrinol. 19, 60–70 (2023).

    PubMed  PubMed Central  Google Scholar 

  54. Harrison, S. et al. Primary results from MAESTRO-NASH a pivotal phase 3 52-week serial liver biopsy study in 966 patients with NASH and fibrosis. J. Hepatol. 78, S1 (2023).

    Google Scholar 

  55. Hafeez, S. & Ahmed, M. H. Bariatric surgery as potential treatment for nonalcoholic fatty liver disease: a future treatment by choice or by chance? J. Obes. 2013, 839275 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Bassegoda, O. et al. Decompensation in advanced nonalcoholic fatty liver disease may occur at lower hepatic venous pressure gradient levels than in patients with viral disease. Clin. Gastroenterol. Hepatol. 20, 2276–2286.e6 (2022).

    CAS  PubMed  Google Scholar 

  57. Sanyal, A. J. et al. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. Hepatology 75, 1235–1246 (2022). In this study in patients with compensated cirrhosis due to NASH, regression of fibrosis was associated with a reduction in liver-related complications, and the findings support the utility of histological fibrosis regression and noninvasive tests as clinical trial end points in NASH cirrhosis.

    CAS  PubMed  Google Scholar 

  58. Tan, D. J. H. et al. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: a systematic review and meta-analysis. Lancet Oncol. 23, 521–530 (2022).

    PubMed  PubMed Central  Google Scholar 

  59. Rios, R. S., Zheng, K. I. & Zheng, M. H. Non-alcoholic steatohepatitis and risk of hepatocellular carcinoma. Chin. Med. J. 134, 2911–2921 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Villanueva, C. et al. Development of hyperdynamic circulation and response to β-blockers in compensated cirrhosis with portal hypertension. Hepatology 63, 197–206 (2016).

    CAS  PubMed  Google Scholar 

  61. Costa, D. et al. Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality. J. Hepatol. 74, 819–828 (2021).

    CAS  PubMed  Google Scholar 

  62. Villanueva, C. et al. Bacterial infections adversely influence the risk of decompensation and survival in compensated cirrhosis. J. Hepatol. 75, 589–599 (2021).

    PubMed  Google Scholar 

  63. Noor, M. T. & Manoria, P. Immune dysfunction in cirrhosis. J. Clin. Transl. Hepatol. 5, 50–58 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Pouwels, S. et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 22, 63 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kenneally, S., Sier, J. H. & Moore, J. B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 4, e000139 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Tanwar, S., Rhodes, F., Srivastava, A., Trembling, P. M. & Rosenberg, W. M. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J. Gastroenterol. 26, 109–133 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hsu, S. J. et al. Extrahepatic angiogenesis hinders recovery of portal hypertension and collaterals in rats with cirrhosis resolution. Clin. Sci. 132, 669–683 (2018).

    CAS  Google Scholar 

  68. Zafra, C. et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 126, 749–755 (2004).

    CAS  PubMed  Google Scholar 

  69. Fernandez, M. Molecular pathophysiology of portal hypertension. Hepatology 61, 1406–1415 (2015).

    PubMed  Google Scholar 

  70. Chalasani, N. et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 158, 1334–1345.e5 (2020).

    CAS  PubMed  Google Scholar 

  71. Wan, S., Huang, C. & Zhu, X. Systematic review with a meta-analysis: clinical effects of statins on the reduction of portal hypertension and variceal haemorrhage in cirrhotic patients. BMJ Open 9, e030038 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Gorabi, A. M. et al. Statin-induced nitric oxide signaling: mechanisms and therapeutic implications. J. Clin. Med. 8, 2051 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, H. C. et al. Microbiota transplants from feces or gut content attenuated portal hypertension and portosystemic collaterals in cirrhotic rats. Clin. Sci. 135, 2709–2728 (2021).

    CAS  Google Scholar 

  74. Freekh, D. A., Helmy, M. W., Said, M. & El-Khodary, N. M. The effect of direct acting antiviral agents on vascular endothelial function in Egyptian patients with chronic hepatitis C virus infection. Saudi Pharm. J. 29, 1120–1128 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Van der Merwe, S., Chokshi, S., Bernsmeier, C. & Albillos, A. The multifactorial mechanisms of bacterial infection in decompensated cirrhosis. J. Hepatol. 75, S82–S100 (2021).

    PubMed  Google Scholar 

  76. Dirchwolf, M. et al. Immune dysfunction in cirrhosis: distinct cytokines phenotypes according to cirrhosis severity. Cytokine 77, 14–25 (2016).

    CAS  PubMed  Google Scholar 

  77. Trebicka, J. et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis. Front. Immunol. 10, 476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Monteiro, S. et al. Differential inflammasome activation predisposes to acute-on-chronic liver failure in human and experimental cirrhosis with and without previous decompensation. Gut 70, 379–387 (2021).

    CAS  PubMed  Google Scholar 

  79. Zheng, K. I., Sun, D. Q., Jin, Y., Zhu, P. W. & Zheng, M. H. Clinical utility of the MAFLD definition. J. Hepatol. 74, 989–991 (2021).

    PubMed  Google Scholar 

  80. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).

    PubMed  Google Scholar 

  81. Younossi, Z. M. et al. The association of histologic and noninvasive tests with adverse clinical and patient-reported outcomes in patients with advanced fibrosis due to nonalcoholic steatohepatitis. Gastroenterology 160, 1608–1619.e13 (2021).

    PubMed  Google Scholar 

  82. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    CAS  PubMed  Google Scholar 

  83. Bzowej, N. H. Nonalcoholic steatohepatitis: the new frontier for liver transplantation. Curr. Opin. Organ. Transpl. 23, 169–174 (2018).

    Google Scholar 

  84. Villeret, F. et al. Inevitability of disease recurrence after liver transplantation for NAFLD cirrhosis. JHEP Rep. 5, 100668 (2023).

    PubMed  PubMed Central  Google Scholar 

  85. Dooghaie Moghadam, A. et al. Recurrence of fatty liver disease following liver transplantation for NAFLD-related cirrhosis: current status and challenges. Casp. J. Intern. Med. 11, 346–354 (2020).

    Google Scholar 

  86. Sharma, S. & Roy, A. Recompensation in cirrhosis: current evidence and future directions. J. Clin. Exp. Hepatol. 13, 329–334 (2023).

    CAS  PubMed  Google Scholar 

  87. Lo, R. C. & Kim, H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin. Mol. Hepatol. 23, 302–307 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Wanless, I. R., Nakashima, E. & Sherman, M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis. Arch. Pathol. Lab. Med. 124, 1599–1607 (2000).

    CAS  PubMed  Google Scholar 

  89. Petta, S. et al. Non-invasive prediction of esophageal varices by stiffness and platelet in non-alcoholic fatty liver disease cirrhosis. J. Hepatol. 69, 878–885 (2018).

    PubMed  Google Scholar 

  90. Hsu, C. et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants. Clin. Gastroenterol. Hepatol. 17, 630–637.e8 (2019).

    PubMed  Google Scholar 

  91. Feng, G. et al. A simpler diagnostic formula for screening nonalcoholic fatty liver disease. Clin. Biochem. 64, 18–23 (2019).

    CAS  PubMed  Google Scholar 

  92. Kline, A. et al. Multimodal machine learning in precision health: a scoping review. npj Digit. Med. 5, 171 (2022).

    PubMed  PubMed Central  Google Scholar 

  93. Zhang, S., Yang, Y., Fan, L., Zhang, F. & Li, L. The clinical application of mesenchymal stem cells in liver disease: the current situation and potential future. Ann. Transl. Med. 8, 565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, X. et al. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci. 10, 123 (2020).

    PubMed  PubMed Central  Google Scholar 

  95. Owen, A., Patten, D., Vigneswara, V., Frampton, J. & Newsome, P. N. PDGFRα/Sca-1 sorted mesenchymal stromal cells reduce liver injury in murine models of hepatic ischemia-reperfusion injury. Stem Cell 40, 1056–1070 (2022).

    Google Scholar 

  96. Santoro, R. & Mangia, A. Progress in promising anti-fibrotic therapies. Expert Rev. Gastroenterol. Hepatol. 13, 1145–1152 (2019).

    CAS  PubMed  Google Scholar 

  97. Younossi, Z. M., Zelber-Sagi, S., Henry, L. & Gerber, L. H. Lifestyle interventions in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00800-4 (2023). This paper summarizes the evidence on lifestyle interventions for management of NAFLD.

    Article  PubMed  Google Scholar 

  98. Vuille-Lessard, É., Lange, N., Riebensahm, C., Dufour, J.-F. & Berzigotti, A. Dietary interventions in liver diseases: focus on MAFLD and cirrhosis. Curr. Hepatol. Rep. 20, 61–76 (2021).

    Google Scholar 

  99. Kamada, Y. et al. Clinical practice advice on lifestyle modification in the management of nonalcoholic fatty liver disease in Japan: an expert review. J. Gastroenterol. 56, 1045–1061 (2021).

    CAS  PubMed  Google Scholar 

  100. Theel, W. B. et al. Effect of bariatric surgery on NAFLD/NASH: a single-centre observational prospective cohort study. BMJ Open 13, e070431 (2023).

    PubMed  PubMed Central  Google Scholar 

  101. Bai, J. et al. Bariatric surgery is effective and safe for obese patients with compensated cirrhosis: a systematic review and meta-analysis. World J. Surg. 46, 1122–1133 (2022).

    PubMed  Google Scholar 

  102. Taitano, A. A. et al. Bariatric surgery improves histological features of nonalcoholic fatty liver disease and liver fibrosis. J. Gastrointest. Surg. 19, 429–437 (2015).

    PubMed  Google Scholar 

  103. Rinella, M. E. et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 77, 1797–1835 (2023). These practice guideline provide clinical recommendations for assessment and management of NAFLD.

    PubMed  Google Scholar 

  104. Gawrieh, S. et al. Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD. Ann. Diagn. Pathol. 47, 151518 (2020).

    PubMed  PubMed Central  Google Scholar 

  105. Decharatanachart, P., Chaiteerakij, R., Tiyarattanachai, T. & Treeprasertsuk, S. Application of artificial intelligence in non-alcoholic fatty liver disease and liver fibrosis: a systematic review and meta-analysis. Ther. Adv. Gastroenterol. 14, 17562848211062807 (2021).

    CAS  Google Scholar 

  106. Naoumov, N. V. et al. Digital pathology with artificial intelligence analyses provides greater insights into treatment-induced fibrosis regression in NASH. J. Hepatol. 77, 1399–1409 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the CHESS-MAFLD consortium for their coordination.

Author information

Authors and Affiliations

Authors

Contributions

G.F. researched data for the article. All authors contributed substantially to discussion of the content. M.-H.Z. and G.F. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ming-Hua Zheng.

Ethics declarations

Competing interests

L.V. reports consulting fees from Gilead Sciences, Pfizer, AstraZeneca, Novo Nordisk, Intercept pharmaceuticals, Diatech Pharmacogenetics, IONIS and Viatris; honoraria from MSD, Gilead Sciences, AlfaSigma, AbbVie and Resalis; and grants from Gilead Sciences. V.W.-S.W. reports grants from Gilead Sciences; consulting fees from AbbVie, Boehringer Ingelheim, Echosens, Gilead Sciences, Intercept, Inventiva, Novo Nordisk, Pfizer and TARGET PharmaSolutions; and honoraria for lectures from Abbott, AbbVie, Gilead Sciences and Novo Nordisk; and is Chairman of Subspecialty Board of Gastroenterology and Hepatology, Hong Kong College of Physicians, and Co-founder of Illuminatio Medical Technology. Y.Y. is a consultant to Zydus, Cymabay and Novo Nordisk. W.K. reports grants from GSK, Gilead Sciences, Novartis, Pfizer, Roche, Springbank, Ildong, Galmed, Dicerna, Enyo, Hanmi, Novo Nordisk and KOBIOLABS; reports consulting fees from Boehringer Ingelheim, Novo Nordisk, Standigm, Daewoong, TSD Life Sciences, Ildong, Olix Pharma, HK Inoen and KOBIOLABS; honoraria for lectures from Ildong, Samil and Novo Nordisk; owns stocks in KOBIOLABS and Lepidyne; and is the founder of Remedygen. G.S. reports honoraria from Merck, Gilead Sciences, Abbvie, Intercept, Novo Nordisk and Pfizer; and unrestricted research funding from Theratechnologies. Z.M.Y. is a consultant to BMS, Gilead Sciences, AbbVie, Intercept and GSK. V.H.-G. reports honoraria for lectures from GORE and Cook Medical. M.-H.Z. and Y.M.F. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Takumi Kawaguchi, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Valenti, L., Wong, V.WS. et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 21, 46–56 (2024). https://doi.org/10.1038/s41575-023-00846-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00846-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing