Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intestine as an endocrine organ and the role of gut hormones in metabolic regulation

Abstract

Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.

Key points

  • The gastrointestinal tract acts as a major endocrine organ, releasing various gut hormones that regulate physiological functions such as nutrient absorption, insulin release and appetite.

  • Gut hormones are produced by a variety of enteroendocrine cells (EECs) and non-enteroendocrine cells, which respond differently to different stimuli and secrete specific combinations of hormones.

  • EECs sense varied nutritional and non-nutritional stimuli via an array of sensory transporters, ion channels and receptors, making them an effective link between nutrient absorption and gut hormonal responses.

  • The biosynthesis and release pathways of gut hormones that are derived from cells other than EECs are poorly understood and are a potential area for further research.

  • A comprehensive understanding of gut hormones, their interactions with other organs and their complex regulatory mechanisms could help to identify new therapeutic modalities and extend the therapeutic potential of gut hormones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Processes regulated by gut hormones in various organs.
Fig. 2: Nutrient-induced mechanisms regulating EEC activity.

Similar content being viewed by others

References

  1. Tanday, N., Flatt, P. R. & Irwin, N. Metabolic responses and benefits of glucagon-like peptide-1 (GLP-1) receptor ligands. Br. J. Pharmacol. 179, 526–541 (2022).

    CAS  PubMed  Google Scholar 

  2. Adriaenssens, A. E., Reimann, F. & Gribble, F. M. Distribution and stimulus secretion coupling of enteroendocrine cells along the intestinal tract. Compr. Physiol. 8, 1603–1638 (2018).

    PubMed  Google Scholar 

  3. Miedzybrodzka, E. L., Reimann, F. & Gribble, F. M. The enteroendocrine system in obesity. Handb. Exp. Pharmacol. 274, 109–129 (2022).

    CAS  PubMed  Google Scholar 

  4. Rehfeld, J. F. in Principles of Endocrinology and Hormone Action (eds Belfiore, A. & LeRoith, D.) 1–15 (Springer, 2016).

  5. Kliewer, S. A. & Mangelsdorf, D. J. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig. Dis. 33, 327–331 (2015).

    PubMed  Google Scholar 

  6. Kuhn, M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 96, 751–804 (2016).

    CAS  PubMed  Google Scholar 

  7. Lockhart, S. M., Saudek, V. & O’Rahilly, S. GDF15: a hormone conveying somatic distress to the brain. Endocr. Rev. https://doi.org/10.1210/endrev/bnaa007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    CAS  PubMed  Google Scholar 

  9. Eliasson, J. et al. Apraglutide, a novel once-weekly glucagon-like peptide-2 analog, improves intestinal fluid and energy absorption in patients with short bowel syndrome: an open-label phase 1 and 2 metabolic balance trial. J. Parenter. Enter. Nutr. 46, 1639–1649 (2022).

    CAS  Google Scholar 

  10. Hargrove, D. M. et al. Pharmacological characterization of apraglutide, a novel long-acting peptidic glucagon-like peptide-2 agonist, for the treatment of short bowel syndrome. J. Pharmacol. Exp. Ther. 373, 193–203 (2020).

    CAS  PubMed  Google Scholar 

  11. Nachawi, N., Rao, P. P. & Makin, V. The role of GLP-1 receptor agonists in managing type 2 diabetes. Clevel. Clin. J. Med. 89, 457–464 (2022).

    Google Scholar 

  12. Gallwitz, B. Clinical perspectives on the use of the GIP/GLP-1 receptor agonist tirzepatide for the treatment of type-2 diabetes and obesity. Front. Endocrinol. 13, 1004044 (2022).

    Google Scholar 

  13. Bloom, S. R. & Polak, J. M. Gut hormones. Proc. Nutr. Soc. 37, 259–271 (1978).

    CAS  PubMed  Google Scholar 

  14. Habib, A. M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    CAS  PubMed  Google Scholar 

  16. Beumer, J., Gehart, H. & Clevers, H. Enteroendocrine dynamics – new tools reveal hormonal plasticity in the gut. Endocr. Rev. https://doi.org/10.1210/endrev/bnaa018 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beumer, J. et al. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 182, 1062–1064 (2020).

    CAS  PubMed  Google Scholar 

  18. Beumer, J. et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20, 909–916 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldspink, D. A., Reimann, F. & Gribble, F. M. Models and tools for studying enteroendocrine cells. Endocrinology 159, 3874–3884 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin, A. M., Sun, E. W. & Keating, D. J. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J. Endocrinol. 244, R1–R15 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Miedzybrodzka, E. L., Reimann, F. & Gribble, F. M. in From Obesity to Diabetes (eds Eckel, J. & Clément, K.) 109–129 (Springer, 2022).

  22. Sternini, C., Anselmi, L. & Rozengurt, E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 15, 73–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reimann, F., Tolhurst, G. & Gribble, F. M. G-protein-coupled receptors in intestinal chemosensation. Cell Metab. 15, 421–431 (2012).

    CAS  PubMed  Google Scholar 

  24. Psichas, A., Reimann, F. & Gribble, F. M. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908–917 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Yang, M., Reimann, F. & Gribble, F. M. Chemosensing in enteroendocrine cells: mechanisms and therapeutic opportunities. Curr. Opin. Endocrinol. Diabetes Obes. 28, 222–231 (2021).

    CAS  PubMed  Google Scholar 

  26. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorboulev, V. et al. Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).

    CAS  PubMed  Google Scholar 

  28. Diakogiannaki, E. et al. Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56, 2688–2696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Modvig, I. M., Kuhre, R. E. & Holst, J. J. Peptone-mediated glucagon-like peptide-1 secretion depends on intestinal absorption and activation of basolaterally located calcium-sensing receptors. Physiol. Rep. 7, e14056 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Brighton, C. A. et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 156, 3961–3970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Christensen, L. W., Kuhre, R. E., Janus, C., Svendsen, B. & Holst, J. J. Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine. Physiol. Rep. https://doi.org/10.14814/phy2.12551 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beumer, J. et al. Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models. Proc. Natl Acad. Sci. USA 119, e2212057119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dhanvantari, S., Seidah, N. G. & Brubaker, P. L. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol. Endocrinol. 10, 342–355 (1996).

    CAS  PubMed  Google Scholar 

  34. Zhang, J. H. et al. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G940–G948 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020).

    CAS  PubMed  Google Scholar 

  36. Dye, F. S. et al. Characterisation of proguanylin expressing cells in the intestine – evidence for constitutive luminal secretion. Sci. Rep. 9, 15574 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Engevik, A. C., Kaji, I. & Goldenring, J. R. The physiology of the gastric parietal cell. Physiol. Rev. 100, 573–602 (2020).

    CAS  PubMed  Google Scholar 

  38. von Rosenvinge, E. C. & Raufman, J.-P. Gastrointestinal peptides and regulation of gastric acid secretion. Curr. Opin. Endocrinol. Diabetes Obes. 17, 40–43 (2010).

    Google Scholar 

  39. Kopin, A. S. et al. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Natl Acad. Sci. USA 89, 3605–3609 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Short, G. M., Doyle, J. W. & Wolfe, M. M. Effect of antibodies to somatostatin on acid secretion and gastrin release by the isolated perfused rat stomach. Gastroenterology 88, 984–988 (1985).

    CAS  PubMed  Google Scholar 

  41. Vuyyuru, L., Schubert, M. L., Harrington, L., Arimura, A. & Makhlouf, G. M. Dual inhibitory pathways link antral somatostatin and histamine secretion in human, dog, and rat stomach. Gastroenterology 109, 1566–1574 (1995).

    CAS  PubMed  Google Scholar 

  42. Lloyd, K. C. K. Gut hormones in gastric function. Baillières Clin. Endocrinol. Metab. 8, 111–136 (1994).

    CAS  PubMed  Google Scholar 

  43. Hellström, P. M., Grybäck, P. & Jacobsson, H. The physiology of gastric emptying. Best. Pract. Res. Clin. Anaesthesiol. 20, 397–407 (2006).

    PubMed  Google Scholar 

  44. Shin, H. S., Ingram, J. R., McGill, A. T. & Poppitt, S. D. Lipids, CHOs, proteins: can all macronutrients put a ‘brake’ on eating? Physiol. Behav. 120, 114–123 (2013).

    CAS  PubMed  Google Scholar 

  45. Wu, T., Rayner, C. K., Young, R. L. & Horowitz, M. Gut motility and enteroendocrine secretion. Curr. Opin. Pharmacol. 13, 928–934 (2013).

    CAS  PubMed  Google Scholar 

  46. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mawe, G. M. Nerves and hormones interact to control gallbladder function. N. Physiol. Sci. 13, 84–90 (1998).

    CAS  Google Scholar 

  48. Li, Y. et al. Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell 175, 1561–1574.e12 (2018).

    CAS  PubMed  Google Scholar 

  49. Hamra, F. K., Eber, S. L., Chin, D. T., Currie, M. G. & Forte, L. R. Regulation of intestinal uroguanylin/guanylin receptor-mediated responses by mucosal acidity. Proc. Natl Acad. Sci. USA 94, 2705–2710 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rappaport, J. A. & Waldman, S. A. An update on guanylyl cyclase C in the diagnosis, chemoprevention, and treatment of colorectal cancer. Expert. Rev. Clin. Pharmacol. 13, 1125–1137 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mori, H., Verbeure, W., Tanemoto, R., Sosoranga, E. R. & Tack, J. Physiological functions and potential clinical applications of motilin. Peptides 160, 170905 (2023).

    CAS  PubMed  Google Scholar 

  52. Sanger, G. J. & Furness, J. B. Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 38–48 (2016).

    CAS  PubMed  Google Scholar 

  53. Smieszek, S. P. et al. Enrichment of motilin receptor loss-of-function variants in gastroparesis. Clin. Transl. Gastroenterol. 13, e00474 (2022).

    PubMed  PubMed Central  Google Scholar 

  54. Koo, A. et al. Expression of the relaxin family peptide 4 receptor by enterochromaffin cells of the mouse large intestine. Cell Tissue Res. 389, 1–9 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, Z. et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei, L. et al. Serotonin deficiency is associated with delayed gastric emptying. Gastroenterology 160, 2451–2466.e19 (2021).

    CAS  PubMed  Google Scholar 

  57. Leen, J. L. et al. Mechanism of action of glucagon-like peptide-2 to increase IGF-I mRNA in intestinal subepithelial fibroblasts. Endocrinology 152, 436–446 (2011).

    CAS  PubMed  Google Scholar 

  58. Wismann, P. et al. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav. 192, 72–81 (2018).

    CAS  PubMed  Google Scholar 

  59. Abdalqadir, N. & Adeli, K. GLP-1 and GLP-2 orchestrate intestine integrity, gut microbiota, and immune system crosstalk. Microorganisms https://doi.org/10.3390/microorganisms10102061 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Koopman, N. et al. The multifaceted role of serotonin in intestinal homeostasis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179487 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bayrer, J. R. et al. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 616, 137–142 (2023).

    CAS  PubMed  Google Scholar 

  62. Jones, B., Bloom, S. R., Buenaventura, T., Tomas, A. & Rutter, G. A. Control of insulin secretion by GLP-1. Peptides 100, 75–84 (2018).

    CAS  PubMed  Google Scholar 

  63. Holst, J. J., Gasbjerg, L. S. & Rosenkilde, M. M. The role of incretins on insulin function and glucose homeostasis. Endocrinology https://doi.org/10.1210/endocr/bqab065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hansotia, T. et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes 53, 1326–1335 (2004).

    CAS  PubMed  Google Scholar 

  65. Kim, W. & Egan, J. M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470–512 (2008).

    CAS  PubMed  Google Scholar 

  66. Zhao, X. et al. GLP-1 receptor agonists: beyond their pancreatic effects. Front. Endocrinol. https://doi.org/10.3389/fendo.2021.721135 (2021).

    Article  Google Scholar 

  67. MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51, S434–S442 (2002).

    CAS  PubMed  Google Scholar 

  68. Marzook, A., Tomas, A. & Jones, B. The interplay of glucagon-like peptide-1 receptor trafficking and signalling in pancreatic beta cells. Front. Endocrinol. 12, 678055 (2021).

    Google Scholar 

  69. Mayendraraj, A., Rosenkilde, M. M. & Gasbjerg, L. S. GLP-1 and GIP receptor signaling in beta cells – a review of receptor interactions and co-stimulation. Peptides 151, 170749 (2022).

    CAS  PubMed  Google Scholar 

  70. MacDonald, P. E. et al. Antagonism of rat β-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J. Biol. Chem. 278, 52446–52453 (2003).

    CAS  PubMed  Google Scholar 

  71. Nauck, M. A., Bartels, E., Orskov, C., Ebert, R. & Creutzfeldt, W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J. Clin. Endocrinol. Metab. 76, 912–917 (1993).

    CAS  PubMed  Google Scholar 

  72. Vilsbøll, T., Krarup, T., Madsbad, S. & Holst, J. J. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul. Pept. 114, 115–121 (2003).

    PubMed  Google Scholar 

  73. Gasbjerg, L. S. et al. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 125, 170183 (2020).

    CAS  PubMed  Google Scholar 

  74. Nauck, M. A., Quast, D. R., Wefers, J. & Pfeiffer, A. F. H. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes. Metab. 23, 5–29 (2021).

    CAS  PubMed  Google Scholar 

  75. Nauck, M. A. & Meier, J. J. GIP and GLP-1: stepsiblings rather than monozygotic twins within the incretin family. Diabetes 68, 897–900 (2019).

    CAS  PubMed  Google Scholar 

  76. Perfetti, R., Zhou, J., Doyle, M. I. E. & Egan, J. M. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141, 4600–4605 (2000).

    CAS  PubMed  Google Scholar 

  77. Nasr, N. E. & Sadek, K. M. Role and mechanism(s) of incretin-dependent therapies for treating diabetes mellitus. Environ. Sci. Pollut. Res. Int. 29, 18408–18422 (2022).

    CAS  PubMed  Google Scholar 

  78. Friedrichsen, B. N. et al. Stimulation of pancreatic β-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J. Endocrinol. 188, 481–492 (2006).

    CAS  PubMed  Google Scholar 

  79. Shimoda, M. et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54, 1098–1108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaneto, H. et al. Favorable effects of GLP-1 receptor agonist against pancreatic β-cell glucose toxicity and the development of arteriosclerosis: “the earlier, the better” in therapy with incretin-based medicine. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22157917 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Taminato, T. et al. Synthetic gastric inhibitory polypeptide stimulatory effect on insulin and glucagon secretion in the rat. Diabetes 26, 480–484 (1977).

    CAS  PubMed  Google Scholar 

  82. Hare, K. J. et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59, 1765–1770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramracheya, R. et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol. Rep. 6, e13852 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. De Marinis, Y. Z. et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab. 11, 543–553 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. de Heer, J., Rasmussen, C., Coy, D. H. & Holst, J. J. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51, 2263–2270 (2008).

    CAS  PubMed  Google Scholar 

  86. Ørgaard, A. & Holst, J. J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice. Diabetologia 60, 1731–1739 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Holst, J. J. et al. Regulation of glucagon secretion by incretins. Diabetes Obes. Metab. 13, 89–94 (2011).

    CAS  PubMed  Google Scholar 

  88. Knop, F. K. et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56, 1951–1959 (2007).

    CAS  PubMed  Google Scholar 

  89. Holst, J. J., Knop, F. K., Vilsboll, T., Krarup, T. & Madsbad, S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34, S251–S257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vilsbøll, T. et al. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide – regardless of etiology and phenotype. J. Clin. Endocrinol. Metab. 88, 4897–4903 (2003).

    PubMed  Google Scholar 

  91. Lund, A., Vilsbøll, T., Bagger, J. I., Holst, J. J. & Knop, F. K. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 300, E1038–E1046 (2011).

    CAS  PubMed  Google Scholar 

  92. El, K. & Campbell, J. E. The role of GIP in alpha-cells and glucagon secretion. Peptides 125, 170213 (2020).

    CAS  PubMed  Google Scholar 

  93. Lynn, F. C. et al. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide receptor expression in β-cells. FASEB J. 17, 91–93 (2003).

    CAS  PubMed  Google Scholar 

  94. Piteau, S. et al. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem. Biophys. Res. Commun. 362, 1007–1012 (2007).

    CAS  PubMed  Google Scholar 

  95. Vilsbøll, T., Krarup, T., Madsbad, S. & Holst, J. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 45, 1111–1119 (2002).

    PubMed  Google Scholar 

  96. Holst, J. J. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism 96, 46–55 (2019).

    CAS  PubMed  Google Scholar 

  97. Gautier, J. F., Choukem, S. P. & Girard, J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab. 34, S65–S72 (2008).

    CAS  PubMed  Google Scholar 

  98. Højberg, P. V. et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52, 199–207 (2009).

    PubMed  Google Scholar 

  99. Nauck, M. A. & D‘Alessio, D. A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 21, 169 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Toft-Nielsen, M. et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 86, 3717–3723 (2001).

    CAS  PubMed  Google Scholar 

  101. Alssema, M. et al. Preserved GLP-1 and exaggerated GIP secretion in type 2 diabetes and relationships with triglycerides and ALT. Eur. J. Endocrinol. 169, 421–430 (2013).

    CAS  PubMed  Google Scholar 

  102. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Google Scholar 

  103. Lavine, J. A. & Attie, A. D. Gastrointestinal hormones and the regulation of β-cell mass. Ann. N. Y. Acad. Sci. 1212, 41–58 (2010).

    CAS  PubMed  Google Scholar 

  104. Wang, T. C. et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J. Clin. Investig. 92, 1349–1356 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Irako, T. et al. Ghrelin prevents development of diabetes at adult age in streptozotocin-treated newborn rats. Diabetologia 49, 1264–1273 (2006).

    CAS  PubMed  Google Scholar 

  106. Adriaenssens, A. E. et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 59, 2156–2165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gastaldelli, A. et al. Exenatide improves both hepatic and adipose tissue insulin resistance: a dynamic positron emission tomography study. Hepatology 64, 2028–2037 (2016).

    CAS  PubMed  Google Scholar 

  108. Seghieri, M. et al. Future perspectives on GLP-1 receptor agonists and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00649 (2018).

    Article  Google Scholar 

  109. Lee, J., Hong, S.-W., Rhee, E.-J. & Lee, W.-Y. GLP-1 receptor agonist and non-alcoholic fatty liver disease. Diabetes Metab. J. 36, 262–267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Svegliati-Baroni, G. et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 31, 1285–1297 (2011).

    CAS  PubMed  Google Scholar 

  111. Gupta, N. A. et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 51, 1584–1592 (2010).

    CAS  PubMed  Google Scholar 

  112. Yabut, J. M. & Drucker, D. J. Glucagon-like peptide-1 receptor-based therapeutics for metabolic liver disease. Endocr. Rev. 44, 14–32 (2023).

    PubMed  Google Scholar 

  113. McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42, 101–132 (2020).

    PubMed Central  Google Scholar 

  114. Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    CAS  PubMed  Google Scholar 

  115. Toft-Nielson, M., Madsbad, S. & Holst, J. J. The effect of glucagon-like peptide I (GLP-I) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones. Diabetes 45, 552–556 (1996).

    CAS  PubMed  Google Scholar 

  116. Larsson, H., Holst, J. J. & Ahrén, B. Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol. Scand. 160, 413–422 (1997).

    CAS  PubMed  Google Scholar 

  117. Prigeon, R. L., Quddusi, S., Paty, B. & D’Alessio, D. A. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am. J. Physiol. Endocrinol. Metab. 285, E701–E707 (2003).

    CAS  PubMed  Google Scholar 

  118. Seghieri, M. et al. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia 56, 156–161 (2013).

    CAS  PubMed  Google Scholar 

  119. Elahi, D. et al. GLP-1 (9–36) amide, cleavage product of GLP-1 (7–36) amide, is a glucoregulatory peptide. Obesity 16, 1501–1509 (2008).

    CAS  PubMed  Google Scholar 

  120. Taher, J. et al. GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance. Mol. Metab. 3, 823–833 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Khound, R., Taher, J., Baker, C., Adeli, K. & Su, Q. GLP-1 elicits an intrinsic gut–liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 37, 2252–2259 (2017).

    CAS  PubMed  Google Scholar 

  122. Mells, J. E. & Anania, F. A. The role of gastrointestinal hormones in hepatic lipid metabolism. Semin. Liver Dis. 33, 343–357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pedersen, J. & Holst, J. J. Glucagon like-peptide 1 receptor and the liver. Liver Int. 31, 1243–1245 (2011).

    CAS  PubMed  Google Scholar 

  124. Jin, T. & Weng, J. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. Am. J. Physiol. Endocrinol. Metab. 311, E620–E627 (2016).

    PubMed  Google Scholar 

  125. Abu-Hamdah, R. et al. Clinical review: the extrapancreatic effects of glucagon-like peptide-1 and related peptides. J. Clin. Endocrinol. Metab. 94, 1843–1852 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Elahi, D. et al. GLP-1(32-36)amide, a novel pentapeptide cleavage product of GLP-1, modulates whole body glucose metabolism in dogs. Peptides 59, 20–24 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tomas, E., Stanojevic, V. & Habener, J. F. GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul. Pept. 167, 177–184 (2011).

    CAS  PubMed  Google Scholar 

  128. Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE−/− mice. Endocrinology 154, 127–139 (2013).

    CAS  PubMed  Google Scholar 

  129. Ding, X., Saxena, N. K., Lin, S., Gupta, N. A. & Anania, F. A. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43, 173–181 (2006).

    CAS  PubMed  Google Scholar 

  130. Zhang, L. et al. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK. Liver Int 33, 794–804 (2013).

    CAS  PubMed  Google Scholar 

  131. Trevaskis, J. L. et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G762–G772 (2012).

    CAS  PubMed  Google Scholar 

  132. Petit, J. M. & Vergès, B. GLP-1 receptor agonists in NAFLD. Diabetes Metab. 43, 2s28–22s33 (2017).

    CAS  PubMed  Google Scholar 

  133. Vuppalanchi, R., Noureddin, M., Alkhouri, N. & Sanyal, A. J. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 18, 373–392 (2021).

    PubMed  Google Scholar 

  134. Patel Chavez, C., Cusi, K. & Kadiyala, S. The emerging role of glucagon-like peptide-1 receptor agonists for the management of NAFLD. J. Clin. Endocrinol. Metab. 107, 29–38 (2021).

    PubMed Central  Google Scholar 

  135. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    CAS  PubMed  Google Scholar 

  136. Musso, G., Gambino, R., Pacini, G., De Michieli, F. & Cassader, M. Prolonged saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis: dysregulated enteroadipocyte axis as a novel feature of fatty liver. Am. J. Clin. Nutr. 89, 558–567 (2009).

    CAS  PubMed  Google Scholar 

  137. Keyhani-Nejad, F. et al. Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice. Diabetologia 58, 374–383 (2015).

    CAS  PubMed  Google Scholar 

  138. Góralska, J. et al. Enhanced GIP secretion in obesity is associated with biochemical alteration and miRNA contribution to the development of liver steatosis. Nutrients https://doi.org/10.3390/nu12020476 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    CAS  PubMed  Google Scholar 

  140. Gault, V. A., McClean, P. L., Cassidy, R. S., Irwin, N. & Flatt, P. R. Chemical gastric inhibitory polypeptide receptor antagonism protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets. Diabetologia 50, 1752–1762 (2007).

    CAS  PubMed  Google Scholar 

  141. McClean, P. L. et al. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am. J. Physiol. Endocrinol. Metab. 293, E1746–E1755 (2007).

    CAS  PubMed  Google Scholar 

  142. Miyawaki, K. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8, 738–742 (2002).

    CAS  PubMed  Google Scholar 

  143. Walters, J. R. & Appleby, R. N. A variant of FGF19 for treatment of disorders of cholestasis and bile acid metabolism. Ann. Transl. Med. 3, S7 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Beck, B. & Max, J.-P. Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue. Diabetologia 29, 68 (1986).

    CAS  PubMed  Google Scholar 

  145. Oben, J., Morgan, L., Fletcher, J. & Marks, V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1 (7–36) amide, on fatty acid synthesis in explants of rat adipose tissue. J. Endocrinol. 130, 267–272 (1991).

    CAS  PubMed  Google Scholar 

  146. Asmar, M. et al. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 59, 2160–2163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Beck, B. & Max, J. P. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Regul. Pept. 7, 3–8 (1983).

    CAS  PubMed  Google Scholar 

  148. Holst, J. J. & Rosenkilde, M. M. Recent advances of GIP and future horizons. Peptides 125, 170230 (2020).

    CAS  PubMed  Google Scholar 

  149. Finan, B. et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol. Med. 22, 359–376 (2016).

    CAS  PubMed  Google Scholar 

  150. Asmar, M. et al. The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes 66, 2363–2371 (2017).

    CAS  PubMed  Google Scholar 

  151. Samms, R. J. et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Invest. https://doi.org/10.1172/JCI146353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ceperuelo-Mallafré, V. et al. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance. J. Clin. Endocrinol. Metab. 99, E908–E919 (2014).

    PubMed  Google Scholar 

  153. Rudovich, N. et al. GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. Regul. Pept. 142, 138–145 (2007).

    CAS  PubMed  Google Scholar 

  154. Campbell, J. E. et al. GIPR is predominantly localized to nonadipocyte cell types within white adipose tissue. Diabetes 71, 1115–1127 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Collins, S. β-Adrenergic receptors and adipose tissue metabolism: evolution of an old story. Annu. Rev. Physiol. 84, 1–16 (2022).

    CAS  PubMed  Google Scholar 

  156. Samms, R. J., Coghlan, M. P. & Sloop, K. W. How may GIP enhance the therapeutic efficacy of GLP-1. Trends Endocrinol. Metab. 31, 410–421 (2020).

    CAS  PubMed  Google Scholar 

  157. Coskun, T. et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol. Metab. 18, 3–14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Campbell, J. E. Targeting the GIPR for obesity: to agonize or antagonize? Potential mechanisms. Mol. Metab. 46, 101139 (2021).

    CAS  PubMed  Google Scholar 

  159. Ludvik, B. et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 398, 583–598 (2021).

    CAS  PubMed  Google Scholar 

  160. Gastaldelli, A. et al. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 10, 393–406 (2022).

    CAS  PubMed  Google Scholar 

  161. Targher, G. Tirzepatide adds hepatoprotection to its armoury. Lancet Diabetes Endocrinol. 10, 374–375 (2022).

    CAS  PubMed  Google Scholar 

  162. Holst, J. J. & Rosenkilde, M. M. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J. Clin. Endocrinol. Metab. 105, e2710–e2716 (2020).

    PubMed  PubMed Central  Google Scholar 

  163. Beaudry, J. L. et al. Physiological roles of the GIP receptor in murine brown adipose tissue. Mol. Metab. 28, 14–25 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Samms, R. J. et al. Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. Mol. Metab. 64, 101550 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Crane, J. D. et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166–172 (2015).

    CAS  PubMed  Google Scholar 

  166. Kwon, O., Yu, J. H., Jeong, E., Yoo, H. J. & Kim, M. S. Meal-related oscillations in the serum serotonin levels in healthy young men. Clin. Endocrinol. 88, 549–555 (2018).

    CAS  Google Scholar 

  167. Sauerbier, I. & von Mayersbach, H. Circadian variation of serotonin levels in human blood. Horm. Metab. Res. 8, 157–158 (1976).

    CAS  PubMed  Google Scholar 

  168. Laurila, S. et al. Secretin activates brown fat and induces satiation. Nat. Metab. 3, 798–809 (2021).

    CAS  PubMed  Google Scholar 

  169. Romijn, J. A., Corssmit, E. P., Havekes, L. M. & Pijl, H. Gut–brain axis. Curr. Opin. Clin. Nutr. Metab. Care 11, 518–521 (2008).

    CAS  PubMed  Google Scholar 

  170. Al Omran, Y. & Aziz, Q. in Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 135–153 (Springer, 2014).

  171. Hussain, S. S. & Bloom, S. R. The regulation of food intake by the gut-brain axis: implications for obesity. Int. J. Obes. 37, 625–633 (2013).

    CAS  Google Scholar 

  172. Woodward, O. R. M., Gribble, F. M., Reimann, F. & Lewis, J. E. Gut peptide regulation of food intake – evidence for the modulation of hedonic feeding. J. Physiol. 600, 1053–1078 (2022).

    CAS  PubMed  Google Scholar 

  173. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science https://doi.org/10.1126/science.aat5236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bai, L. et al. Enteroendocrine cell types that drive food reward and aversion. eLife 11, e74964 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Gibbs, J., Young, R. C. & Smith, G. P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84, 488–495 (1973).

    CAS  PubMed  Google Scholar 

  176. Muurahainen, N., Kissileff, H. R., Derogatis, A. J. & Pi-Sunyer, F. X. Effects of cholecystokinin-octapeptide (CCK-8) on food intake and gastric emptying in man. Physiol. Behav. 44, 645–649 (1988).

    CAS  PubMed  Google Scholar 

  177. Moran, T. H. & Kinzig, K. P. Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G183–G188 (2004).

    CAS  PubMed  Google Scholar 

  178. Brennan, I. M. et al. Dose-dependent effects of cholecystokinin-8 on antropyloroduodenal motility, gastrointestinal hormones, appetite, and energy intake in healthy men. Am. J. Physiol. Endocrinol. Metab. 295, E1487–E1494 (2008).

    CAS  PubMed  Google Scholar 

  179. Li, M. et al. Gut-brain circuits for fat preference. Nature 610, 722–730 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Batterham, R. L. et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  181. Persaud, S. J. & Bewick, G. A. Peptide YY: more than just an appetite regulator. Diabetologia 57, 1762–1769 (2014).

    PubMed  Google Scholar 

  182. Ballantyne, G. H. Peptide YY(1-36) and peptide YY(3-36): part I. Distribution, release and actions. Obes. Surg. 16, 651–658 (2006).

    PubMed  Google Scholar 

  183. Wharton, S. et al. Two-year effect of semaglutide 2.4 mg on control of eating in adults with overweight/obesity: STEP 5. Obesity 31, 703–715 (2023).

    CAS  PubMed  Google Scholar 

  184. Kanoski, S. E., Fortin, S. M., Arnold, M., Grill, H. J. & Hayes, M. R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152, 3103–3112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).

    Google Scholar 

  186. Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Song, Y. et al. Gut-proglucagon-derived peptides are essential for regulating glucose homeostasis in mice. Cell Metab. 30, 976–986.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Cheng, W. et al. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight 5, e134359 (2020).

    PubMed  PubMed Central  Google Scholar 

  189. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    CAS  PubMed  Google Scholar 

  190. Pocai, A. Action and therapeutic potential of oxyntomodulin. Mol. Metab. 3, 241–251 (2014).

    CAS  PubMed  Google Scholar 

  191. Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. 30, 1729–1736 (2006).

    CAS  Google Scholar 

  192. Svane, M. S. et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int. J. Obes. 40, 1699–1706 (2016).

    CAS  Google Scholar 

  193. Jørgensen, N. B. et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 303, E122–E131 (2012).

    PubMed  Google Scholar 

  194. Boland, B. B. et al. Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Mol. Metab. 25, 64–72 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. St-Gelais, F., Jomphe, C. & Trudeau, L. E. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J. Psychiatry Neurosci. 31, 229–245 (2006).

    PubMed  PubMed Central  Google Scholar 

  196. Ratner, C. et al. Effects of peripheral neurotensin on appetite regulation and its role in gastric bypass surgery. Endocrinology 157, 3482–3492 (2016).

    CAS  PubMed  Google Scholar 

  197. Vaughn, A. W., Baumeister, A., Hawkins, H. & Anticich, T. G. Intranigral microinjection of neurotensin suppresses feeding in food deprived rats. Neuropharmacology 29, 957–960 (1990).

    CAS  PubMed  Google Scholar 

  198. Hawkins, M. F., Barkemeyer, C. A. & Tulley, R. T. Synergistic effects of dopamine agonists and centrally administered neurotensin on feeding. Pharmacol. Biochem. Behav. 24, 1195–1201 (1986).

    CAS  PubMed  Google Scholar 

  199. Remaury, A. et al. Targeted inactivation of the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. Brain Res. 953, 63–72 (2002).

    CAS  PubMed  Google Scholar 

  200. Opland, D. et al. Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol. Metab. 2, 423–434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Izaguirre, M., Catalán, V. & Frühbeck, G. Elucidating the role of peripheral neurotensin in appetite control. Endocrinology 157, 3391–3393 (2016).

    CAS  PubMed  Google Scholar 

  202. Modvig, I. M. et al. Secretin release after Roux-en-Y gastric bypass reveals a population of glucose-sensitive S cells in distal small intestine. Int. J. Obes. 44, 1859–1871 (2020).

    CAS  Google Scholar 

  203. Zhang, C. et al. Area postrema cell types that mediate nausea-associated behaviors. Neuron 109, 461–472.e5 (2021).

    CAS  PubMed  Google Scholar 

  204. Borner, T. et al. GIP receptor agonism attenuates GLP-1 receptor agonist-induced nausea and emesis in preclinical models. Diabetes 70, 2545–2553 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Samms, R. J. et al. GIPR agonism inhibits PYY-induced nausea-like behavior. Diabetes 71, 1410–1423 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang, C., Vincelette, L. K., Reimann, F. & Liberles, S. D. A brainstem circuit for nausea suppression. Cell Rep. 39, 110953 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Howard, A. D. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273, 974–977 (1996).

    CAS  PubMed  Google Scholar 

  208. Bagnasco, M. et al. Endogenous ghrelin is an orexigenic peptide acting in the arcuate nucleus in response to fasting. Regul. Pept. 111, 161–167 (2003).

    CAS  PubMed  Google Scholar 

  209. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    CAS  PubMed  Google Scholar 

  210. Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).

    CAS  PubMed  Google Scholar 

  211. Arnold, M., Mura, A., Langhans, W. & Geary, N. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J. Neurosci. 26, 11052–11060 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Billing, L. J. et al. Co-storage and release of insulin-like peptide-5, glucagon-like peptide-1 and peptideYY from murine and human colonic enteroendocrine cells. Mol. Metab. 16, 65–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Grosse, J. et al. Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proc. Natl Acad. Sci. USA 111, 11133–11138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Lewis, J. E. et al. Relaxin/insulin-like family peptide receptor 4 (Rxfp4) expressing hypothalamic neurons modulate food intake and preference in mice. Mol. Metab. 66, 101604 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Zaykov, A. N., Gelfanov, V. M., Perez-Tilve, D., Finan, B. & DiMarchi, R. D. Insulin-like peptide 5 fails to improve metabolism or body weight in obese mice. Peptides 120, 170116 (2019).

    CAS  PubMed  Google Scholar 

  216. Lewis, J. E. et al. Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia 63, 1396–1407 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Frías, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).

    PubMed  Google Scholar 

  218. Dahl, D. et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. J. Am. Med. Assoc. 327, 534–545 (2022).

    CAS  Google Scholar 

  219. Urva, S. et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet 400, 1869–1881 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratories of F.R. and F.M.G. is supported by the Medical Research Council (MRC_MC_UU_12012/3) and the Wellcome Trust (220271/Z/20/Z).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Fiona M. Gribble.

Ethics declarations

Competing interests

The laboratory of F.R. currently hosts projects that receive funding from AstraZeneca, Eli Lilly and LGC Group. The laboratory of F.M.G. currently hosts projects that receive funding from AstraZeneca, Eli Lilly and LGC Group. R.B.B. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks T. Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bany Bakar, R., Reimann, F. & Gribble, F.M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 20, 784–796 (2023). https://doi.org/10.1038/s41575-023-00830-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00830-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing