Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic landscape and future direction of metastatic colorectal cancer

Abstract

In the era of targeted therapy based on genomic alterations, the treatment strategy for metastatic colorectal cancer (mCRC) has been changing. Before systemic treatment initiation, determination of tumour genomic status for KRAS and NRAS, BRAFV600E mutations, ERBB2, and microsatellite instability and/or mismatch repair (MMR) status is recommended. In patients with deficient MMR and BRAFV600E mCRC, randomized phase III trials have established the efficacy of pembrolizumab as first-line therapy and the combination of encorafenib and cetuximab as second-line or third-line therapy. In addition, new agents have been actively developed in other rare molecular fractions such as ERBB2 alterations and KRASG12C mutations. In March 2022, the combination of pertuzumab and trastuzumab for ERBB2-positive mCRC was approved in Japan, thereby combining real-world evidence from the SCRUM-Japan Registry. As the populations are highly fragmented owing to rare genomic alterations, various strategies in clinical development are expected. Clinical development of a tumour-agnostic approach, such as NTRK fusion and tumour mutational burden, has successfully introduced corresponding drugs to clinical practice. Considering the difficulty of randomized trials owing to cost–benefit and rarity, a promising solution could be real-world evidence utilized as an external control from the molecular-based disease registry.

Key points

  • For the best practice of metastatic colorectal cancer, the determination of tumour genomic status for KRAS and NRAS, BRAFV600E mutations, ERBB2, and microsatellite instability and/or mismatch repair (MMR) status is strongly recommended.

  • Immune-checkpoint inhibitors for patients with microsatellite instability-high and/or MMR-deficient tumours is the established standard therapy; combining immune-checkpoint inhibitors and stimulating agents is an emerging strategy investigated in patients with microsatellite stability and/or proficient MMR tumours.

  • In Japan, trastuzumab plus pertuzumab was approved considering real-world data from the SCRUM-Japan Registry; combining an anti-KRAS-G12C inhibitor and an anti-EGFR antibody is promising in KRASG12C-mutated tumours.

  • Rechallenge of anti-EGFR therapy in former responders with wild-type RAS in circulating tumour DNA assay after an interval of >4 months is also a promising treatment option.

  • Based on longitudinal genomic alteration data from the SCRUM-Japan platform, National Cancer Center Hospital East aims to establish a gene alteration database and identify artificial intelligence-based predictors for a pre-emptive treatment strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Frequency of targetable alterations.
Fig. 2: Correlation with SCRUM-Japan-related studies and SCRUM-Japan Registry.
Fig. 3: Proposed treatment chart.
Fig. 4: Suggested strategy for rare molecular fractions.
Fig. 5: Present and next-generation clinical trials for resistant genomic alterations.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Leporrier, J. et al. A population-based study of the incidence, management and prognosis of hepatic metastases from colorectal cancer. Br. J. Surg. 93, 465–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Heinemann, V. et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1065–1075 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Venook, A. P. et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA 317, 2392–2401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benson, A. B. et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 19, 329–359 (2021).

    Article  PubMed  Google Scholar 

  6. Ebi, H. & Bando, H. Precision oncology and the universal health coverage system in Japan. JCO Precis. Oncol. https://doi.org/10.1200/PO.19.00291 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakamura, Y. & Shitara, K. Development of circulating tumour DNA analysis for gastrointestinal cancers. ESMO Open 5, e000600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bando, H., Nakamura, Y., Kotani, D. & Yoshino, Y. Comparing GOZILA and COLOMATE: ongoing umbrella/basket trials examining genetic testing in gastrointestinal malignancies. Oncology 35, 382–389 (2021).

    Article  PubMed  Google Scholar 

  9. Bando, H. et al. Effects of metastatic sites on circulating tumor DNA in patients with metastatic colorectal cancer. JCO Precis. Oncol. 6, e2100535 (2022).

    Article  PubMed  Google Scholar 

  10. Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100, 266–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lochhead, P. et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J. Natl Cancer Inst. 105, 1151–1156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venderbosch, S. et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 20, 5322–5330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tol, J., Nagtegaal, I. D. & Punt, C. J. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med. 361, 98–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Van Cutsem, E. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 29, 2011–2019 (2011).

    Article  PubMed  Google Scholar 

  15. Chida, K. et al. The prognostic impact of KRAS G12C mutation in patients with metastatic colorectal cancer: a multicenter retrospective observational study. Oncologist 26, 845–853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salem, M. E. et al. Landscape of KRAS(G12C), associated genomic alterations, and interrelation with immuno-oncology biomarkers in KRAS-mutated cancers. JCO Precis. Oncol. 6, e2100245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Osterlund, E. et al. KRAS-G12C Mutation in one real-life and three population-based nordic cohorts of metastatic colorectal cancer. Front. Oncol. 12, 826073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Latham, A. et al. Microsatellite instability is associated with the presence of lynch syndrome pan-cancer. J. Clin. Oncol. https://doi.org/10.1200/jco.18.00283 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fujii, S. et al. International harmonization of diagnostic criteria for HER2-amplified metastatic colorectal cancer and application of targeted next-generation sequencing panel as a diagnostic method. J. Clin. Oncol. 36, 3594 (2018).

    Article  Google Scholar 

  20. Sartore-Bianchi, A. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 738–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Sartore-Bianchi, A. et al. HER2 positivity predicts unresponsiveness to EGFR-targeted treatment in metastatic colorectal cancer. Oncologist 24, 1395–1402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, B. et al. Atypical, non-V600 BRAF mutations as a potential mechanism of resistance to EGFR inhibition in metastatic colorectal cancer. JCO Precis. Oncol. https://doi.org/10.1200/po.19.00102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Raghav, K. et al. MET amplification in metastatic colorectal cancer: an acquired response to EGFR inhibition, not a de novo phenomenon. Oncotarget 7, 54627–54631 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02465060 (2015).

  27. Flaherty, K. T. et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: national cancer institute molecular analysis for therapy choice (NCI-MATCH). J. Clin. Oncol. https://doi.org/10.1200/jco.19.03010 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05564377 (2022).

  29. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05564390 (2022).

  30. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 7, 818–831 (2017).

    Article  Google Scholar 

  32. Micheel, C. M. et al. American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange: from inception to first data release and beyond — lessons learned and member institutions’ perspectives. JCO Clin. Cancer Inform. 2, https://doi.org/10.1200/CCI.17.00083 (2018).

  33. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/po.17.00011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnson, A. et al. Clinical use of precision oncology decision support. JCO Precis. Oncol. https://doi.org/10.1200/po.17.00036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chakravarty, D. et al. Somatic genomic testing in patients with metastatic or advanced cancer: ASCO provisional clinical opinion. J. Clin. Oncol. https://doi.org/10.1200/jco.21.02767 (2022).

    Article  PubMed  Google Scholar 

  36. Nakamura, Y. et al. SCRUM-Japan GI-SCREEN and MONSTAR-SCREEN: path to the realization of biomarker-guided precision oncology in advanced solid tumors. Cancer Sci. 112, 4425–4432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakamoto, Y. et al. Trajectory for the regulatory approval of a combination of pertuzumab plus trastuzumab for pre-treated HER2-positive metastatic colorectal cancer using real-world data: author contributions. Clin. Colorectal Cancer https://doi.org/10.1016/j.clcc.2022.10.003 (2022).

    Article  PubMed  Google Scholar 

  38. Cervantes, A. et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. https://doi.org/10.1016/j.annonc.2022.10.003 (2022).

    Article  PubMed  Google Scholar 

  39. Yoshino, T. et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann. Oncol. 29, 44–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Morris, V. K. et al. Treatment of metastatic colorectal cancer: ASCO guideline. J. Clin. Oncol. https://doi.org/10.1200/jco.22.01690 (2022).

    Article  PubMed  Google Scholar 

  41. Arnold, D. et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomised trials. Ann. Oncol. https://doi.org/10.1093/annonc/mdx175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 27, 1386–1422 (2016).

    Article  PubMed  Google Scholar 

  43. Engstrom, P. F. et al. NCCN clinical practice guidlines in oncology (NCCN guidelines): colon cancer. J. Natl Compr. Canc. Netw. 7, 778–831 (2022).

    Article  Google Scholar 

  44. Yoshino, T. et al. Panitumumab (PAN) plus mFOLFOX6 versus bevacizumab (BEV) plus mFOLFOX6 as first-line treatment in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC): results from the phase 3 PARADIGM trial. J. Clin. Oncol. 40, abstr LBA1 (2022).

    Article  Google Scholar 

  45. Patel, S. G., Karlitz, J. J., Yen, T., Lieu, C. H. & Boland, C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol. Hepatol. 7, 262–274 (2022).

    Article  PubMed  Google Scholar 

  46. Jin, Z. et al. Response to epithelial growth factor receptor inhibitor (EGFRi) treatment in patients with early-onset, treatment-naïve metastatic colorectal cancer (mCRC): an ARCAD database analysis. J. Clin. Oncol. 40, 3572 (2022).

    Article  Google Scholar 

  47. Zaanan, A. et al. Role of deficient DNA mismatch repair status in patients with stage III colon cancer treated with FOLFOX adjuvant chemotherapy: a pooled analysis from 2 randomized clinical trials. JAMA Oncol. 4, 379–383 (2018).

    Article  PubMed  Google Scholar 

  48. Taieb, J. et al. Prognosis of microsatellite instability and/or mismatch repair deficiency stage III colon cancer patients after disease recurrence following adjuvant treatment: results of an ACCENT pooled analysis of seven studies. Ann. Oncol. 30, 1466–1471 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cohen, R. et al. Microsatellite instability in patients with stage III colon cancer receiving fluoropyrimidine with or without oxaliplatin: an ACCENT pooled analysis of 12 adjuvant trials. J. Clin. Oncol. https://doi.org/10.1200/jco.20.01600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  PubMed  Google Scholar 

  51. Diaz, L. A. Jr. et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23, 659–670 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Lenz, H. J. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J. Clin. Oncol. https://doi.org/10.1200/jco.21.01015 (2021).

    Article  PubMed  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04008030 (2019).

  54. Le, D. T. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 38, 11–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Cohen, R. et al. RECIST and iRECIST criteria for the evaluation of nivolumab plus ipilimumab in patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the GERCOR NIPICOL phase II study. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001499 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cohen, R. et al. One-year duration of nivolumab plus ipilimumab in patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI/dMMR) metastatic colorectal cancer (mCRC): long-term follow-up of the GERCOR NIPICOL phase II study. J. Clin. Oncol. 40 (Suppl. 4), 13 (2022).

    Article  Google Scholar 

  59. Andre, T. et al. Safety and efficacy of anti-PD-1 antibody dostarlimab in patients (pts) with mismatch repair-deficient (dMMR) solid cancers: results from GARNET study. J. Clin. Oncol. 39, 9 (2021).

    Article  Google Scholar 

  60. Li, J. et al. Updated analysis from a phase 2 study of tislelizumab (TIS) monotherapy in patients (pts) with previously treated, locally advanced, unresectable/metastatic microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) solid tumors. J. Clin. Oncol. 40 (Suppl. 4), 1 (2022).

    Article  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02997228 (2016).

  62. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04041310 (2019).

  63. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04729322 (2021).

  64. Chen, D. et al. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS ONE 9, e90607 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Advani, S. M. et al. Epidemiology and molecular-pathologic characteristics of CpG island methylator phenotype (CIMP) in colorectal cancer. Clin. Colorectal Cancer https://doi.org/10.1016/j.clcc.2020.09.007 (2020).

    Article  PubMed  Google Scholar 

  66. Vedeld, H. M. et al. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers. Int. J. Cancer 141, 967–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Modest, D. P. et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann. Oncol. 27, 1746–1753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pietrantonio, F. et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur. J. Cancer 51, 587–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Loupakis, F. et al. FOLFOXIRI plus bevacizumab as first-line treatment in BRAF mutant metastatic colorectal cancer. Eur. J. Cancer 50, 57–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Loupakis, F. et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 371, 1609–1618 (2014).

    Article  PubMed  Google Scholar 

  71. Cremolini, C. et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 16, 1306–1315 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Cremolini, C. et al. Individual patient data meta-analysis of FOLFOXIRI plus bevacizumab versus doublets plus bevacizumab as initial therapy of unresectable metastatic colorectal cancer. J. Clin. Oncol. https://doi.org/10.1200/jco.20.01225 (2020).

    Article  PubMed  Google Scholar 

  73. Stintzing, S. et al. Randomized study to investigate FOLFOXIRI plus either bevacizumab or cetuximab as first-line treatment of BRAF V600E-mutant mCRC: the phase-II FIRE-4.5 study (AIO KRK-0116). J. Clin. Oncol. 39, 3502–3502 (2021).

    Article  Google Scholar 

  74. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Tabernero, J. et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J. Clin. Oncol. 39, 273–284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kopetz, S. et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG S1406). J. Clin. Oncol. 39, 285–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Cutsem, E. V. et al. O-10 ANCHOR CRC: results from a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E–mutant metastatic colorectal cancer. Ann. Oncol. 32, S222 (2021).

    Article  Google Scholar 

  79. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04607421 (2020).

  80. Kopetz, S. et al. BREAKWATER: Randomized phase 3 study of encorafenib (enco)+cetuximab (cetux)±chemotherapy for first-line (1L) treatment (tx) of BRAF V600E-mutant (BRAFV600E) metastatic colorectal cancer (mCRC). J. Clin. Oncol. 39 (Suppl. 15), TPS3619 (2022).

    Google Scholar 

  81. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Morris, V. K. et al. Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, BRAFV600E metastatic colorectal cancer. J. Clin. Oncol. 40, 12 (2022).

    Article  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05308446 (2022).

  84. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05217446 (2022).

  85. Kotani, H. et al. Distinct dependencies on receptor tyrosine kinases in the regulation of MAPK signaling between BRAF V600E and non-V600E mutant lung cancers. Oncogene 37, 1775–1787 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Kotani, D. et al. BIG BANG study (EPOC1703): multicentre, proof-of-concept, phase II study evaluating the efficacy and safety of combination therapy with binimetinib, encorafenib and cetuximab in patients with BRAF non-V600E mutated metastatic colorectal cancer. ESMO Open 5, e000624 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. UMIN. https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000036377 (2018).

  88. Misale, S., Di Nicolantonio, F., Sartore-Bianchi, A., Siena, S. & Bardelli, A. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov. 4, 1269–1280 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 795–801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Montagut, C. et al. Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses: a phase 2 randomized clinical trial. JAMA Oncol. 4, e175245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liu, X. et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer 15, 713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Masuishi, T. et al. Phase 2 study of irinotecan plus cetuximab rechallenge as third-line treatment in KRAS wild-type metastatic colorectal cancer: JACCRO CC-08. Br. J. Cancer https://doi.org/10.1038/s41416-020-01042-w (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Morelli, M. P. et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann. Oncol. 26, 731–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parseghian, C. M. et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann. Oncol. 30, 243–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Cremolini, C. et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.5080 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Martinelli, E. et al. Cetuximab rechallenge plus avelumab in pretreated patients with RAS wild-type metastatic colorectal cancer: the phase 2 single-arm clinical CAVE Trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2021.2915 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Martinelli, E. et al. Evidence of therapeutic effectiveness of third-line cetuximab rechallenge in appropriately selected patients: Findings from long-term follow-up of CRICKET and CAVE trials. Ann. Oncol. 33, S381–S382 (2022).

    Article  Google Scholar 

  98. Sartore-Bianchi, A. et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase 2 CHRONOS trial. Nat. Med. 28, 1612–1618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakajima, H. et al. REMARRY and PURSUIT trials: liquid biopsy-guided rechallenge with anti-epidermal growth factor receptor (EGFR) therapy with panitumumab plus irinotecan for patients with plasma RAS wild-type metastatic colorectal cancer. BMC Cancer 21, 674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kagawa, Y. et al. Plasma RAS dynamics and anti-EGFR rechallenge efficacy in patients with RAS/BRAF wild-type metastatic colorectal cancer: REMARRY and PURSUIT trials. J. Clin. Oncol. https://doi.org/10.1200/JCO.2022.40.16_suppl.3518 (2022).

    Article  Google Scholar 

  101. Moretto, R. et al. Rationale and study design of the PARERE trial: randomized phase II study of panitumumab Re-treatment followed by regorafenib versus the reverse sequence in RAS and BRAF wild-type chemo-refractory metastatic colorectal cancer patients. Clin. Colorectal Cancer 20, 314–317 (2021).

    Article  PubMed  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04787341 (2021).

  103. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02934529 (2016).

  104. Fujii, S. et al. International harmonization of provisional diagnostic criteria for ERBB2-amplified metastatic colorectal cancer allowing for screening by next-generation sequencing panel. JCO Precis. Oncol. 4, 6–19 (2020).

    Article  PubMed  Google Scholar 

  105. Sawada, K. et al. Prognostic and predictive value of HER2 amplification in patients with metastatic colorectal cancer. Clin. Colorectal Cancer 17, 198–205 (2018).

    Article  PubMed  Google Scholar 

  106. Raghav, K. et al. Validation of HER2 amplification as a predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. JCO Precis. Oncol. 3, 1–13 (2019).

    PubMed  Google Scholar 

  107. Sartore-Bianchi, A. et al. Central nervous system as possible site of relapse in ERBB2-positive metastatic colorectal cancer: long-term results of treatment with trastuzumab and lapatinib. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.0571 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Richman, S. D. et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J. Pathol. 238, 562–570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ingold Heppner, B. et al. HER2/neu testing in primary colorectal carcinoma. Br. J. Cancer 111, 1977–1984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Parikh, A. R. et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 25, 1415–1421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nakamura, Y. et al. Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: a phase 2 trial. Nat. Med. 27, 1899–1903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tosi, F. et al. Long-term clinical outcome of trastuzumab and lapatinib for HER2-positive metastatic colorectal cancer. Clin. Colorectal Cancer 19, 256–262.e2 (2020).

    Article  PubMed  Google Scholar 

  113. Meric-Bernstam, F. et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 20, 518–530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gupta, R. et al. Pertuzumab plus trastuzumab (P+T) in patients (Pts) with colorectal cancer (CRC) with ERBB2 amplification or overexpression: results from the TAPUR study. J. Clin. Oncol. 38, 132–132 (2020).

    Article  Google Scholar 

  115. Strickler, J. et al. Primary analysis of MOUNTAINEER: a phase 2 study of tucatinib and trastuzumab for HER2-positive mCRC. Ann. Oncol. 33, S375–S376 (2022).

    Article  Google Scholar 

  116. Siena, S. et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 22, 779–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Siena, S. et al. Exploratory biomarker analysis of DESTINY-CRC01, a phase II, multicenter, open-label study of trastuzumab deruxtecan (T-DXd, DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC). Ann. Oncol. 32, S530–S582 (2021).

    Article  Google Scholar 

  118. Raghav, K. P. S. et al. A randomized phase II study of trastuzumab and pertuzumab (TP) compared to cetuximab and irinotecan (CETIRI) in advanced/metastatic colorectal cancer (mCRC) with HER2 amplification: S1613. J. Clin. Oncol. 36 (Suppl. 15), TPS3620 (2018).

    Article  Google Scholar 

  119. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03365882 (2017).

  120. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05253651 (2022).

  121. Raghav, K. P. S. et al. Trastuzumab deruxtecan in patients with HER2-overexpressing locally advanced, unresectable, or metastatic colorectal cancer (mCRC): a randomized, multicenter, phase 2 study (DESTINY-CRC02). J. Clin. Oncol. 39 (Suppl. 15), TPS3620 (2021).

    Article  Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04744831 (2021).

  123. Ganesh, K. et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 16, 361–375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Riihimaki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. https://doi.org/10.1038/s41591-020-1131-x (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Antoniotti, C. et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 23, 876–887 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Cremolini, C. et al. FOLFOXIRI plus bevacizumab (bev) plus atezolizumab (atezo) versus FOLFOXIRI plus bev as first-line treatment of unresectable metastatic colorectal cancer (mCRC) patients: results of the phase II randomized AtezoTRIBE study by GONO. Ann. Oncol. 32, S1294–S1295 (2021).

    Article  Google Scholar 

  130. Lenz, H.-J. et al. Nivolumab (NIVO)+5-fluorouracil/leucovorin/oxaliplatin (mFOLFOX6)/bevacizumab (BEV) versus mFOLFOX6/BEV for first-line (1L) treatment of metastatic colorectal cancer (mCRC): phase 2 results from CheckMate 9×8. J. Clin. Oncol. 40, 8–8 (2022).

    Article  Google Scholar 

  131. Schmoll, H. J. et al. MODUL-a multicenter randomized clinical trial of biomarker-driven maintenance therapy following first-line standard induction treatment of metastatic colorectal cancer: an adaptable signal-seeking approach. J. Cancer Res. Clin. Oncol. 144, 1197–1204 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Mettu, N. B. et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial. JAMA Netw. Open 5, e2149040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chen, E. X. et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 study. JAMA Oncol. 6, 831–838 (2020).

    Article  PubMed  Google Scholar 

  134. Bullock, A. et al. Botensilimab, a novel innate/adaptive immune activator, plus balstilimab (anti-PD-1) for metastatic heavily pretreated microsatellite stable colorectal cancer. Ann. Oncol. 33, S376 (2022).

    Article  Google Scholar 

  135. Eng, C. et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 20, 849–861 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Fukuoka, S. et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol. 38, 2053–2061 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Gomez-Roca, C. et al. LEAP-005: a phase II multicohort study of lenvatinib plus pembrolizumab in patients with previously treated selected solid tumors — Results from the colorectal cancer cohort. J. Clin. Oncol. 39, 94 (2021).

    Article  Google Scholar 

  138. Yoshino, T. et al. Pembrolizumab plus lenvatinib versus standard of care for previously treated metastatic colorectal cancer (mCRC): phase III LEAP-017 study. Ann. Oncol. 32, S580 (2021).

    Article  Google Scholar 

  139. Pietrantonio, F. et al. Activity of temozolomide in patients with advanced chemorefractory colorectal cancer and MGMT promoter methylation. Ann. Oncol. 25, 404–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Morano, F. et al. Temozolomide followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite-stable, O(6)-methylguanine-DNA methyltransferase-silenced metastatic colorectal cancer: The MAYA trial. J. Clin. Oncol. https://doi.org/10.1200/jco.21.02583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03519412 (2018).

  143. Crisafulli, G. et al. Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients. Cancer Discov. 12, 1656–1675 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Monjazeb, A. M. et al. A randomized trial of combined PD-L1 and CTLA-4 inhibition with targeted low-dose or hypofractionated radiation for patients with metastatic colorectal cancer. Clin. Cancer Res. 27, 2470–2480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Segal, N. H. et al. Phase II single-arm study of durvalumab and tremelimumab with concurrent radiotherapy in patients with mismatch repair-proficient metastatic colorectal cancer. Clin. Cancer Res. 27, 2200–2208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Floudas, C. S. et al. A pilot study of the PD-1 targeting agent AMP-224 used with low-dose cyclophosphamide and stereotactic body radiation therapy in patients with metastatic colorectal cancer. Clin. Colorectal Cancer 18, e349–e360 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nebot-Bral, L. et al. Hypermutated tumours in the era of immunotherapy: the paradigm of personalised medicine. Eur. J. Cancer 84, 290–303 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Yao, J. et al. Comprehensive analysis of POLE and POLD1 Gene Variations identifies cancer patients potentially benefit from immunotherapy in Chinese population. Sci. Rep. 9, 15767 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Oh, C. R. et al. Phase II study of durvalumab monotherapy in patients with previously treated microsatellite instability-high/mismatch repair-deficient or POLE-mutated metastatic or unresectable colorectal cancer. Int. J. Cancer 150, 2038–2045 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Sha, D. et al. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10, 1808–1825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fancello, L., Gandini, S., Pelicci, P. G. & Mazzarella, L. Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J. Immunother. Cancer 7, 183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. McGrail, D. J. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. https://doi.org/10.1016/j.annonc.2021.02.006 (2021).

    Article  PubMed  Google Scholar 

  154. Meiri, E. et al. Pembrolizumab (P) in patients (Pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): results from the targeted agent and profiling utilization registry (TAPUR) study. J. Clin. Oncol. 38, 133–133 (2020).

    Article  Google Scholar 

  155. Rousseau, B. et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N. Engl. J. Med. 384, 1168–1170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Pages, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    Article  PubMed  Google Scholar 

  157. Awad, M. M. et al. Acquired resistance to KRAS(G12C) inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Amodio, V. et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-20-0187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04793958 (2021).

  160. Tanaka, N. et al. Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J. Med. Chem. 65, 3123–3133 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Lenz, H.-J. et al. A phase 1b/2 trial of the PLK1 inhibitor onvansertib in combination with FOLFIRI-bev in 2L treatment of KRAS-mutated (mKRAS) metastatic colorectal carcinoma (mCRC). J. Clin. Oncol. 40, 100 (2022).

    Article  Google Scholar 

  163. Hendifar, A. E. et al. Phase 1b study of RGX-202-01, a first-in-class oral inhibitor of the SLC6A8/CKB pathway, in combination with FOLFIRI and bevacizumab (BEV) in second-line advanced colorectal cancer (CRC). J. Clin. Oncol. 40, 3579–3579 (2022).

    Article  Google Scholar 

  164. Hendifar, A. et al. Phase 1b study of RGX-202-01, a first-in-class oral inhibitor of the SLC6A8/CKB pathway, in combination with FOLFIRI and bevacizumab (BEV) in second-line advanced colorectal cancer (CRC). Ann. Oncol. 33, S294 (2022).

    Article  Google Scholar 

  165. Marchio, C. et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol. 30, 1417–1427 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Yoshino, T. et al. JSCO-ESMO-ASCO-JSMO-TOS: international expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions. Ann. Oncol. https://doi.org/10.1016/j.annonc.2020.03.299 (2020).

    Article  PubMed  Google Scholar 

  167. Pietrantonio, F. et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djx089 (2017).

    Article  PubMed  Google Scholar 

  168. Cocco, E. et al. Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Res. 79, 1047–1053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hong, D. S. et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. https://doi.org/10.1016/s1470-2045(19)30856-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Drilon, A. et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7, 400–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 21, 271–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Seligmann, J. F. et al. Inhibition of WEE1 is effective in TP53- and RAS-mutant metastatic colorectal cancer: a randomized trial (FOCUS4-C) comparing adavosertib (AZD1775) with active monitoring. J. Clin. Oncol. 39, 3705–3715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Strickler, J. H. et al. Cabozantinib and panitumumab for RAS wild-type metastatic colorectal cancer. Oncologist 26, 465–e917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pietrantonio, F. et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann. Oncol. 29, 1394–1401 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Thein, K. Z., Velcheti, V., Mooers, B. H. M., Wu, J. & Subbiah, V. Precision therapy for RET-altered cancers with RET inhibitors. Trends Cancer 7, 1074–1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Taniguchi, H. et al. CIRCULATE-Japan: circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci. 112, 2915–2920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kann, B. H., Hosny, A. & Aerts, H. Artificial intelligence for clinical oncology. Cancer Cell 39, 916–927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Luchini, C., Pea, A. & Scarpa, A. Artificial intelligence in oncology: current applications and future perspectives. Br. J. Cancer https://doi.org/10.1038/s41416-021-01633-1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kawazoe, A. et al. Multicenter phase I/II trial of napabucasin and pembrolizumab in patients with metastatic colorectal cancer (EPOC1503/SCOOP Trial). Clin. Cancer Res. 26, 5887–5894 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Corcoran, R. et al. Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal cancer patients. Ann. Oncol. 31, S226–S227 (2020).

    Article  Google Scholar 

  183. Yaeger, R. et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res. 21, 1313–1320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ramanathan, R. K. et al. Low overexpression of HER-2/neu in advanced colorectal cancer limits the usefulness of trastuzumab (Herceptin) and irinotecan as therapy. A phase II trial. Cancer Invest. 22, 858–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Sartore-Bianchi, A. et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: the phase II HERACLES-B trial. ESMO Open 5, e000911 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Strickler, J. H. et al. Trastuzumab and tucatinib for the treatment of HER2 amplified metastatic colorectal cancer (mCRC): initial results from the MOUNTAINEER trial. Ann. Oncol. 30, v200 (2019).

    Article  Google Scholar 

  187. Yuan, Y. et al. Dual-targeted therapy with pyrotinib and trastuzumab for HER2-positive advanced colorectal cancer: preliminary results from a multicenter phase 2 trial. J. Clin. Oncol. 39, e15554 (2021).

    Article  Google Scholar 

  188. Clark, J. W. et al. Phase II trial of 5-fluororuacil (5-FU), leucovorin (LV), oxaliplatin (Ox), and trastuzamab (T) for patients with metastatic colorectal cancer (CRC) refractory to initial therapy [Abstract]. Proc. Am. Soc. Clin. Oncol. 22, A-3584 (2003).

    Google Scholar 

  189. Bekaii-Saab, T. S. et al. A phase I trial of paclitaxel and trastuzumab in combination with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol. Cancer Ther. 8, 2983–2991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Meric-Bernstam, F. et al. Zanidatamab a novel bispecific antibody for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: a phase 1 dose-escalation and expansion study. Lancet Oncol. 23, 1558–1570 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Takayuki Yoshino.

Ethics declarations

Competing interests

H.B. reports research funding from Ono Pharmaceutical and honoraria from Taiho Pharmaceutical and Eli Lilly, Japan. A.O. reports research funding from BMS and honoraria from Chugai and Ono Pharmaceutical. T.Y. reports research funding from Taiho Pharmaceutical, Sumitomo Dainippon Pharma, Ono Pharmaceutical, Chugai Pharmaceutical, Amgen, Parexel International, MSD, Daiichi Sankyo and Sanofi.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Andrea Sartore-Bianchi, Tanios Bekaii-Saab, Daniel Walden and Elena Élez for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

JapicCTI-194709: https://rctportal.niph.go.jp/en/detail?trial_id=JapicCTI-194709

UMIN000031857: https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000036377

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bando, H., Ohtsu, A. & Yoshino, T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 20, 306–322 (2023). https://doi.org/10.1038/s41575-022-00736-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00736-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing