Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Friend or foe? The elusive role of hepatic stellate cells in liver cancer

Abstract

Liver fibrosis is a substantial risk factor for the development and progression of liver cancer, which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Studies utilizing cell fate mapping and single-cell transcriptomics techniques have identified quiescent perisinusoidal hepatic stellate cells (HSCs) as the primary source of activated collagen-producing HSCs and liver cancer-associated fibroblasts (CAFs) in HCC and liver metastasis, complemented in iCCA by contributions from portal fibroblasts. At the same time, integrative computational analysis of single-cell, single-nucleus and spatial RNA sequencing data have revealed marked heterogeneity among HSCs and CAFs, with distinct subpopulations displaying unique gene expression signatures and functions. Some of these subpopulations have divergent roles in promoting or inhibiting liver fibrogenesis and carcinogenesis. In this Review, we discuss the dual roles of HSC subpopulations in liver fibrogenesis and their contribution to liver cancer promotion, progression and metastasis. We review the transcriptomic and functional similarities between HSC and CAF subpopulations, highlighting the pathways that either promote or prevent fibrosis and cancer, and the immunological landscape from which these pathways emerge. Insights from ongoing studies will yield novel strategies for developing biomarkers, assessing prognosis and generating new therapies for both HCC and iCCA prevention and treatment.

Key points

  • Hepatic stellate cells (HSCs) are the major source of activated myofibroblast-like cells in liver fibrosis and cancer-associated fibroblasts (CAFs) in both primary and metastatic liver cancer.

  • Single-cell resolution technologies are unveiling the transcriptomic and phenotypic heterogeneity of HSCs and CAFs in mouse models of liver disease and in humans.

  • Specific subpopulations of HSCs and CAFs exhibit contrasting tumour-promoting and tumour-inhibitory functions based on their immunological and tumour-specific context.

  • HSC subpopulations with unique secretomes, including activated HSCs, senescent HSCs and CAFs, are promising targets for antifibrotic therapies that might reduce the risk of liver cancer, especially in patients with nonalcoholic steatohepatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A hypothetical model of HSC and CAF plasticity upon activation based on single-cell analyses.
Fig. 2: Roles of CAF subpopulations in the liver tumour microenvironment.
Fig. 3: Hepatic stellate cell subpopulations are potential targets for antifibrotic and antitumour therapies in nonalcoholic steatohepatitis.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Nagtegaal, I. D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 76, 182–188 (2020).

    Article  PubMed  Google Scholar 

  3. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Milette, S., Sicklick, J. K., Lowy, A. M. & Brodt, P. Molecular pathways: targeting the microenvironment of liver metastases. Clin. Cancer Res. 23, 6390–6399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7, 6 (2021).

    Article  PubMed  Google Scholar 

  6. Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology https://doi.org/10.1097/HEP.0000000000000520 (2023).

    Article  PubMed  Google Scholar 

  8. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, D. Q., El-Serag, H. B. & Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18, 223–238 (2021).

    Article  PubMed  Google Scholar 

  10. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Wright, J. H. et al. Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice: evidence for stromal induction of hepatocellular carcinoma. Int. J. Cancer 134, 778–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong, C. C. et al. Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology 60, 1645–1658 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharjee, S. et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131, e146987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hogdall, D., Lewinska, M. & Andersen, J. B. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer 4, 239–255 (2018).

    Article  PubMed  Google Scholar 

  16. Wang, S. S. et al. Perivenous stellate cells are the main source of myofibroblasts and cancer-associated fibroblasts formed after chronic liver injuries. Hepatology 74, 1578–1594 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    Article  PubMed  Google Scholar 

  18. Rosenthal, S. B. et al. Heterogeneity of HSCs in a mouse model of NASH. Hepatology 74, 667–685 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Payen, V. L. et al. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep. 3, 100278 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang, W. et al. Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology 74, 2774–2790 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, W. et al. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: insights from single-cell transcriptomic analysis in liver injury. Cells 10, 2129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Filliol, A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 610, 356–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koyama, Y. & Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 127, 55–64 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Enzan, H. et al. Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc. Res. Tech. 39, 336–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Asahina, K. et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49, 998–1011 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Lotto, J. et al. Single-cell transcriptomics reveals early emergence of liver parenchymal and non-parenchymal cell lineages. Cell 183, 702–716.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kocabayoglu, P. et al. beta-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J. Hepatol. 63, 141–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wesley, B. T. et al. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat. Cell Biol. 24, 1487–1498 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, S. et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 15, eadd3949 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakano, Y. et al. A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice. Hepatology 71, 1437–1452 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073–1083.e1022 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, X. et al. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 158, 1728–1744.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Kendall, T. J. et al. Embryonic mesothelial-derived hepatic lineage of quiescent and heterogenous scar-orchestrating cells defined but suppressed by WT1. Nat. Commun. 10, 4688 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lei, L. et al. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 76, 1360–1375 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y., Wang, J. & Asahina, K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc. Natl Acad. Sci. USA 110, 2324–2329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wells, R. G. The portal fibroblast: not just a poor man’s stellate cell. Gastroenterology 147, 41–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Katsumata, L. W., Miyajima, A. & Itoh, T. Portal fibroblasts marked by the surface antigen Thy1 contribute to fibrosis in mouse models of cholestatic liver injury. Hepatol. Commun. 1, 198–214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nishio, T. et al. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J. Hepatol. 71, 573–585 (2019).

    Article  PubMed  Google Scholar 

  43. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saviano, A., Henderson, N. C. & Baumert, T. F. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol. 73, 1219–1230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiong, X., Kuang, H., Liu, T. & Lin, J. D. A single-cell perspective of the mammalian liver in health and disease. Hepatology 71, 1467–1473 (2020).

    Article  PubMed  Google Scholar 

  46. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

    Article  PubMed  Google Scholar 

  47. Andrews, T. S. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6, 821–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Chung, B. K., Ogaard, J., Reims, H. M., Karlsen, T. H. & Melum, E. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatol. Commun. 6, 2538–2550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. He, J., Deng, C., Krall, L. & Shan, Z. ScRNA-seq and ST-seq in liver research. Cell Regen. 12, 11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Friedman, S. L., Roll, F. J., Boyles, J. & Bissell, D. M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc. Natl Acad. Sci. USA 82, 8681–8685 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Leeuw, A. M., McCarthy, S. P., Geerts, A. & Knook, D. L. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4, 392–403 (1984).

    Article  PubMed  Google Scholar 

  55. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 8, 503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Terkelsen, M. K. et al. Transcriptional dynamics of hepatic sinusoid-associated cells after liver injury. Hepatology 72, 2119–2133 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Su, Q. et al. Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience 24, 103233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schnabl, B., Purbeck, C. A., Choi, Y. H., Hagedorn, C. H. & Brenner, D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37, 653–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Fred, R. G. et al. Single-cell transcriptome and cell type-specific molecular pathways of human non-alcoholic steatohepatitis. Sci. Rep. 12, 13484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kostallari, E. et al. Stiffness is associated with hepatic stellate cell heterogeneity during liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G234–G246 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Wardell, C. P. et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 68, 959–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Moeini, A., Haber, P. K. & Sia, D. Cell of origin in biliary tract cancers and clinical implications. JHEP Rep. 3, 100226 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sekiya, S. & Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Invest. 122, 3914–3918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hill, M. A. et al. Kras and Tp53 mutations cause cholangiocyte- and hepatocyte-derived cholangiocarcinoma. Cancer Res. 78, 4445–4451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shafizadeh, N. & Kakar, S. Diagnosis of well-differentiated hepatocellular lesions: role of immunohistochemistry and other ancillary techniques. Adv. Anat. Pathol. 18, 438–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Vijgen, S., Terris, B. & Rubbia-Brandt, L. Pathology of intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 6, 22–34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kendall, T. et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 39, 7–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Article  PubMed  Google Scholar 

  75. Sia, D. et al. Massive parallel sequencing uncovers actionable FGFR2PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun. 6, 6087 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Borger, D. R. et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17, 72–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 45, 1474–1478 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, Y. M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arai, Y. et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 59, 1427–1434 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Borad, M. J. et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 10, e1004135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Abou-Alfa, G. K. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 21, 796–807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chiang, D. Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341.e23 (2017).

    Article  Google Scholar 

  87. Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Zucman-Rossi, J., Villanueva, A., Nault, J. C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239.e4 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Sia, D. et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 144, 829–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Andersen, J. B. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142, 1021–1031.e15 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Montironi, C. et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 72, 129–140 (2022).

    Article  PubMed  Google Scholar 

  94. Job, S. et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology 72, 965–981 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Martin-Serrano, M. A. et al. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut 72, 736–748 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Ruiz de Galarreta, M. et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Tan, A. T. et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy. Gastroenterology 156, 1862–1876.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Lim, C. J. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68, 916–927 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Das, A. et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol. 189, 3925–3935 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Semmo, N. et al. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology 41, 1019–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Hofmann, M., Tauber, C., Hensel, N. & Thimme, R. CD8+ T cell responses during HCV infection and HCC. J. Clin. Med. 10, 991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cabrera, R. et al. An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection. Hepatology 40, 1062–1071 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Mengshol, J. A. et al. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS ONE 5, e9504 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Ma, C. et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, L. et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36, 418–430.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Lu, Y. et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 13, 4594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sirica, A. E. & Gores, G. J. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology 59, 2397–2402 (2014).

    Article  PubMed  Google Scholar 

  113. Sirica, A. E., Strazzabosco, M. & Cadamuro, M. Intrahepatic cholangiocarcinoma: morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv. Cancer Res. 149, 321–387 (2021).

    Article  PubMed  Google Scholar 

  114. Guedj, N. et al. Prognostic value of desmoplastic stroma in intrahepatic cholangiocarcinoma. Mod. Pathol. 34, 408–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Affo, S. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 39, 866–882.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Taki, M. et al. Tumor immune microenvironment during epithelial–mesenchymal transition. Clin. Cancer Res. 27, 4669–4679 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Lin, Y. et al. Geospatial immune heterogeneity reflects the diverse tumor-immune interactions in intrahepatic cholangiocarcinoma. Cancer Discov. 12, 2350–2371 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Alvisi, G. et al. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target. J. Hepatol. 77, 1359–1372 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, M. et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118–1130 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Loeuillard, E. et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J. Clin. Invest. 130, 5380–5396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, Q. et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 11, 1248–1267 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  123. Fidler, I. J. The pathogenesis of cancer metastasis: the ’seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Matsumura, H. et al. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int. J. Oncol. 45, 2303–2310 (2014).

    Article  PubMed  Google Scholar 

  125. Kimura, Y. et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc. Natl Acad. Sci. USA 113, 14097–14102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shen, Y. et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell 37, 800–817.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Hsieh, C. C., Hung, C. H., Chiang, M., Tsai, Y. C. & He, J. T. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling. Int. J. Mol. Sci. 20, 5079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature https://doi.org/10.1038/s41586-021-03614-z (2021).

    Article  PubMed  Google Scholar 

  131. Carter, J. K. & Friedman, S. L. Hepatic stellate cell-immune interactions in NASH. Front. Endocrinol. 13, 867940 (2022).

    Article  Google Scholar 

  132. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Donne, R. & Lujambio, A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma. Hepatology 77, 1773–1796 (2023).

    Article  PubMed  Google Scholar 

  134. Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yavuz, B. G. et al. Origin and role of hepatic myofibroblasts in hepatocellular carcinoma. Oncotarget 11, 1186–1201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5, e129212 (2019).

    Article  PubMed  Google Scholar 

  139. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, Y. et al. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39, 548–565.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cantallops Vilà, P., Ravichandra, A., Agirre Lizaso, A., Perugorria, M. J. & Affò, S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology https://doi.org/10.1097/HEP.0000000000000206 (2023).

  149. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  151. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chronopoulos, A. et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat. Commun. 7, 12630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kocher, H. M. et al. Phase I clinical trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic cancer. Nat. Commun. 11, 4841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors. Cancer Discov. 12, 2606–2625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Llovet, J. M. et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00754-7 (2023).

  158. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Mouw, J. K. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Stein, C. et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet. 11, e1005465 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chang, C. et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes. Dev. 29, 1–6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Winkler, J. et al. Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget 7, 22883–22892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Costea, D. E. et al. Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res. 73, 3888–3901 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Shigeeda, W. et al. Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ–RHAMM axis in malignant pleural mesothelioma. Oncotarget 8, 93729–93740 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mele, V. et al. The hyaluronan-mediated motility receptor RHAMM promotes growth, invasiveness and dissemination of colorectal cancer. Oncotarget 8, 70617–70629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Marusyk, A. et al. Spatial proximity to fibroblasts impacts molecular features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes. Cancer Res. 76, 6495–6506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Badiola, I., Olaso, E., Crende, O., Friedman, S. L. & Vidal-Vanaclocha, F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut 61, 1465–1472 (2012).

    Article  PubMed  Google Scholar 

  173. Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Takai, K. et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes. Dev. 32, 244–257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kobayashi, N. et al. Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Res. 70, 7073–7083 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Affo, S., Yu, L. X. & Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 153–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Su, H. et al. Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome. Nature 610, 366–372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article  PubMed  Google Scholar 

  182. Rizzolio, S., Giordano, S. & Corso, S. The importance of being CAFs (in cancer resistance to targeted therapies. J. Exp. Clin. Cancer Res. 41, 319 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Liu, J. et al. Cancer-associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance. Cell Mol. Gastroenterol. Hepatol. 11, 407–431 (2021).

    Article  PubMed  Google Scholar 

  184. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Liaw, Y. F. et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N. Engl. J. Med. 351, 1521–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Kweon, Y. O. et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J. Hepatol. 35, 749–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Liaw, Y. F. Reversal of cirrhosis: an achievable goal of hepatitis B antiviral therapy. J. Hepatol. 59, 880–881 (2013).

    Article  PubMed  Google Scholar 

  188. Shiratori, Y. et al. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann. Intern. Med. 132, 517–524 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Mallet, V. et al. Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann. Intern. Med. 149, 399–403 (2008).

    Article  PubMed  Google Scholar 

  190. Lassailly, G. et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology 159, 1290–1301.e5 (2020).

    Article  PubMed  Google Scholar 

  191. Aminian, A. et al. Association of bariatric surgery with major adverse liver and cardiovascular outcomes in patients with biopsy-proven nonalcoholic steatohepatitis. JAMA 326, 2031–2042 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sorensen, T. I. et al. Prospective evaluation of alcohol abuse and alcoholic liver injury in men as predictors of development of cirrhosis. Lancet 2, 241–244 (1984).

    Article  CAS  PubMed  Google Scholar 

  193. Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol., https://doi.org/10.1016/j.jhep.2023.03.038 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Harrison, S. A., Allen, A. M., Dubourg, J., Nourredin, M. & Alkhouri, N. Challenges and opportunities in NASH drug development. Nat. Med. 29, 562–573 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Stewart, R. K. et al. A novel mouse model of depletion of stellate cells clarifies their role in ischemia/reperfusion- and endotoxin-induced acute liver injury. J. Hepatol. 60, 298–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Puche, J. E. et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 57, 339–350 (2013).

    Article  PubMed  Google Scholar 

  197. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Trinh, V. Q.-H. et al. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling. Sci. Signal. 16, eadf6696 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kandilis, A. N., Koskinas, J., Tiniakos, D. G., Nikiteas, N. & Perrea, D. N. Liver regeneration: focus on cell types and topographic differences. Eur. Surg. Res. 44, 1–12 (2010).

    Article  PubMed  Google Scholar 

  201. Rockey, D. C. Characterization of endothelin receptors mediating rat hepatic stellate cell contraction. Biochem. Biophys. Res. Commun. 207, 725–731 (1995).

    Article  CAS  PubMed  Google Scholar 

  202. Puche, J. E., Saiman, Y. & Friedman, S. L. Hepatic stellate cells and liver fibrosis. Compr. Physiol. 3, 1473–1492 (2013).

    Article  PubMed  Google Scholar 

  203. Reynaert, H., Urbain, D. & Geerts, A. Regulation of sinusoidal perfusion in portal hypertension. Anat. Rec. 291, 693–698 (2008).

    Article  Google Scholar 

  204. Ge, J. Y. et al. Hepatic stellate cells contribute to liver regeneration through galectins in hepatic stem cell niche. Stem Cell Res. Ther. 11, 425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fabregat, I. & Caballero-Diaz, D. Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front. Oncol. 8, 357 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  209. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug. Discov. 21, 60–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. He, K. et al. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res. 25, 738–752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yang, Y. M. et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci. Transl. Med. 11, eaat9284 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Li, H. Y. et al. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis. Sci. Rep. 5, 16552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Desai, L. P. et al. Negative regulation of NADPH oxidase 4 by hydrogen peroxide-inducible clone 5 (Hic-5) protein. J. Biol. Chem. 289, 18270–18278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wu, M. H. et al. Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci. Rep. 7, 11006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lin, Y. et al. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 21, 1133–1142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yang, F. et al. Interaction with CD68 and regulation of GAS6 expression by endosialin in fibroblasts drives recruitment and polarization of macrophages in hepatocellular carcinoma. Cancer Res. 80, 3892–3905 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Song, T., Dou, C., Jia, Y., Tu, K. & Zheng, X. TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 6, 12061–12079 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Liu, G. et al. Cancer-associated fibroblast-derived CXCL11 modulates hepatocellular carcinoma cell migration and tumor metastasis through the circUBAP2/miR-4756/IFIT1/3 axis. Cell Death Dis. 12, 260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mertens, J. C. et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 73, 897–907 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Ying, F., Chan, M. S. M. & Lee, T. K. W. Cancer-associated fibroblasts in hepatocellular carcinoma and cholangiocarcinoma. Cell Mol. Gastroenterol. Hepatol. 15, 985–999 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fitzgerald, A. A. & Weiner, L. M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 39, 783–803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Xin, L. et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front. Oncol. 11, 648187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lee, J., Byun, J., Shim, G. & Oh, Y. K. Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis. Nat. Commun. 13, 1516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bauer, S. et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 8, R171 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Pure, E. & Blomberg, R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37, 4343–4357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wen, Y. et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 101, 2325–2332 (2010).

    Article  CAS  PubMed  Google Scholar 

  228. Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, L. C. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. de Sostoa, J. et al. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J. Immunother. Cancer 7, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Duperret, E. K. et al. Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in mice. Clin. Cancer Res. 24, 1190–1201 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Song, M. et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology 73, 1717–1735 (2021).

    Article  CAS  PubMed  Google Scholar 

  234. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  236. Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chiavarina, B. et al. Fibroblast-derived prolargin is a tumor suppressor in hepatocellular carcinoma. Oncogene 41, 1410–1420 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Zhu, G. Q. et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 9, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grant Support: São Paulo Research Foundation (FAPESP, 2022/02175-1); Medical Scientist Training Program Training Grant (T32GM007280); NCI-funded Training Program in Cancer Biology (NCI T32CA078207-22); American Gastroenterological Association Research Scholar (AGA2020-13-03); 1R01 DK136016-01; Tisch Cancer Institute (Icahn School of Medicine at Mount Sinai), F. Klion Award; i3 Genesis Award; TCI Dev. Funds Award 2023; 5R01DK128289-03; 5R01 DK121154-04; and 5P30CA196521-08.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Scott L. Friedman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Isabel Fabregat, Javier Vaquero and Claus Hellerbrand for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cogliati, B., Yashaswini, C.N., Wang, S. et al. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol 20, 647–661 (2023). https://doi.org/10.1038/s41575-023-00821-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00821-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing