Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Changing epidemiology of colorectal cancer — birth cohort effects and emerging risk factors

Abstract

Incidence and mortality of colorectal cancer (CRC) are increasing worldwide, suggesting broad changes in the epidemiology of CRC. In this Review, we discuss the changes that are becoming evident, including trends in CRC incidence and mortality by age and birth cohort, and consider the contributions of early-life exposures and emerging risk factors to these changes. Importantly, incidence of CRC has increased among people born since the early 1950s in nearly all regions of the world. These so-called birth cohort effects imply the involvement of factors that influence the earliest stages of carcinogenesis and have effects across the life course. Accumulating evidence supports the idea that early-life exposures are important risk factors for CRC, including exposures during fetal development, childhood, adolescence and young adulthood. Environmental chemicals could also have a role because the introduction of many in the 1950s and 1960s coincides with increasing incidence of CRC among people born during those years. To reverse the expected increases in the global burden of CRC, participation in average-risk screening programmes needs to be increased by scaling up and implementing evidence-based screening strategies, and emerging risk factors responsible for these increases need to be identified.

Key points

  • Incidence and mortality of colorectal cancer (CRC) are increasing worldwide, suggesting broad changes in the epidemiology of CRC.

  • The incidence of CRC has increased among people born since the early 1950s in nearly all regions of the world; so-called birth cohort effects.

  • Birth cohort effects implicate factors that influence the earliest stages of carcinogenesis and have effects across the life course.

  • Accumulating evidence supports the idea that early-life exposures, including those during fetal development, childhood, adolescence and young adulthood, are important risk factors for CRC.

  • Environmental chemicals could have a role in birth cohort effects because the introduction of many in the 1950s and 1960s coincides with increasing incidence of CRC among people born during those years.

  • To prevent expected increases in the global burden of CRC, participation in average-risk screening programmes needs to be increased, and emerging risk factors responsible for the increases need to be identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence of and mortality associated with colorectal cancer by age group and world region over time.
Fig. 2: Incidence rate ratios of colorectal cancer by birth cohort and world region.

Similar content being viewed by others

References

  1. Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691 (2017).

    PubMed  Google Scholar 

  2. GBD 2019 Colorectal Cancer Collaborators.Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 7, 627–647 (2022).

    Google Scholar 

  3. Douaiher, J. et al. Colorectal cancer—global burden, trends, and geographical variations. J. Surg. Oncol. 115, 619–630 (2017).

    PubMed  Google Scholar 

  4. IHME Data. Global Burden of Disease Study 2019 (GBD 2019) data resources. GHDx https://ghdx.healthdata.org/gbd-2019 (2019).

  5. Siegel, R. L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68, 2179–2185 (2019).

    PubMed  Google Scholar 

  6. Siegel, R. L. et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J. Natl Cancer Inst. 109, djw322 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Akimoto, N. et al. Rising incidence of early-onset colorectal cancer — a call to action. Nat. Rev. Clin. Oncol. 18, 230–243 (2021).

    PubMed  Google Scholar 

  8. Sinicrope, F. A. Increasing incidence of early-onset colorectal cancer. N. Engl. J. Med. 386, 1547–1558 (2022).

    CAS  PubMed  Google Scholar 

  9. Patel, S. G., Karlitz, J. J., Yen, T., Lieu, C. H. & Boland, C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol. Hepatol. 7, 262–274 (2022).

    PubMed  Google Scholar 

  10. Ugai, T. et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat. Rev. Clin. Oncol. 19, 656–673 (2022).

    PubMed  PubMed Central  Google Scholar 

  11. Knudsen, A. B. et al. Colorectal cancer screening: an updated modeling study for the US preventive services task force. JAMA 325, 1998–2011 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Stoffel, E. M. et al. Germline genetic features of young individuals with colorectal cancer. Gastroenterology 154, 897–905.e891 (2018).

    CAS  PubMed  Google Scholar 

  13. Pearlman, R. et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 3, 464–471 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Lee, J. K. et al. Rising early-onset colorectal cancer incidence is not an artifact of increased screening colonoscopy use in a large, diverse healthcare system. Gastroenterology 162, 325–327.e323 (2022).

    PubMed  Google Scholar 

  15. Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).

    PubMed  Google Scholar 

  16. Hofseth, L. J. et al. Early-onset colorectal cancer: initial clues and current views. Nat. Rev. Gastroenterol. Hepatol. 17, 352–364 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Murphy, C. C., Singal, A. G., Baron, J. A. & Sandler, R. S. Decrease in incidence of young-onset colorectal cancer before recent increase. Gastroenterology 155, 1716–1719.e4 (2018).

    PubMed  Google Scholar 

  18. SEER. Surveillance, Epidemiology, and End Results (SEER) Program. SEER https://seer.cancer.gov/data-software/documentation/seerstat/nov2022/ (2023).

  19. Siegel, R. L., Medhanie, G. A., Fedewa, S. A. & Jemal, A. State variation in early-onset colorectal cancer in the United States, 1995–2015. J. Natl Cancer Inst. 111, 1104–1106 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Abdelsattar, Z. M. et al. Colorectal cancer outcomes and treatment patterns in patients too young for average-risk screening. Cancer 122, 929–934 (2016).

    PubMed  Google Scholar 

  21. Rho, Y. S. et al. Comparing clinical characteristics and outcomes of young-onset and late-onset colorectal cancer: an international collaborative study. Clin. Colorectal Cancer 16, 334–342 (2017).

    PubMed  Google Scholar 

  22. Patel, S. G. & Ahnen, D. J. Colorectal cancer in the young. Curr. Gastroenterol. Rep. 20, 15 (2018).

    PubMed  Google Scholar 

  23. Cercek, A. et al. A comprehensive comparison of early-onset and average-onset colorectal cancers. J. Natl Cancer Inst. 113, 1683–1692 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Chang, D. T. et al. Clinicopathologic and molecular features of sporadic early-onset colorectal adenocarcinoma: an adenocarcinoma with frequent signet ring cell differentiation, rectal and sigmoid involvement, and adverse morphologic features. Mod. Pathol. 25, 1128–1139 (2012).

    PubMed  Google Scholar 

  25. Murphy, C. C. et al. Patterns of sociodemographic and clinicopathologic characteristics of stages ii and iii colorectal cancer patients by age: examining potential mechanisms of young-onset disease. J. Cancer Epidemiol. 2017, 4024580 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Di Leo, M. et al. Risk factors and clinical characteristics of early-onset colorectal cancer vs. late-onset colorectal cancer: a case-case study. Eur. J. Gastroenterol. Hepatol. 33, 1153–1160 (2020).

    Google Scholar 

  27. Gausman, V. et al. Risk factors associated with early-onset colorectal cancer. Clin. Gastroenterol. Hepatol. 18, 2752–2759.e2752 (2020).

    PubMed  Google Scholar 

  28. Chang, V. C., Cotterchio, M., De, P. & Tinmouth, J. Risk factors for early-onset colorectal cancer: a population-based case-control study in Ontario, Canada. Cancer Causes Control 33, 1063–1083 (2021).

    Google Scholar 

  29. Griffiths, C. D. et al. Presentation and survival among patients with colorectal cancer before the age of screening: a systematic review and meta-analysis. Can. J. Surg. 64, E91–E100 (2021).

    PubMed  PubMed Central  Google Scholar 

  30. Archambault, A. N. et al. Cumulative burden of colorectal cancer-associated genetic variants is more strongly associated with early-onset vs late-onset cancer. Gastroenterology 158, 1274–1286.e1212 (2020).

    CAS  PubMed  Google Scholar 

  31. Murphy, C. C., Wallace, K., Sandler, R. S. & Baron, J. A. Racial disparities in incidence of young-onset colorectal cancer and patient survival. Gastroenterology 156, 958–965 (2019).

    PubMed  Google Scholar 

  32. World Cancer Research Fund/American Institute for Cancer Research. Diet, nutrition, physical activity and colorectal cancer. World Cancer Research Fund https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf (2018).

  33. Kim, H., Wang, K., Song, M. & Giovannucci, E. L. A comparison of methods in estimating population attributable risk for colorectal cancer in the United States. Int. J. Cancer 148, 2947–2953 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brenner, D. R. et al. Increasing colorectal cancer incidence trends among younger adults in Canada. Prev. Med. 105, 345–349 (2017).

    PubMed  Google Scholar 

  35. Feletto, E. et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: analysis of data on over 375,000 cases. Cancer Epidemiol. Biomark. Prev. 28, 83–90 (2019).

    Google Scholar 

  36. Chung, R. Y. et al. A population-based age-period-cohort study of colorectal cancer incidence comparing Asia against the West. Cancer Epidemiol. 59, 29–36 (2019).

    PubMed  Google Scholar 

  37. Zheng, T. et al. Time trend and the age-period-cohort effect on the incidence of histologic types of lung cancer in Connecticut, 1960–1989. Cancer 74, 1556–1567 (1994).

    CAS  PubMed  Google Scholar 

  38. Jemal, A., Chu, K. C. & Tarone, R. E. Recent trends in lung cancer mortality in the United States. J. Natl Cancer Inst. 93, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  39. Anderson, W. F. et al. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA 303, 1723–1728 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, W. F. et al. The changing face of noncardia gastric cancer incidence among US non-hispanic whites. J. Natl Cancer Inst. 110, 608–615 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pinheiro, P. S. et al. Liver cancer: a leading cause of cancer death in the United States and the role of the 1945–1965 birth cohort by ethnicity. JHEP Rep. 1, 162–169 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Clarke, M. A. & Joshu, C. E. Early life exposures and adult cancer risk. Epidemiol. Rev. 39, 11–27 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Wild, C. P. How much of a contribution do exposures experienced between conception and adolescence make to the burden of cancer in adults? Cancer Epidemiol. Biomark. Prev. 20, 580–581 (2011).

    Google Scholar 

  44. Tomatis, L. Overview of perinatal and multigeneration carcinogenesis. IARC Sci. Publ. (96), 1–15 (1989).

  45. Cohn, B. A. et al. DDT exposure in utero and breast cancer. J. Clin. Endocrinol. Metab. 100, 2865–2872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohn, B. A., Cirillo, P. M. & Christianson, R. E. Prenatal DDT exposure and testicular cancer: a nested case–control study. Arch. Env. Occup. Health 65, 127–134 (2010).

    CAS  Google Scholar 

  47. Preston, D. L. et al. Cancer incidence in atomic bomb survivors. Part III: leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 137, S68–S97 (1994).

    CAS  PubMed  Google Scholar 

  48. Preston, D. L. et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J. Natl Cancer Inst. 100, 428–436 (2008).

    PubMed  Google Scholar 

  49. Vedham, V., Verma, M. & Mahabir, S. Early‐life exposures to infectious agents and later cancer development. Cancer Med. 4, 1908–1922 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. van den Berg, B. The California child health and development studies. Handb. Longitud. Res. 1, 166–179 (1984).

    Google Scholar 

  51. van den Berg, B. J., Christianson, R. E. & Oechsli, F. W. The California child health and development studies of the School of Public Health, University of California at Berkeley. Paediatr. Perinat. Epidemiol. 2, 265–282 (1988).

    PubMed  Google Scholar 

  52. Lehtinen, M., Surcel, H. M., Natunen, K., Pukkala, E. & Dillner, J. Cancer registry follow-up for 17 million person-years of a nationwide maternity cohort. Cancer Med. 6, 3060–3064 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Wadsworth, M., Kuh, D., Richards, M. & Hardy, R. Cohort profile: the 1946 national birth cohort (MRC National Survey of Health and Development). Int. J. Epidemiol. 35, 49–54 (2006).

    PubMed  Google Scholar 

  54. Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol. 35, 34–41 (2006).

    PubMed  Google Scholar 

  55. Sullivan, A., Brown, M., Hamer, M. & Ploubidis, G. B. Cohort profile update: the 1970 British Cohort Study (BCS70). Int. J. Epidemiol. 35, 836–843 (2022).

    Google Scholar 

  56. Lessof, C., Ross, A., Brind, R., Bell, E. & Newton, S. Longitudinal study of young people in England cohort 2: health and wellbeing at wave 2. gov.uk https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/599871/LSYPE2_w2-research_report.pdf (2016).

  57. Barker, D. J., Osmond, C., Thornburg, K. L., Kajantie, E. & Eriksson, J. G. The shape of the placental surface at birth and colorectal cancer in later life. Am. J. Hum. Biol. 25, 566–568 (2013).

    PubMed  Google Scholar 

  58. Cnattingius, S., Lundberg, F. & Iliadou, A. Birth characteristics and risk of colorectal cancer: a study among Swedish twins. Br. J. Cancer 100, 803–806 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahlgren, M., Wohlfahrt, J., Olsen, L. W., Sørensen, T. I. & Melbye, M. Birth weight and risk of cancer. Cancer 110, 412–419 (2007).

    PubMed  Google Scholar 

  60. McCormack, V. A., dos Santos Silva, I., Koupil, I., Leon, D. A. & Lithell, H. O. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int. J. Cancer 115, 611–617 (2005).

    CAS  PubMed  Google Scholar 

  61. Nilsen, T. I., Romundstad, P. R., Troisi, R., Potischman, N. & Vatten, L. J. Birth size and colorectal cancer risk: a prospective population based study. Gut 54, 1728–1732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith, N. R. et al. Associations between birth weight and colon and rectal cancer risk in adulthood. Cancer Epidemiol. 42, 181–185 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Spracklen, C. N. et al. Birth weight and subsequent risk of cancer. Cancer Epidemiol. 38, 538–543 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Yang, T. O., Reeves, G. K., Green, J., Beral, V. & Cairns, B. J. Birth weight and adult cancer incidence: large prospective study and meta-analysis. Ann. Oncol. 25, 1836–1843 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sandhu, M. S., Luben, R., Day, N. E. & Khaw, K. T. Self-reported birth weight and subsequent risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 11, 935–938 (2002).

    Google Scholar 

  66. Murphy, C. C. et al. Maternal obesity, pregnancy weight gain, and birth weight and risk of colorectal cancer. Gut 71, 2611–2612 (2021).

    Google Scholar 

  67. Murphy, C. C., Cirillo, P. M., Krigbaum, N. Y. & Cohn, B. A. In utero exposure to 17α-hydroxyprogesterone caproate and risk of cancer in offspring. Am. J. Obstet. Gynecol. 226, 132.e1–132.e14 (2021).

    PubMed  Google Scholar 

  68. Murphy, C. C., Cirillo, P. M., Krigbaum, N. Y., Singal, A. G. & Cohn, B. A. In utero exposure to anti-emetic and risk of adult-onset colorectal cancer. JNCI Cancer Spectr. 7, pkad021 (2023).

    PubMed  PubMed Central  Google Scholar 

  69. Murphy, C. C. et al. In-utero exposure to antibiotics and risk of colorectal cancer in a prospective cohort of 18000 adult offspring. Int. J. Epidemiol. 24, dyad004 (2023).

    Google Scholar 

  70. Liu, P. H. et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5, 37–44 (2019).

    PubMed  Google Scholar 

  71. Nimptsch, K. et al. Body fatness during childhood and adolescence, adult height, and risk of colorectal adenoma in women. Cancer Prev. Res. 4, 1710–1718 (2011).

    Google Scholar 

  72. Li, H. et al. Associations of body mass index at different ages with early-onset colorectal cancer. Gastroenterology 162, 1088–1097.e1083 (2022).

    PubMed  Google Scholar 

  73. Jensen, B. W. et al. Childhood body mass index and height in relation to site-specific risks of colorectal cancers in adult life. Eur. J. Epidemiol. 32, 1097–1106 (2017).

    CAS  PubMed  Google Scholar 

  74. Celind, J., Ohlsson, C., Bygdell, M., Nethander, M. & Kindblom, J. M. Childhood body mass index is associated with risk of adult colon cancer in men – an association modulated by pubertal change in body mass index. Cancer Epidemiol. Biomark. Prev. 28, 974–979 (2019).

    Google Scholar 

  75. Bjørge, T., Engeland, A., Tverdal, A. & Smith, G. D. Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents. Am. J. Epidemiol. 168, 30–37 (2008).

    PubMed  Google Scholar 

  76. Burton, A., Martin, R., Galobardes, B., Davey Smith, G. & Jeffreys, M. Young adulthood body mass index and risk of cancer in later adulthood: historical cohort study. Cancer Causes Control 21, 2069–2077 (2010).

    PubMed  Google Scholar 

  77. Nimptsch, K. & Wu, K. Is timing important? the role of diet and lifestyle during early life on colorectal neoplasia. Curr. Colorectal Cancer Rep. 14, 1–11 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Garcia, H. & Song, M. Early-life obesity and adulthood colorectal cancer risk: a meta-analysis. Rev. Panam. Salud Publica 43, e3 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Moghaddam, A. A., Woodward, M. & Huxley, R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol. Biomark. Prev. 16, 2533–2547 (2007).

    Google Scholar 

  80. Larsson, S. C. & Wolk, A. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am. J. Clin. Nutr. 86, 556–565 (2007).

    CAS  PubMed  Google Scholar 

  81. Bardou, M., Barkun, A. N. & Martel, M. Obesity and colorectal cancer. Gut 62, 933–947 (2013).

    CAS  PubMed  Google Scholar 

  82. Godfrey, K. M. & Barker, D. J. Fetal programming and adult health. Public Health Nutr. 4, 611–624 (2001).

    CAS  PubMed  Google Scholar 

  83. Shankar, K. et al. Maternal obesity at conception programs obesity in the offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R528–R538 (2008).

    CAS  PubMed  Google Scholar 

  84. Curhan, G. C. et al. Birth weight and adult hypertension and obesity in women. Circulation 94, 1310–1315 (1996).

    CAS  PubMed  Google Scholar 

  85. Armitage, J. A., Poston, L. & Taylor, P. D. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front. Horm. Res. 36, 73–84 (2008).

    PubMed  Google Scholar 

  86. Larsson, S. C., Orsini, N. & Wolk, A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J. Natl Cancer Inst. 97, 1679–1687 (2005).

    PubMed  Google Scholar 

  87. Nimptsch, K. et al. Dietary intakes of red meat, poultry, and fish during high school and risk of colorectal adenomas in women. Am. J. Epidemiol. 178, 172–183 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Nimptsch, K. et al. Dairy intake during adolescence and risk of colorectal adenoma later in life. Br. J. Cancer 124, 1160–1168 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hur, J. et al. Sugar-sweetened beverage intake in adulthood and adolescence and risk of early-onset colorectal cancer among women. Gut 70, 2330–2336 (2021).

    CAS  PubMed  Google Scholar 

  90. Joh, H.-K. et al. Simple sugar and sugar-sweetened beverage intake during adolescence and risk of colorectal cancer precursors. Gastroenterology 161, 128–142. e120 (2021).

    CAS  PubMed  Google Scholar 

  91. Nimptsch, K. et al. Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. Int. J. Cancer 134, 2458–2467 (2014).

    CAS  PubMed  Google Scholar 

  92. Dirx, M. J., van den Brandt, P. A., Goldbohm, R. A. & Lumey, L. Energy restriction early in life and colon carcinoma risk: results of the Netherlands Cohort Study after 7.3 years of follow‐up. Cancer 97, 46–55 (2003).

    PubMed  Google Scholar 

  93. Cao, Y. et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut 67, 672–678 (2018).

    CAS  PubMed  Google Scholar 

  94. Molmenti, C. L. S., Jacobs, E. T., Gupta, S. & Thomson, C. A. Early-onset colorectal cancer: a call for greater rigor in epidemiologic studies. Cancer Epidemiol. Biomark. Prev. 31, 507–511 (2022).

    Google Scholar 

  95. Dasu, K., Xia, X., Siriwardena, D., Klupinski, T. P. & Seay, B. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. J. Env. Manag. 301, 113879 (2022).

    CAS  Google Scholar 

  96. Prevedouros, K., Cousins, I. T., Buck, R. C. & Korzeniowski, S. H. Sources, fate and transport of perfluorocarboxylates. Env. Sci. Technol. 40, 32–44 (2006).

    CAS  Google Scholar 

  97. Temkin, A. M., Hocevar, B. A., Andrews, D. Q., Naidenko, O. V. & Kamendulis, L. M. Application of the key characteristics of carcinogens to per and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 17, 1668 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Leeson, A. et al. Identifying and managing aqueous film-forming foam-derived per- and polyfluoroalkyl substances in the environment. Env. Toxicol. Chem. 40, 24–36 (2021).

    CAS  Google Scholar 

  99. Kassotis, C. D. et al. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 8, 719–730 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, J. et al. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: an overview on the advances. Sci. Total. Env. 852, 158362 (2022).

    CAS  Google Scholar 

  101. Helte, E., Säve-Söderbergh, M., Larsson, S. C., Martling, A. & Åkesson, A. Disinfection by-products in drinking water and risk of colorectal cancer: a population-based cohort study. J. Natl Cancer Inst., https://doi.org/10.1093/jnci/djad145 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alavanja, M. C. & Bonner, M. R. Occupational pesticide exposures and cancer risk: a review. J. Toxicol. Env. Health B Crit. Rev. 15, 238–263 (2012).

    CAS  Google Scholar 

  103. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated Biphenyls and Polybrominated Biphenyls. (IARC: 2016) IARC Monographs vol. 107.

  104. Donato, F. et al. Polychlorinated biphenyls and risk of hepatocellular carcinoma in the population living in a highly polluted area in Italy. Sci. Rep. 11, 3064 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vuong, T. P. Research on the relationship between exposure to dioxins and cancer incidence in Vietnam. Toxics 10, 384 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Steenland, K. & Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Env. Res. 194, 110690 (2021).

    CAS  Google Scholar 

  107. Seachrist, D. D. et al. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol. 59, 167–182 (2016).

    CAS  PubMed  Google Scholar 

  108. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. & Sadeghi, M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 12, 643972 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chuang, S. C. et al. Phthalate exposure and prostate cancer in a population-based nested case-control study. Env. Res. 181, 108902 (2020).

    CAS  Google Scholar 

  110. Lee, W. J. et al. Pesticide use and colorectal cancer risk in the Agricultural Health Study. Int. J. Cancer 121, 339–346 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Matich, E. K. et al. Association between pesticide exposure and colorectal cancer risk and incidence: a systematic review. Ecotoxicol. Env. Saf. 219, 112327 (2021).

    CAS  Google Scholar 

  112. Oddone, E., Modonesi, C. & Gatta, G. Occupational exposures and colorectal cancers: a quantitative overview of epidemiological evidence. World J. Gastroenterol. 20, 12431–12444 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Kachuri, L., Villeneuve, P. J., Parent, M., Johnson, K. C. & Harris, S. A. Workplace exposure to diesel and gasoline engine exhausts and the risk of colorectal cancer in Canadian men. Env. Health 15, 4 (2016).

    Google Scholar 

  114. Goldberg, M. S. et al. A case–control study of the relationship between the risk of colon cancer in men and exposures to occupational agents. Am. J. Ind. Med. 39, 531–546 (2001).

    CAS  PubMed  Google Scholar 

  115. Talibov, M. et al. Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries. Cancer Epidemiol. 55, 156–161 (2018).

    PubMed  Google Scholar 

  116. Fang, R., Le, N. & Band, P. Identification of occupational cancer risks in British Columbia, Canada: a population-based case-control study of 1,155 cases of colon cancer. Int. J. Env. Res. Public. Health 8, 3821–3843 (2011).

    Google Scholar 

  117. Alharbi, O. M., Khattab, R. A. & Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018).

    CAS  Google Scholar 

  118. La Merrill, M. A. et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 16, 45–57 (2020).

    PubMed  Google Scholar 

  119. Valvi, D. et al. Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: a pilot untargeted metabolomic approach. Env. Int. 143, 105957 (2020).

    CAS  Google Scholar 

  120. La Merrill, M. A. et al. Exposure to Persistent Organic Pollutants (POPs) and their relationship to hepatic fat and insulin insensitivity among Asian Indian immigrants in the United States. Env. Sci. Technol. 53, 13906–13918 (2019).

    Google Scholar 

  121. Cano-Sancho, G., Salmon, A. G. & La Merrill, M. A. Association between exposure to p,p’-DDT and its metabolite p,p’-DDE with obesity: integrated systematic review and meta-analysis. Env. Health Perspect. 125, 096002 (2017).

    Google Scholar 

  122. Heindel, J. J. et al. Parma consensus statement on metabolic disruptors. Env. Health 14, 54 (2015).

    Google Scholar 

  123. La Merrill, M. & Birnbaum, L. S. Childhood obesity and environmental chemicals. Mt Sinai J. Med. 78, 22–48 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. La Merrill, M. et al. Toxicological function of adipose tissue: focus on persistent organic pollutants. Env. Health Perspect. 121, 162–169 (2013).

    Google Scholar 

  125. Newbold, R. R., Padilla-Banks, E., Jefferson, W. N. & Heindel, J. J. Effects of endocrine disruptors on obesity. Int. J. Androl. 31, 201–208 (2008).

    CAS  PubMed  Google Scholar 

  126. Giulivo, M., Lopez de Alda, M., Capri, E. & Barceló, D. Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Env. Res. 151, 251–264 (2016).

    CAS  Google Scholar 

  127. Aseervatham, G. S., Sivasudha, T., Jeyadevi, R. & Arul Ananth, D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans-an overview. Env. Sci. Pollut. Res. Int. 20, 4356–4369 (2013).

    Google Scholar 

  128. Mena, S., Ortega, A. & Estrela, J. M. Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. 674, 36–44 (2009).

    CAS  PubMed  Google Scholar 

  129. Khan, M. F. & Wang, G. Environmental agents, oxidative stress and autoimmunity. Curr. Opin. Toxicol. 7, 22–27 (2018).

    PubMed  Google Scholar 

  130. Steenland, K., Zhao, L., Winquist, A. & Parks, C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. Env. Health Perspect. 121, 900–905 (2013).

    Google Scholar 

  131. Tu, P. et al. Gut microbiome toxicity: connecting the environment and gut microbiome-associated diseases. Toxics 8, 19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Song, M. & Chan, A. T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol. 17, 275–289 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Zolkipli-Cunningham, Z. & Falk, M. J. Clinical effects of chemical exposures on mitochondrial function. Toxicology 391, 90–99 (2017).

    CAS  PubMed  Google Scholar 

  134. Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

    CAS  Google Scholar 

  135. Walker, D. I. et al. The metabolome: a key measure for exposome research in epidemiology. Curr. Epidemiol. Rep. 6, 93–103 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Uppal, K. et al. Computational metabolomics: a framework for the million metabolome. Chem. Res. Toxicol. 29, 1956–1975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Niedzwiecki, M. M. et al. The exposome: molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127 (2019).

    CAS  PubMed  Google Scholar 

  138. Hu, X. et al. A scalable workflow to characterize the human exposome. Nat. Commun. 12, 5575 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Goodrich, J. A. et al. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep. 4, 100550 (2022).

    PubMed  PubMed Central  Google Scholar 

  140. Hu, X. et al. Metabolome wide association study of serum poly and perfluoroalkyl substances (PFASs) in pregnancy and early postpartum. Reprod. Toxicol. 87, 70–78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cohn, B. A. et al. In utero exposure to poly- and perfluoroalkyl substances (PFASs) and subsequent breast cancer. Reprod. Toxicol. 92, 112–119 (2020).

    CAS  PubMed  Google Scholar 

  142. Schreuders, E. H. et al. Colorectal cancer screening: a global overview of existing programmes. Gut 64, 1637–1649 (2015).

    PubMed  Google Scholar 

  143. Navarro, M., Nicolas, A., Ferrandez, A. & Lanas, A. Colorectal cancer population screening programs worldwide in 2016: an update. World J. Gastroenterol. 23, 3632–3642 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Chen, H. et al. Participation and yield of a population-based colorectal cancer screening programme in China. Gut 68, 1450–1457 (2019).

    PubMed  Google Scholar 

  145. Im Shim, J. et al. Results of colorectal cancer screening of the national cancer screening program in Korea, 2008. Cancer Res. Treat. 42, 191–198 (2010).

    Google Scholar 

  146. Cohn, B. A. Developmental and environmental origins of breast cancer: DDT as a case study. Reprod. Toxicol. 31, 302–311 (2011).

    CAS  PubMed  Google Scholar 

  147. Archambault, A. N. et al. Nongenetic determinants of risk for early-onset colorectal cancer. JNCI Cancer Spectr. 5, pkab029 (2021).

    PubMed  PubMed Central  Google Scholar 

  148. Jin, E. H. et al. Association between metabolic syndrome and the risk of colorectal cancer diagnosed before age 50 years according to tumor location. Gastroenterology 163, 637–648.e2 (2022).

    PubMed  Google Scholar 

  149. Sanford, N. N., Dharwadkar, P. & Murphy, C. C. Early-onset colorectal cancer: more than one side to the story. Colorectal Cancer 9, CRC28 (2020).

    Google Scholar 

  150. Jones, D. P. & Cohn, B. A. A vision for exposome epidemiology: the pregnancy exposome in relation to breast cancer in the Child Health and Development Studies. Reprod. Toxicol. 92, 4–10 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Caitlin C. Murphy.

Ethics declarations

Competing interests

C.C.M. is a consultant for Freenome. T.A.Z. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Peter T. Campbell, Mingyang Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Health Data Exchange: https://ghdx.healthdata.org/

National Cancer Institute webtool: https://analysistools.cancer.gov/apc/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, C.C., Zaki, T.A. Changing epidemiology of colorectal cancer — birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol 21, 25–34 (2024). https://doi.org/10.1038/s41575-023-00841-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00841-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing