Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lifestyle interventions in nonalcoholic fatty liver disease

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a dynamic chronic liver disease that develops in close association with metabolic irregularities. Between 2016 and 2019, the global prevalence among adults was reported as 38% and among children and adolescents it was about 10%. NAFLD can be progressive and is associated with increased mortality from cardiovascular disease, extrahepatic cancers and liver complications. Despite these numerous adverse outcomes, no pharmacological treatments currently exist to treat nonalcoholic steatohepatitis, the progressive form of NAFLD. Therefore, the main treatment is the pursuit of a healthy lifestyle for both children and adults, which includes a diet rich in fruits, nuts, seeds, whole grains, fish and chicken and avoiding overconsumption of ultra-processed food, red meat, sugar-sweetened beverages and foods cooked at high heat. Physical activity at a level where one can talk but not sing is also recommended, including leisure-time activities and structured exercise. Avoidance of smoking and alcohol is also recommended. Policy-makers, community and school leaders need to work together to make their environments healthy by developing walkable and safe spaces with food stores stocked with culturally appropriate and healthy food items at affordable prices as well as providing age-appropriate and safe play areas in both schools and neighbourhoods.

Key points

  • Lifestyle interventions, including diet and physical activity, are the main treatments for nonalcoholic fatty liver disease.

  • The Mediterranean diet, or a diet similar in its culturally sensitive components, is the most effective diet for losing weight.

  • The loss of 5–7% of body weight can reverse steatosis, whereas the loss of 10% can help to reverse fibrosis.

  • In cirrhosis, healthy diet principles like those of the Mediterranean diet are recommended, with emphasis on high protein intake, including adding a late evening snack to shorten the night-time fast.

  • Physical activity, performed at a high or medium aerobic intensity along with resistance training, might improve the status of elevated liver enzymes, intrahepatic fat, total cholesterol and triglyceride levels.

  • Using web-based programmes to pursue healthy lifestyle interventions for nonalcoholic fatty liver disease produces results similar to those of in-person programmes for those who complete the programme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components of a healthy lifestyle intervention for NAFLD.

Similar content being viewed by others

References

  1. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    Article  PubMed  Google Scholar 

  2. Le, M. H. et al. 2019 Global NAFLD prevalence: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 20, 2809–2817 (2022).

    Article  PubMed  Google Scholar 

  3. Younossi, Z. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a systematic review of the prevalence, incidence and mortality. Hepatology 10, 1097 (2023).

    Google Scholar 

  4. World Health Organization. Diabetes. WHO https://www.who.int/health-topics/diabetes#tab=tab_1 (2023).

  5. World Health Organization. Obesity. WHO https://www.who.int/health-topics/obesity#tab=tab_1 (2023).

  6. Ye, Q. et al. Global prevalence, incidence, and outcomes of non-obese or lean nonalcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 5, 739–752 (2020).

    Article  PubMed  Google Scholar 

  7. Zou, B. et al. Prevalence, characteristics and mortality outcomes of obese, nonobese and lean NAFLD in the United States, 1999-2016. J. Intern. Med. 288, 139–151 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Golabi, P. et al. Mortality of NAFLD according to the body composition and presence of metabolic abnormalities. Hepatol. Commun. 19, 1136–1148 (2020).

    Article  Google Scholar 

  9. Le, M. H. et al. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin. Mol. Hepatol. 28, 841–850 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Estes, C. et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Loomba, R. et al. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 13, 2537–2564 (2021).

    Article  Google Scholar 

  12. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zou, B. et al. Fatty liver index and development of cardiovascular disease: findings from the UK biobank. Dig. Dis. Sci. 66, 2092–2100 (2021).

    Article  PubMed  Google Scholar 

  14. Younossi, Z. M. et al. Clinical and patient-reported outcomes from patients with nonalcoholic fatty liver disease across the world: data from the Global Non-alcoholic Steatohepatitis (NASH)/ Non-Alcoholic Fatty Liver Disease (NAFLD) Registry. Clin. Gastroenterol. Hepatol. 9, S1542–S3565 (2021).

    Google Scholar 

  15. Younossi, Z. M. et al. Fatigue and pruritus in patients with advanced fibrosis due to nonalcoholic steatohepatitis: the impact on patient-reported outcomes. Hepatol. Commun. 4, 1637–1650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Younossi, Z. M. et al. Burden of illness and economic model for patients with nonalcoholic steatohepatitis in the United States. Hepatology 69, 564–572 (2019).

    Article  PubMed  Google Scholar 

  17. Younossi, Z. M. et al. Economic and clinical burden of nonalcoholic steatohepatitis in patients with type 2 diabetes in the U.S. Diabetes Care 43, 283–289 (2020).

    Article  PubMed  Google Scholar 

  18. Tampi, R. P. et al. Modelling the economic and clinical burden of nonalcoholic steatohepatitis in East Asia: data from Hong Kong. Hepatol. Res. 50, 1024–1031 (2020).

    Article  PubMed  Google Scholar 

  19. Nguyen, A. L. et al. Rising inpatient encounters and economic burden for patients with nonalcoholic fatty liver disease in the USA. Dig. Dis. Sci. 64, 698–707 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Younossi, Z. M. et al. The growing economic and clinical burden of nonalcoholic steatohepatitis (NASH) in the United States (U.S.). J. Clin. Exper. Hepatol. 13, 454–467 (2023).

    Article  CAS  Google Scholar 

  21. Alqahtani, S. A. et al. Poor awareness of liver disease among adults with NAFLD in the United States. Hepatol. Commun. 5, 1833–1847 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Younossi, Z. M. et al. Global nonalcoholic steatohepatitis council. A global survey of physicians knowledge about nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 20, e1456–e1468 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Cusi, K. et al. American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr. Pract. 28, 528–562 (2022).

    Article  PubMed  Google Scholar 

  24. Long, M. T. et al. AGA clinical practice update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review. Gastroenterology 163, 764–774 (2022).

    Article  PubMed  Google Scholar 

  25. Anstee, Q. M. et al. Impact of non-invasive biomarkers on hepatology practice: past, present and future. J. Hepatol. 76, 1362–1378 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Hagström, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).

    Article  PubMed  Google Scholar 

  27. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 5, 1557–1565 (2017).

    Article  Google Scholar 

  28. Koutoukidis, D. A. et al. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: a systematic review and meta-analysis. JAMA Intern. Med. 179, 1262–1271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Golabi, P. et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: systematic review. World J. Gastroenterol. 22, 6318–6327 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Younossi, Z. M. et al. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review. Gastroenterology 160, 912–918 (2021).

    Article  PubMed  Google Scholar 

  31. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378 (2015).

    Article  PubMed  Google Scholar 

  32. Marin-Alejandre, B. A. et al. Effects of two personalized dietary strategies during a 2-year intervention in subjects with nonalcoholic fatty liver disease: a randomized trial. Liver Int. 41, 1532–1544 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Properzi, C. et al. Ad libitum mediterranean and low-fat diets both significantly reduce hepatic steatosis: a randomized controlled trial. Hepatology 68, 1741–1754 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Katsagoni, C. N. et al. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: a randomised controlled clinical trial. Br. J. Nutr. 120, 164–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Misciagna, G. et al. Effect of a low glycemic index Mediterranean diet on non-alcoholic fatty liver disease. A randomized controlled clinici trial. J. Nutr. Health Aging 21, 404–412 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Abenavoli, L. et al. Effect of Mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: a randomized study. Nutrients 9, 8 (2017).

    Article  Google Scholar 

  37. Kawaguchi, T. et al. Effects of Mediterranean diet in patients with nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression analysis of randomized controlled trials. Semin. Liver Dis. 41, 225–234 (2021).

    Article  PubMed  Google Scholar 

  38. Haigh, L. et al. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis. Clin. Nutr. 41, 1913–1931 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Thomsen, M. N. et al. Dietary carbohydrate restriction augments weight loss-induced improvements in glycaemic control and liver fat in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia 65, 506–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gepner, Y. et al. Effect of distinct lifestyle interventions on mobilization of fat storage pools: CENTRAL magnetic resonance imaging randomized controlled trial. Circulation 137, 1143–1157 (2018).

    Article  PubMed  Google Scholar 

  41. Skytte, M. J. et al. A carbohydrate-reduced high-protein diet improves HbA1c and liver fat content in weight stable participants with type 2 diabetes: a randomised controlled trial. Diabetologia 62, 2066–2078 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Jang, E. C., Jun, D. W., Lee, S. M., Cho, Y. K. & Ahn, S. B. Comparison of efficacy of low‐carbohydrate and low‐fat diet education programs in non‐alcoholic fatty liver disease: a randomized controlled study. Hepatol. Res. 48, E22–E29 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Otten, J. et al. Strong and persistent effect on liver fat with a Paleolithic diet during a two-year intervention. Int. J. Obes. 40, 747–753 (2016).

    Article  CAS  Google Scholar 

  44. Ahn, J., Jun, D. W., Lee, H. Y. & Moon, J. H. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: review and meta-analyses. Clin. Nutr. 38, 2023–2030 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Xu, C. et al. High‐protein diet more effectively reduces hepatic fat than low‐protein diet despite lower autophagy and FGF21 levels. Liver Int. 40, 2982–2997 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Markova, M. et al. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology 152, 571–585 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Holmer, M. et al. Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet — a randomised controlled trial. JHEP Rep. 3, 100256 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yaskolka, M. A. et al. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut 70, 2085–2095 (2021).

    Article  Google Scholar 

  49. Zelber-Sagi, S. et al. One size does not fit all; practical, personal tailoring of the diet to NAFLD patients. Liver Int. 42, 1731–1750 (2022).

    Article  PubMed  Google Scholar 

  50. American College of Cardiology. Guidelines made simple; 2019 guideline on the primary prevention of cardiovascular disease. American College of Cardiology http://www.onlinejacc.org/sites/default/files/additional_assets/guidelines/Prevention-Guidelines-Made-Simple.pdf (2019).

  51. US Department of Health and Human Service. Dietary guidelines for Americans. US Department of Health and Human Service https://health.gov/dietaryguidelines/ (2022).

  52. Turati, F. et al. Mediterranean diet and hepatocellular carcinoma. J. Hepatol. 60, 606–611 (2014).

    Article  PubMed  Google Scholar 

  53. Ma, Y. et al. Dietary patterns and risk of hepatocellular carcinoma among U.S. men and women. Hepatology 70, 577–586 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Rinella, M. E. et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology https://doi.org/10.1097/HEP.0000000000000323 (2023).

    Article  PubMed  Google Scholar 

  55. Francque, S. M. et al. Non-alcoholic fatty liver disease: a patient guideline. JHEP Rep. 3, 100322 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Plauth, M. et al. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 38, 485–521 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 29, 1451 (2019).

    Article  Google Scholar 

  58. Schnabel, L. et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179, 490–498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang, S. et al. Ultra-processed food consumption and the risk of non-alcoholic fatty liver disease in the Tianjin Chronic low-grade systemic inflammation and health cohort study. Int. J. Epidemiol. 51, 237–249 (2022).

    Article  PubMed  Google Scholar 

  60. Ivancovsky-Wajcman, D. et al. High meat consumption is prospectively associated with the risk of non-alcoholic fatty liver disease and presumed significant fibrosis. Nutrients 14, 3533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hassani Zadeh, S. et al. Relationship between dietary patterns and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 36, 1470–1478 (2021).

    Article  PubMed  Google Scholar 

  62. Paik, J. M. et al. Dietary risks for liver mortality in NAFLD: global burden of disease data. Hepatol. Commun. 6, 90–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Luukkonen, P. K. et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41, 1732–1739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willett, W. et al. Food in the anthropocene: the EAT-lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  65. Saeed, N. et al. Evaluation of dietary approaches for the treatment of non-alcoholic fatty liver disease: a systematic review. Nutrients 16, 3064 (2019).

    Article  Google Scholar 

  66. Yki-Jarvinen, H. et al. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 18, 770–786 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Simons, N. et al. Effects of fructose restriction on liver steatosis (FRUITLESS); a double-blind randomized controlled trial. Am. J. Clin. Nutr. 113, 391–400 (2021).

    Article  PubMed  Google Scholar 

  68. Geidl-Flueck, B. et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: a randomized controlled trial. J. Hepatol. 75, 46–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Geurtsen, M. L. et al. Associations between intake of sugar-containing beverages in infancy with liver fat accumulation at school age. Hepatology 73, 560–570 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. He, K. et al. Food groups and the likelihood of non-alcoholic fatty liver disease: a systematic review and meta-analysis. Br. J. Nutr. 124, 1–13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mosca, A. et al. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J. Hepatol. 66, 1031–1036 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, S. et al. Soft drink consumption and risk of nonalcoholic fatty liver disease: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Am. J. Clin. Nutr. 113, 1265–1274 (2021).

    Article  PubMed  Google Scholar 

  73. Schwarz, J. M. et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology 153, 743–752 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Schwimmer, J. B. et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. J. Am. Med. Assoc. 321, 256–265 (2019).

    Article  Google Scholar 

  75. Hayat, U. et al. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: a meta-analysis of 11 epidemiological studies. Ann. Hepatol. 20, 100254 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, Y. P. et al. A systematic review and a dose-response meta-analysis of coffee dose and nonalcoholic fatty liver disease. Clin. Nutr. 38, 2552–2557 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Niezen, S. et al. Coffee consumption is associated with lower liver stiffness: a nationally representative study. Clin. Gastroenterol. Hepatol. 20, 2032–2040 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ivancovsky-Wajcman, D. et al. Dietary vitamin E and C intake is inversely associated with the severity of nonalcoholic fatty liver disease. Dig. Liver Dis. 51, 1698–1705 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Salomone, F. et al. Higher phenolic acid intake independently associates with lower prevalence of insulin resistance and non-alcoholic fatty liver disease. JHEP Rep. 28, 100069 (2020).

    Article  Google Scholar 

  81. Zelber-Sagi, S. et al. Protective role of soluble receptor for advanced glycation end-products in patients with non-alcoholic fatty liver disease. Dig. Liver Dis. 49, 523–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Ivancovsky-Wajcman, D. et al. Serum soluble receptor for AGE (sRAGE) levels are associated with unhealthy lifestyle and nonalcoholic fatty liver disease. Clin. Transl. Gastroenterol. 22, 1–10 (2019).

    Google Scholar 

  83. Yilmaz, Y. et al. Decreased plasma levels of soluble receptor for advanced glycation end products (sRAGE) in patients with nonalcoholic fatty liver disease. Clin. Biochem. 42, 802–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Uribarri, J. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 110, 911–916.e12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Van Dongen, C. et al. Sarcopenia, healthy living, and mortality in patients with chronic liver diseases. Hepatol. Commun. 6, 3140–3153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Golabi, P. et al. Contribution of sarcopenia and physical inactivity to mortality in people with non-alcoholic fatty liver disease. JHEP Rep. 2, 100171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ganapathy, A. & Nieves, J. W. Nutrition and sarcopenia — what do we know? Nutrients 11, 1755 (2020).

    Article  Google Scholar 

  88. Fernández-Mincone, T. et al. Nonalcoholic fatty liver disease and sarcopenia: pathophysiological connections and therapeutic implications. Expert Rev. Gastroenterol. Hepatol. 14, 1141–1157 (2020).

    Article  PubMed  Google Scholar 

  89. Harring, M. et al. Sarcopenia among patients with nonalcoholic fatty liver disease (NAFLD) is associated with advanced fibrosis. Clin. Gastroenterol. Hepatol. 25, S1542–S3565 (2023).

    Google Scholar 

  90. Zelber-Sagi, S., Ivancovsky-Wajcman, D., Rabinowich, L., Bentov, I. & Deutsch, L. Nutritional evaluation and treatment of the Cirrhotic patient. Clin. Liver Dis. 25, 373–392 (2021).

    Article  PubMed  Google Scholar 

  91. Lai, J. C. et al. Malnutrition, frailty, and sarcopenia in patients with Cirrhosis: 2021 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 74, 1611–1644 (2021).

    Article  PubMed  Google Scholar 

  92. European Association for the Study of the Liver. EASL clinical practice guidelines on nutrition in chronic liver disease. J. Hepatol. 70, 172–193 (2019).

    Article  Google Scholar 

  93. Akhavan Rezayat, A. et al. Association between smoking and non-alcoholic fatty liver disease: a systematic review and meta-analysis. SAGE Open Med. 6, 2050312117745223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Peng, X. et al. Lifestyle as well as metabolic syndrome and non-alcoholic fatty liver disease: an umbrella review of evidence from observational studies and randomized controlled trials. BMC Endocr. Disord. 22, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marti-Aguado, D. et al. Cigarette smoking and liver diseases. J. Hepatol. 77, 191–205 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Hagstrom, H. et al. Cardiovascular risk factors in non-alcoholic fatty liver disease. Liver Int. 39, 197–204 (2019).

    Article  PubMed  Google Scholar 

  97. National Institute of Alcohol Abuse. Drink alcohol only in moderation. National Institute of Alcohol Abuse https://health.gov/myhealthfinder/health-conditions/heart-health/drink-alcohol-only-moderation#:~:Text=A%20moderate%20amount%20of%20alcohol%20means%3A,in%20a%20day%20for%20men (2022).

  98. Aberg, F. & Farkkila, M. Drinking and obesity: alcoholic liver disease/nonalcoholic fatty liver disease interactions. Semin. Liver Dis. 40, 154–162 (2020).

    Article  PubMed  Google Scholar 

  99. Long, M. T. et al. Alcohol use is associated with hepatic steatosis among persons with presumed nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 18, 1831–1841 (2020).

    Article  PubMed  Google Scholar 

  100. Blomdahl, J. et al. Moderate alcohol consumption is associated with advanced fibrosis in non-alcoholic fatty liver disease and shows a synergistic effect with type 2 diabetes mellitus. Metabolism 115, 154439 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Davis, J. N. et al. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am. J. Clin. Nutr. 92, 1522–1527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Santoro, N. et al. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary omega6/omega3 PUFA intake. PLoS One 7, e37827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vilar-Gomez, E. et al. Impact of the association between PNPLA3 genetic variation and dietary intake on the risk of significant fibrosis in patients with NAFLD. Am. J. Gastroenterol. 116, 994–1006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen, J. et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J. Gastroenterol. Hepatol. 30, 139–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Sevastianova, K. et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am. J. Clin. Nutr. 94, 104–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Nishioji, K. et al. The impact of PNPLA3 rs738409 genetic polymorphism and weight gain ≥10 kg after age 20 on non-alcoholic fatty liver disease in non-obese japanese individuals. PLoS One 10, e0140427 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nguyen, V. H. et al. Discrepancies between actual weight, weight perception and weight loss intention amongst persons with NAFLD. J. Intern. Med. 289, 840–850 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Kamada, Y. et al. Japan Study Group of NAFLD (JSG‐NAFLD). Clinical practice advice on lifestyle modification in the management of nonalcoholic fatty liver disease in Japan: an expert review. J. Gastroenterol. 56, 1045–1061 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. George, E. S. et al. A Mediterranean diet model in Australia: strategies for translating the traditional Mediterranean diet into a multicultural setting. Nutrients 10, 465 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Trovato, F. M. et al. Nonalcoholic fatty liver disease (NAFLD) prevention: role of Mediterranean diet and physical activity. Hepatobiliary Surg. Nutr. 8, 167–169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Centers for Disease Control and Prevention. How much physical activity do adults need? CDC https://www.cdc.gov/physicalactivity/basics/adults/index.htm (2022).

  112. Heredia, N. I. et al. Physical activity and diet quality in relation to non-alcoholic fatty liver disease: A cross-sectional study in a representative sample of U.S. adults using NHANES 2017-2018. Prev. Med. 154, 106903 (2022).

    Article  PubMed  Google Scholar 

  113. Katsagoni, C. N. et al. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabolism 68, 119–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. US Department of Health and Human Services. Physical activity guidelines for Americans. US Department of Health and Human Services https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf (2023).

  115. Kim, D. et al. Inadequate physical activity and sedentary behavior are independent predictors of nonalcoholic fatty liver disease. Hepatology 72, 1556–1568 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, D. et al. Physical activity is associated with nonalcoholic fatty liver disease and significant fibrosis measured by FibroScan. Clin. Gastroenterol. Hepatol. 20, e1438–e1455 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Henry, A. et al. Vigorous physical activity provides protection against all-cause deaths among adults patients with nonalcoholic fatty liver disease (NAFLD). Aliment. Pharmacol. Ther. 57, 709–722 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Hashida, R. et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J. Hepatol. 66, 142–152 (2017).

    Article  PubMed  Google Scholar 

  119. Zelber-Sagi, S. et al. Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J. Gastroenterol. 20, 4382–4392 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Keating, S. E., Hackett, D. A., George, J. & Johnson, N. A. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J. Hepatol. 57, 157–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Orci, L. A. et al. Exercise-based Interventions for nonalcoholic fatty liver disease: a meta-analysis and meta-regression. Clin. Gastroenterol. Hepatol. 14, 1398–1411 (2016).

    Article  PubMed  Google Scholar 

  122. Qiu, S. et al. Association between physical activity and risk of nonalcoholic fatty liver disease: a meta-analysis. Ther. Adv. Gastroenterol. 10, 701–713 (2017).

    Article  Google Scholar 

  123. González-Ruiz, K. et al. The effects of exercise on abdominal fat and liver enzymes in pediatric obesity: a systematic review and meta-analysis. Child. Obes. 13, 272–282 (2017).

    Article  PubMed  Google Scholar 

  124. Medrano, M. et al. Evidence-based exercise recommendations to reduce hepatic fat content in youth — a systematic review and meta-analysis. Prog. Cardiovasc. Dis. 61, 222–231 (2018).

    Article  PubMed  Google Scholar 

  125. Smart, N. A., King, N., McFarlane, J. R., Graham, P. L. & Dieberg, G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br. J. Sports Med. 52, 834–843 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Utz-Melere, M. et al. Non-alcoholic fatty liver disease in children and adolescents: lifestyle change — a systematic review and meta-analysis. Ann. Hepatol. 17, 345–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Sargeant, J. A. et al. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes. Rev. 19, 1446–1459 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Zou, T. T. et al. Lifestyle interventions for patients with nonalcoholic fatty liver disease: a network meta-analysis. Eur. J. Gastroenterol. Hepatol. 30, 747–755 (2018).

    Article  PubMed  Google Scholar 

  129. Wang, S. T. et al. Physical activity intervention for non-diabetic patients with non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. BMC Gastroenterol. 20, 66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baker, C. J. et al. Effect of exercise on hepatic steatosis: are benefits seen without dietary intervention? A systematic review and meta-analysis. J. Diabetes 13, 63–77 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Xiong, Y., Peng, Q., Cao, C., Xu, Z. & Zhang, B. Effect of different exercise methods on non-alcoholic fatty liver disease: a meta-analysis and meta-regression. Int. J. Env. Res. Public Health 18, 3242 (2021).

    Article  Google Scholar 

  132. Babu, A. F. et al. Positive effects of exercise intervention without weight loss and dietary changes in NAFLD-related clinical parameters: a systematic review and meta-analysis. Nutrients 13, 3135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sabag, A. et al. The effect of high-intensity interval training vs moderate-intensity continuous training on liver fat: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 17, 862–881 (2022).

    Article  Google Scholar 

  134. Fernández, T., Viñuela, M., Vidal, C. & Barrera, F. Lifestyle changes in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. PLoS One 17, e0263931 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Houttu, V. et al. Does aerobic exercise reduce NASH and liver fibrosis in patients with non-alcoholic fatty liver disease? A systematic literature review and meta-analysis. Front. Endocrinol. 13, 1032164 (2022).

    Article  Google Scholar 

  136. Ghaffari, M., Sadeghiyan, S., Faramarzi, M., Moghaddam, M. & Baghurst, T. The effect of aerobic exercise on metabolic parameters of patients with non-alcoholic fatty liver disease: systematic review and meta-analysis. J. Sports Med. Phys. Fit. 63, 178–187 (2023).

    Google Scholar 

  137. Reddy, Y. K. et al. Natural history of non-alcoholic fatty liver disease: a study with paired liver biopsies. J. Clin. Exp. Hepatol. 10, 245–254 (2020).

    Article  PubMed  Google Scholar 

  138. Leslie, T. et al. Survey of health status, nutrition and geography of food selection of chronic liver disease patients. Ann. Hepatol. 13, 533–540 (2014).

    Article  PubMed  Google Scholar 

  139. Frankenfeld, C. L., Leslie, T. F. & Makara, M. A. Diabetes, obesity, and recommended fruit and vegetable consumption in relation to food environment sub-types: a cross-sectional analysis of Behavioral Risk Factor Surveillance System, United States Census, and food establishment data. BMC Public Health 15, 491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Haynes-Maslow, L. & Leone, L. A. Examining the relationship between the food environment and adult diabetes prevalence by county economic and racial composition: an ecological study. BMC Public Health 17, 648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Giammarino, A. M. Community socioeconomic deprivation predicts nonalcoholic steatohepatitis. Hepatol. Commun. 6, 550–560 (2022).

    Article  PubMed  Google Scholar 

  142. Talens, M. et al. What do we know about inequalities in NAFLD distribution and outcomes? A scoping review. J. Clin. Med. 10, 5019 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kaiser, M. L., Dionne, J. & Carr, J. K. Predictors of diet-related health outcomes in food-secure and food-insecure communities. Soc. Work Public Health 34, 214–229 (2019).

    Article  PubMed  Google Scholar 

  144. Keenan, G. S., Christiansen, P. & Hardman, C. A. Household food insecurity, diet quality, and obesity: an explanatory model. Obesity 29, 143–149 (2021).

    Article  PubMed  Google Scholar 

  145. Vilar-Gomez, E. et al. High-quality diet, physical activity, and college education are associated with low risk of NAFLD among the US population. Hepatology 75, 1491–1506 (2022).

    Article  PubMed  Google Scholar 

  146. US Department of Agriculture. Definition of food security. USDA https://www.ers.usda.gov/topics/food-nutrition-assistance/food-security-in-the-u-s/definitions-of-food-security/#:~:Text=Food%20insecurity%E2%80%94the%20condition%20assessed,may%20result%20from%20food%20insecurity (2022).

  147. Eskandari, F., Lake, A. A., Rose, K., Butler, M. & O’Malley, C. A mixed-method systematic review and meta-analysis of the influences of food environments and food insecurity on obesity in high-income countries. Food Sci. Nutr. 10, 3689–3723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Golovaty, I. et al. Food insecurity may be an independent risk factor associated with nonalcoholic fatty liver disease among low-income adults in the United States. J. Nutr. 150, 91–98 (2020).

    Article  PubMed  Google Scholar 

  149. Kardashian, A., Dodge, J. L. & Terrault, N. A. Racial and ethnic differences in diet quality and food insecurity among adults with fatty liver and significant fibrosis: a U.S. population-based study. Aliment. Pharmacol. Ther. 56, 1383–1393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Leung, C. W. & Tester, J. M. The association between food insecurity and diet quality varies by race/ethnicity: an analysis of national health and nutrition examination survey 2011-2014 results. J. Acad. Nutr. Diet. 119, 1676–1686 (2019).

    Article  PubMed  Google Scholar 

  151. Castellanos-Fernández, M. I. et al. A multi-center study exploring the association of metabolic syndrome and non-alcoholic fatty liver disease in Cuban patients. Austin J. Obes. Metab. Synd. 5, 1023 (2021).

    Google Scholar 

  152. Asadullah, M. et al. Rural-urban differentials in prevalence, spectrum and determinants of non-alcoholic fatty liver disease in North Indian population. PLoS One 17, e0263768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Patel, K. et al. A retrospective observational cohort study to assess the prevalence and survival of patients with nonalcoholic steatohepatitis in Ontario, Canada. Hepatology 72, 63A–64A (2020).

    Google Scholar 

  154. Hales, C. M. et al. Differences in obesity prevalence by demographic characteristics and urbanization level among adults in the United States, 2013-2016. J. Am. Med. Assoc. 319, 2419–2429 (2018).

    Article  Google Scholar 

  155. Zhu, J. Z. et al. Prevalence of nonalcoholic fatty liver disease and economy. Dig. Dis. Sci. 60, 3194–3202 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Oldroyd, L., Eskandari, F., Pratt, C. & Lake, A. A. The nutritional quality of food parcels provided by food banks and the effectiveness of food banks at reducing food insecurity in developed countries: a mixed-method systematic review. J. Hum. Nutr. Diet. 35, 1202–1229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. den Braver, N. R. et al. Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Med. 16, 12 (2018).

    Article  Google Scholar 

  158. Kärmeniemi, M. et al. The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. Ann. Behav. Med. 52, 239–251 (2018).

    Article  PubMed  Google Scholar 

  159. Chandrabose, M. et al. Built environment and cardio-metabolic health: systematic review and meta-analysis of longitudinal studies. Obes. Rev. 20, 41–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Guo, B. et al. China multi-ethnic cohort (CMEC) collaborative group. Exposure to air pollution is associated with an increased risk of metabolic dysfunction-associated fatty liver disease. J. Hepatol. 76, 518–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Liu, F. et al. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Env. Pollut. 252, 1235–1245 (2019).

    Article  CAS  Google Scholar 

  162. VoPham, T. et al. PM2.5 air pollution exposure and nonalcoholic fatty liver disease in the Nationwide Inpatient Sample. Environ. Res. 213, 113611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun, S. et al. Long-term exposure to fine particulate matter and non-alcoholic fatty liver disease: a prospective cohort study. Gut 71, 443–445 (2022).

    Article  PubMed  Google Scholar 

  164. Adkins, A., Makarewicz, C., Scanze, M., Ingram, M. & Luhr, G. Contextualizing walkability: do relationships between built environments and walking vary by socioeconomic context? J. Am. Plan. Assoc. 83, 296–314 (2017).

    Article  Google Scholar 

  165. Hoenink, J. C. et al. The moderating role of social neighbourhood factors in the association between features of the physical neighbourhood environment and weight status. Obes. Facts 12, 14–24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cutts, B. B., Darby, K. J., Boone, C. G. & Brewis, A. City structure, obesity, and environmental justice: an integrated analysis of physical and social barriers to walkable streets and park access.Soc. Sci. Med. 69, 1314–1322 (2009).

    Article  PubMed  Google Scholar 

  167. Guilcher, S. J. T. et al. The association between social cohesion in the neighborhood and body mass index (BMI): an examination of gendered differences among urban dwelling Canadians. Prev. Med. 99, 293–298 (2017).

    Article  PubMed  Google Scholar 

  168. Lovasi, G. S., Neckerman, K. M., Quinn, J. W., Weiss, C. C. & Rundle, A. Effect of individual or neighborhood disadvantage on the association between neighborhood walkability and body mass index. Am. J. Public Health 99, 279–284 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sallis, J. F. et al. Neighborhood built environment and socioeconomic status in relation to physical activity, sedentary behavior, and weight status of adolescents. Prev. Med. 110, 47–54 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yu, E. L. & Schwimmer, J. B. Epidemiology of pediatric nonalcoholic fatty liver disease. Clin. Liver Dis. 17, 196–199 (2021).

    Article  Google Scholar 

  171. Elizabeth, L. Y. et al. Prevalence of nonalcoholic fatty liver disease in children with obesity. J. Paediatr. 207, 64–70 (2019).

    Article  Google Scholar 

  172. Anderson, E. L. et al. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS One 10, e0140908 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Li, J., Le, M. H., Barakat, M. T., Cheung, R. C. & Nguyen, M. H. The changing epidemiology of liver disease among US children and adolescents from 1999 to 2016. Am. J. Gastroenterol. 11, 2068–2078 (2021).

    Article  Google Scholar 

  174. Arshad, T. et al. Nonalcoholic fatty liver disease prevalence trends among adolescents and young adults in the United States, 2007-2016. Hepatol. Commun. 5, 1676–1688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Selvakumar, P. K. C., Kabbany, M. N., Nobili, V. & Alkhouri, N. Nonalcoholic fatty liver disease in children: hepatic and extrahepatic complications. Pediatr. Clin. North Am. 64, 659–675 (2017).

    Article  PubMed  Google Scholar 

  176. Zimmermann, E. et al. Body mass index in school‐aged children and the risk of routinely diagnosed non‐alcoholic fatty liver disease in adulthood: a prospective study based on the Copenhagen School Health Records Register. BMJ Open 5, e006998 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Perito, E. R. et al. Hepatic steatosis after pediatric liver transplant. Liver Transpl. 23, 957–967 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Costa, C. S. et al. Ultra-processed food consumption and its effects on anthropometric and glucose profile: a longitudinal study during childhood. Nutr. Metab. Cardiovasc. Dis. 29, 177–184 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Fismen, A. S. et al. Socioeconomic differences in food habits among 6- to 9-year-old children from 23 countries — WHO European Childhood Obesity Surveillance Initiative (COSI 2015/2017). Obes. Rev. 22, e13211 (2021).

    Article  PubMed  Google Scholar 

  180. Muth, N. D., Dietz, W. H., Magge, S. N. & Johnson, R. K.; American Academy of Pediatrics; Section on Obesity; Committee on Nutrition; American Heart Association. Public policies to reduce sugary drink consumption in children and adolescents. Pediatrics 143, e20190282 (2019).

    Article  PubMed  Google Scholar 

  181. McLaughlin, K. A., Weissman, D. & Bitrán, D. Childhood adversity and neural development: a systematic review. Ann. Rev. Dev. Psychol. 1, 277–312 (2019).

    Article  Google Scholar 

  182. Hughes, K. et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health 2, e356–e366 (2017).

    Article  PubMed  Google Scholar 

  183. Deng, K. & Lacey, R. E. Adverse childhood experiences, child poverty, and adiposity trajectories from childhood to adolescence: evidence from the Millennium Cohort Study. Int. J. Obes. 46, 1792–1800 (2022).

    Article  Google Scholar 

  184. Wiehn, J., Hornberg, C. & Fischer, F. How adverse childhood experiences relate to single and multiple health risk behaviours in German public university students: a cross-sectional analysis. BMC Public Health 18, 1005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Schroeder, K., Schuler, B. R., Kobulsky, J. M. & Sarwer, D. B. The association between adverse childhood experiences and childhood obesity: a systematic review. Obes. Rev. 22, e13204 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Singhal, J., Herd, C., Adab, P. & Pallan, M. Effectiveness of school-based interventions to prevent obesity among children aged 4 to 12 years old in middle-income countries: a systematic review and meta-analysis. Obes. Rev. 22, e13105 (2021).

    Article  PubMed  Google Scholar 

  187. MacArthur, G. et al. Individual-, family-, and school-level interventions targeting multiple risk behaviours in young people. Cochrane Database Syst. Rev. 10, CD009927 (2018).

    PubMed  Google Scholar 

  188. Martin, A. et al. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst. Rev. 1, CD009728 (2018).

    PubMed  Google Scholar 

  189. Dudley, D. A., Cotton, W. G. & Peralta, L. R. Teaching approaches and strategies that promote healthy eating in primary school children: a systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 25, 28 (2015).

    Article  Google Scholar 

  190. Karlsen, T. H. et al. The EASL-Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 399, 61–116 (2022).

    Article  PubMed  Google Scholar 

  191. Younes, R. & Bugianesi, E. NASH in lean individuals. Semin. Liver Dis. 39, 86–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Sookoian, S. & Pirola, C. J. Systematic review with meta-analysis: risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients. Aliment. Pharmacol. Ther. 46, 85–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Chen, F. et al. Lean NAFLD: a distinct entity shaped by differential metabolic adaptation. Hepatology 71, 1213–1227 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Wong, V. W. et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J. Hepatol. 69, 1349–1356 (2018).

    Article  PubMed  Google Scholar 

  195. Sinn, D. H. et al. Weight change and resolution of fatty liver in normal weight individuals with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 33, e529–e534 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Kempf, K. et al. Efficacy of the telemedical lifestyle intervention program TeLiPro in advanced stages of type 2 diabetes: a randomized controlled trial. Diabetes Care 40, 863–871 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Mazzotti, A. et al. An internet-based approach for lifestyle changes in patients with NAFLD: two-year effects on weight loss and surrogate markers. J. Hepatol. 69, 1155–1163 (2018).

    Article  PubMed  Google Scholar 

  198. Petroni, M. L. et al. Lifestyle intervention in NAFLD: long-term diabetes incidence in subjects treated by web- and group-based programs. Nutrients 15, 792 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Pfirrmann, D., Huber, Y., Schattenberg, J. M. & Simon, P. Web-based exercise as an effective complementary treatment for patients with nonalcoholic fatty liver disease: intervention study. J. Med. Internet Res. 21, e11250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Huber, Y. et al. Improvement of non-invasive markers of NAFLD from an individualised, web-based exercise program. Aliment. Pharmacol. Ther. 50, 930–939 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.Y., S.Z-S. and L.H. researched data for the article. Z.Y., S.Z-S. and L.H. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Zobair M. Younossi.

Ethics declarations

Competing interests

Z.Y. has received research funding and/or serves as a consultant to Intercept, Cymabay, Boehringer Ingelheim, BMS, GSK, NovoNordisk, AstraZeneca, Siemens, Madridgal, Merck and Abbott. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Giovanni Targher, Federico Salomone, Emmanuel Tsochatzis and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Federal poverty level: https://www.healthcare.gov/glossary/federal-poverty-level-fpl/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younossi, Z.M., Zelber-Sagi, S., Henry, L. et al. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 20, 708–722 (2023). https://doi.org/10.1038/s41575-023-00800-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00800-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing