Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease

An Author Correction to this article was published on 07 March 2022

This article has been updated

Abstract

Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn’s disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.

Key points

  • Sphingosine 1-phosphate (S1P) is a pleiotropic and widely expressed bioactive molecule belonging to the sphingolipid family that binds to five receptors (found on numerous cell types) with varying affinities.

  • Oral S1P modulators have been tested in multiple immune-mediated disorders.

  • Cardiotoxicity of the non-selective S1P agonist fingolimod has led to the development of more selective compounds, including ozanimod and etrasimod.

  • Ozanimod and etrasimod have been shown to be safe and efficacious for the treatment of patients with inflammatory bowel disease.

  • Future treatment approaches including S1P modulators should be explored, such as combination therapy with approved biologic agents, as well as the identification of predictive biomarkers to facilitate personalized therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of mechanisms for targeting immune cell trafficking in inflammatory bowel disease.
Fig. 2: Overview of S1P metabolism.
Fig. 3: S1P receptors and downstream signalling pathways.

Change history

References

  1. Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Torres, J. et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. J. Crohns Colitis 14, 4–22 (2020).

    Article  PubMed  Google Scholar 

  3. Sazonovs, A. et al. HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn’s disease. Gastroenterology 158, 189–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Kirchgesner, J. et al. Risk of serious and opportunistic infections associated with treatment of inflammatory bowel diseases. Gastroenterology 155, 337–346 (2018).

    Article  PubMed  Google Scholar 

  5. Sandborn, W. J. New targets for small molecules in inflammatory bowel disease. Gastroenterol. Hepatol. 11, 338–340 (2015).

    Google Scholar 

  6. Olivera, P., Danese, S. & Peyrin-Biroulet, L. Next generation of small molecules in inflammatory bowel disease. Gut 66, 199–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Wiendl, M. et al. Targeting immune cell trafficking- insights from research models and implications for future IBD therapy. Front. Immunol. 12, 656452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panes, J. & Salas, A. Past, present and future of therapeutic interventions targeting leukocyte trafficking in inflammatory bowel disease. J. Crohns Colitis 12, S633–S640 (2018).

    Article  PubMed  Google Scholar 

  9. Pachynski, R. K., Wu, S. W., Gunn, M. D. & Erle, D. J. Secondary lymphoid-tissue chemokine (SLC) stimulates integrin alpha 4 beta 7-mediated adhesion of lymphocytes to mucosal addressin cell adhesion molecule-1 (MAdCAM-1) under flow. J. Immunol. 161, 952–956 (1998).

    CAS  PubMed  Google Scholar 

  10. Phan, U. T., Waldron, T. T. & Springer, T. A. Remodeling of the lectin-EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat. Immunol. 7, 883–889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salas, A. et al. Rolling adhesion through an extended conformation of integrin αLβ2 and relation to α I and β I-like domain interaction. Immunity 20, 393–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Sigal, A. et al. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J. Immunol. 165, 442–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Trivedi, P. J. & Adams, D. H. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; pitfalls and promise. J. Crohns Colitis 12, S641–S652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luster, A. D. Chemokines–chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Ajuebor, M. N. & Swain, M. G. Role of chemokines and chemokine receptors in the gastrointestinal tract. Immunology 105, 137–143 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raab, Y., Gerdin, B., Ahlstedt, S. & Hallgren, R. Neutrophil mucosal involvement is accompanied by enhanced local production of interleukin-8 in ulcerative colitis. Gut 34, 1203–1206 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walana, W. et al. IL-8 antagonist, CXCL8(3-72)K11R/G31P coupled with probiotic exhibit variably enhanced therapeutic potential in ameliorating ulcerative colitis. Biomed. Pharmacother. 103, 253–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Feng, N. et al. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast recruitment to the intestinal lamina propria after rotavirus infection. J. Immunol. 176, 5749–5759 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Stenstad, H. et al. Gut-associated lymphoid tissue-primed CD4+ T cells display CCR9-dependent and -independent homing to the small intestine. Blood 107, 3447–3454 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Svensson, M. et al. CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J. Clin. Invest. 110, 1113–1121 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wendland, M. et al. CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc. Natl Acad. Sci. USA 104, 6347–6352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parmo-Cabanas, M. et al. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin α4β1. J. Leukoc. Biol. 82, 380–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Miles, A., Liaskou, E., Eksteen, B., Lalor, P. F. & Adams, D. H. CCL25 and CCL28 promote α4β7-integrin-dependent adhesion of lymphocytes to MAdCAM-1 under shear flow. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1257–G1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Eksteen, B., Liaskou, E. & Adams, D. H. Lymphocyte homing and its role in the pathogenesis of IBD. Inflamm. Bowel Dis. 14, 1298–1312 (2008).

    Article  PubMed  Google Scholar 

  25. Ostvik, A. E. et al. Enhanced expression of CXCL10 in inflammatory bowel disease: potential role of mucosal Toll-like receptor 3 stimulation. Inflamm. Bowel Dis. 19, 265–274 (2013).

    Article  PubMed  Google Scholar 

  26. Uguccioni, M. et al. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am. J. Pathol. 155, 331–336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Annunziato, F. et al. Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo. J. Leukoc. Biol. 65, 691–699 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Shao, L., Serrano, D. & Mayer, L. The role of epithelial cells in immune regulation in the gut. Semin. Immunol. 13, 163–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Skovdahl, H. K. et al. Expression of CCL20 and its corresponding receptor CCR6 is enhanced in active inflammatory bowel disease, and TLR3 mediates CCL20 expression in colonic epithelial cells. PLoS ONE 10, e0141710 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kaser, A. et al. Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol. 24, 74–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Sugiura, Y. et al. TLR1-induced chemokine production is critical for mucosal immunity against Yersinia enterocolitica. Mucosal Immunol. 6, 1101–1109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Calderon-Gomez, E. et al. Commensal-specific CD4+ cells from patients with Crohn’s disease have a T-helper 17 inflammatory profile. Gastroenterology 151, 489–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sallusto, F. & Baggiolini, M. Chemokines and leukocyte traffic. Nat. Immunol. 9, 949–952 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arseneau, K. O. & Cominelli, F. Targeting leukocyte trafficking for the treatment of inflammatory bowel disease. Clin. Pharmacol. Ther. 97, 22–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Rivera-Nieves, J. Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments. Curr. Opin. Gastroenterol. 31, 441–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, M. T. et al. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45, 442–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Cerf-Bensussan, N. et al. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur. J. Immunol. 17, 1279–1285 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Rott, L. S., Briskin, M. J., Andrew, D. P., Berg, E. L. & Butcher, E. C. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with beta 7 integrins and memory differentiation. J. Immunol. 156, 3727–3736 (1996).

    CAS  PubMed  Google Scholar 

  42. Meenan, J. et al. Altered expression of α4β7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut 40, 241–246 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Zundler, S. et al. The α4β1 homing pathway is essential for ileal homing of Crohn’s disease effector T cells in vivo. Inflamm. Bowel Dis. 23, 379–391 (2017).

    Article  PubMed  Google Scholar 

  45. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Panes, J., Perry, M. & Granger, D. N. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br. J. Pharmacol. 126, 537–550 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hyun, Y. M., Choe, Y. H., Park, S. A. & Kim, M. LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp. Mol. Med. 51, 1–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida, N. et al. Role of P-selectin and intercellular adhesion molecule-1 in TNB-induced colitis in rats. Digestion 63 (Suppl. 1), 81–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Soriano, A. et al. VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab. Invest. 80, 1541–1551 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Briskin, M. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 151, 97–110 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Souza, H. S., Elia, C. C., Spencer, J. & MacDonald, T. T. Expression of lymphocyte-endothelial receptor-ligand pairs, α4β7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 45, 856–863 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ala, A., Dhillon, A. P. & Hodgson, H. J. Role of cell adhesion molecules in leukocyte recruitment in the liver and gut. Int. J. Exp. Pathol. 84, 1–16 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Perez-Jeldres, T., Alvarez-Lobos, M. & Rivera-Nieves, J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: beyond multiple sclerosis. Drugs 81, 985–1002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kiuchi, M. et al. Synthesis and biological evaluation of 2,2-disubstituted 2-aminoethanols: analogues of FTY720. Bioorg. Med. Chem. Lett. 8, 101–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Watterson, K. R. et al. Dual regulation of EDG1/S1P1 receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. J. Biol. Chem. 277, 5767–5777 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Pham, T. H., Okada, T., Matloubian, M., Lo, C. G. & Cyster, J. G. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 10, 58–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Holthuis, J. C., Pomorski, T., Raggers, R. J., Sprong, H. & Van Meer, G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81, 1689–1723 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Gault, C. R., Obeid, L. M. & Hannun, Y. A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chalfant, C. E. & Spiegel, S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci. 118, 4605–4612 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Serra, M. & Saba, J. D. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzym. Regul. 50, 349–362 (2010).

    Article  Google Scholar 

  66. Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Ito, K. et al. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem. Biophys. Res. Commun. 357, 212–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vu, T. M. et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 550, 524–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Spiegel, S. & Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez, Y. I. et al. Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front. Oncol. 6, 218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Schwab, S. R. & Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hla, T., Galvani, S., Rafii, S. & Nachman, R. S1P and the birth of platelets. J. Exp. Med. 209, 2137–2140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, L. et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J. Exp. Med. 209, 2165–2181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murata, N. et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352, 809–815 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Christoffersen, C. et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Natl Acad. Sci. USA 108, 9613–9618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takabe, K. et al. Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J. Biol. Chem. 285, 10477–10486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goetzl, E. J. & Rosen, H. Regulation of immunity by lysosphingolipids and their G protein-coupled receptors. J. Clin. Invest. 114, 1531–1537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Sullivan, C. & Dev, K. K. The structure and function of the S1P1 receptor. Trends Pharmacol. Sci. 34, 401–412 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. Jolly, P. S. et al. Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 199, 959–970 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hla, T. & Maciag, T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J. Biol. Chem. 265, 9308–9313 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Petti, L. et al. Unveiling role of sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer. J. Exp. Clin. Cancer Res. 39, 253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, C. et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J. Hepatol. 50, 1174–1183 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Jung, B. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23, 600–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, M. J. et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99, 301–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Lo, C. G., Xu, Y., Proia, R. L. & Cyster, J. G. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201, 291–301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, C. H. et al. Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol. Biol. Cell 10, 1179–1190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Czeloth, N., Bernhardt, G., Hofmann, F., Genth, H. & Forster, R. Sphingosine-1-phosphate mediates migration of mature dendritic cells. J. Immunol. 175, 2960–2967 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8, 1337–1344 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Carlson, C. M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Garris, C. S. et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat. Immunol. 14, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nat. Immunol. 11, 1047–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kluk, M. J. & Hla, T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta 1582, 72–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Duong, C. Q. et al. Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. Biochim. Biophys. Acta 1682, 112–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Shatrov, V. A., Lehmann, V. & Chouaib, S. Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-κB in U937 cells. Biochem. Biophys. Res. Commun. 234, 121–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Gude, D. R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 22, 2629–2638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bryan, A. M. & Del Poeta, M. Sphingosine-1-phosphate receptors and innate immunity. Cell. Microbiol. 20, e12836 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Takabe, K., Paugh, S. W., Milstien, S. & Spiegel, S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Mendelson, K., Evans, T. & Hla, T. Sphingosine 1-phosphate signalling. Development 141, 5–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kimura, T. et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem. J. 348, 71–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rutherford, C. et al. Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis. 4, e927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Singleton, P. A., Dudek, S. M., Chiang, E. T. & Garcia, J. G. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and α-actinin. FASEB J. 19, 1646–1656 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, M. J. et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol. Cell 8, 693–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Siehler, S. & Manning, D. R. Pathways of transduction engaged by sphingosine 1-phosphate through G protein-coupled receptors. Biochim. Biophys. Acta 1582, 94–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Sugimoto, N., Takuwa, N., Okamoto, H., Sakurada, S. & Takuwa, Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol. Cell Biol. 23, 1534–1545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sato, K. et al. Activation of phospholipase C-Ca2+ system by sphingosine 1-phosphate in CHO cells transfected with Edg-3, a putative lipid receptor. FEBS Lett. 443, 25–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Gonda, K. et al. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochem. J. 337, 67–75 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Graler, M. H. et al. The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J. Cell. Biochem. 89, 507–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Van Brocklyn, J. R. et al. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, 2624–2629 (2000).

    Article  PubMed  Google Scholar 

  116. Novgorodov, A. S., El-Alwani, M., Bielawski, J., Obeid, L. M. & Gudz, T. I. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J. 21, 1503–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Yamazaki, Y. et al. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca2+ signaling pathway. Biochem. Biophys. Res. Commun. 268, 583–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Sit, S. T. & Manser, E. Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell Sci. 124, 679–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Olesch, C., Ringel, C., Brune, B. & Weigert, A. Beyond immune cell migration: the emerging role of the sphingosine-1-phosphate receptor S1PR4 as a modulator of innate immune cell activation. Mediators Inflamm. https://doi.org/10.1155/2017/6059203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Olesch, C. et al. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. J. Clin. Invest. 130, 5461–5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chun, J. & Hartung, H. P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Foster, C. A. et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J. Pharmacol. Exp. Ther. 323, 469–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Coelho, R. P., Payne, S. G., Bittman, R., Spiegel, S. & Sato-Bigbee, C. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J. Pharmacol. Exp. Ther. 323, 626–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Cohen, J. A. & Chun, J. Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann. Neurol. 69, 759–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Choi, J. W. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl Acad. Sci. USA 108, 751–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Vargas, W. S. & Perumal, J. S. Fingolimod and cardiac risk: latest findings and clinical implications. Ther. Adv. Drug Saf. 4, 119–124 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Derfuss, T. et al. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol. 19, 336–347 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Selmaj, K. et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 12, 756–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Cohen, J. A. et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 373–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Cohen, J. A. et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 18, 1021–1033 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Comi, G. et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 18, 1009–1020 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Kappos, L. et al. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: a randomized clinical trial. JAMA Neurol. 78, 558–567 (2021).

    Article  PubMed  Google Scholar 

  137. Vaclavkova, A. et al. Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 384, 2036–2045 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Karuppuchamy, T. et al. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease. Mucosal Immunol. 10, 162–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Mizushima, T. et al. Therapeutic effects of a new lymphocyte homing reagent FTY720 in interleukin-10 gene-deficient mice with colitis. Inflamm. Bowel Dis. 10, 182–192 (2004).

    Article  PubMed  Google Scholar 

  140. Daniel, C. et al. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. J. Immunol. 178, 2458–2468 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Deguchi, Y. et al. The S1P receptor modulator FTY720 prevents the development of experimental colitis in mice. Oncol. Rep. 16, 699–703 (2006).

    CAS  PubMed  Google Scholar 

  142. Scott, F. L. et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol. 173, 1778–1792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Al-Shamma, H. et al. The selective sphingosine 1-phosphate receptor modulator etrasimod regulates lymphocyte trafficking and alleviates experimental colitis. J. Pharmacol. Exp. Ther. 369, 311–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Shimano, K. et al. Amiselimod (MT-1303), a novel sphingosine 1-phosphate receptor-1 functional antagonist, inhibits progress of chronic colitis induced by transfer of CD4+CD45RBhigh T cells. PLoS ONE 14, e0226154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sandborn, W. J. et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 374, 1754–1762 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Sandborn, W. J. et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 385, 1280–1291 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Feagan, B. G. et al. Ozanimod induction therapy for patients with moderate to severe Crohn’s disease: a single-arm, phase 2, prospective observer-blinded endpoint study. Lancet Gastroenterol. Hepatol. 5, 819–828 (2020).

    Article  PubMed  Google Scholar 

  148. Tran, J. Q. et al. Absorption, metabolism, and excretion, in vitro pharmacology, and clinical pharmacokinetics of ozanimod, a novel sphingosine 1-phosphate receptor agonist. Mult. Scler. J. 25, 524–525 (2019).

    Google Scholar 

  149. Surapaneni, S. et al. Absorption, metabolism, and excretion, in vitro pharmacology, and clinical pharmacokinetics of ozanimod, a novel sphingosine 1-phosphate receptor modulator. Drug Metab. Dispos. 49, 405–419 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Tran, J. Q. et al. Single-dose pharmacokinetics of ozanimod and its major active metabolites alone and in combination with gemfibrozil, itraconazole, or rifampin in healthy subjects: a randomized, parallel-group, open-label study. Adv. Ther. 37, 4381–4395 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Tran, J. Q. et al. Multiple-dose pharmacokinetics of ozanimod and its major active metabolites and the pharmacodynamic and pharmacokinetic interactions with pseudoephedrine, a sympathomimetic agent, in healthy subjects. Adv. Ther. 37, 4944–4958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tran, J. Q., Hartung, J. P., Tompkins, C. A. & Frohna, P. A. Effects of high- and low-fat meals on the pharmacokinetics of ozanimod, a novel sphingosine-1-phosphate receptor modulator. Clin. Pharmacol. Drug Dev. 7, 634–640 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Sandborn, W. J. et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology 158, 550–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Lee, C. A. et al. Mass balance, metabolic disposition, and pharmacokinetics of [14C] etrasimod following oral administration to healthy male volunteers (American Association of Pharmaceutical Scientists, 2019).

  155. Lee, C. A. et al. P396 Pharmacokinetics and circulating total lymphocyte count pharmacodynamic response from single and multiple oral doses of etrasimod in Japanese and Caucasian healthy male subjects. J. Crohns Colitis 14, S368–S368 (2020).

    Article  Google Scholar 

  156. Peyrin-Biroulet, L., Christopher, R., Behan, D. & Lassen, C. Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmun. Rev. 16, 495–503 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. D’Haens, G. R., Danese, S., Davies, M., Watanabe, M. & Hibi, T. DOP48 Amiselimod, a selective S1P receptor modulator in Crohn’s disease patients: a proof-of-concept study. J. Crohns Colitis 14, S055–S056 (2019).

    Article  Google Scholar 

  158. Sugahara, K. et al. Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br. J. Pharmacol. 174, 15–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Kifuji, T. et al. Absorption, disposition and metabolic pathway of amiselimod (MT-1303) in healthy volunteers in a mass balance study. Xenobiotica 49, 1033–1043 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Radeke, H. H. et al. A multicentre, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy, safety, and tolerability of the S1P receptor agonist KRP203 in patients with moderately active refractory ulcerative colitis. Inflamm. Intest. Dis. 5, 180–190 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Forrest, M. et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J. Pharmacol. Exp. Ther. 309, 758–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Mazurais, D. et al. Cell type-specific localization of human cardiac S1P receptors. J. Histochem. Cytochem. 50, 661–670 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Siarey, R. Pharmacology/toxicology NDA review and evaluation Gilenya (fingolimod HCl). FDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022527Orig1s000pharmr.pdf (2009).

  164. Toscano, C. D. Pharmacology/toxicology NDA review and evaluation Zeposia (ozanimod). FDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/209899Orig1s000PharmR.pdf (2019).

  165. Christopher, R. et al. P-250 Preclinical safety assessment of etrasimod (APD334), an oral sphingosine-1-phosphate receptor (S1P) modulator with a favorable profile. Inflamm. Bowel Dis. 23, S82 (2017).

    Google Scholar 

  166. Shimizu, H. et al. KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111, 222–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Song, J. et al. A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J. Pharmacol. Exp. Ther. 324, 276–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Fryer, R. M. et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P1) and hypertension (S1P3) in rat. PLoS ONE 7, e52985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tran, J. Q. et al. Cardiac safety of ozanimod, a novel sphingosine-1-phosphate receptor modulator: results of a thorough QT/QTc Study. Clin. Pharmacol. Drug Dev. 7, 263–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Tran, J. Q. et al. Results from the first-in-human study with ozanimod, a novel, selective sphingosine-1-phosphate receptor modulator. J. Clin. Pharmacol. 57, 988–996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kovarik, J. M., Schmouder, R., Barilla, D., Wang, Y. & Kraus, G. Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects. Br. J. Clin. Pharmacol. 57, 586–591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cohen, J. A. et al. Efficacy and safety of ozanimod in multiple sclerosis: dose-blinded extension of a randomized phase II study. Mult. Scler. 25, 1255–1262 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Sandborn, W. J. et al. Long-term efficacy and safety of ozanimod in moderately to severely active ulcerative colitis: results from the open-label extension of the randomized, phase 2 TOUCHSTONE study. J. Crohns Colitis 15, 1120–1129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Swallow, E. et al. Comparative safety and efficacy of ozanimod versus fingolimod for relapsing multiple sclerosis. J. Comp. Eff. Res. 9, 275–285 (2020).

    Article  PubMed  Google Scholar 

  175. Timony, G. et al. Pharmacokinetics and pharmacodynamics of RPC1063 and its metabolites in healthy adult volunteers. Neurology 82, P1.211 (2014).

    Google Scholar 

  176. Harada, T. et al. Cardiac effects of amiselimod compared with fingolimod and placebo: results of a randomised, parallel-group, phase I study in healthy subjects. Br. J. Clin. Pharmacol. 83, 1011–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kappos, L. et al. Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 15, 1148–1159 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Kappos, L. et al. Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis. Mult. Scler. 24, 1605–1616 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  PubMed  Google Scholar 

  180. Berger, J. R. et al. Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology 90, e1815–e1821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Arvin, A. M. et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol. 72, 31–39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Brossard, P. et al. Pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator, in the first-in-human study. Br. J. Clin. Pharmacol. 76, 888–896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jain, N. & Bhatti, M. T. Fingolimod-associated macular edema: incidence, detection, and management. Neurology 78, 672–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Cugati, S., Chen, C. S., Lake, S. & Lee, A. W. Fingolimod and macular edema: pathophysiology, diagnosis, and management. Neurol. Clin. Pract. 4, 402–409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C 2018. J. Hepatol. 69, 461–511 (2018).

    Article  Google Scholar 

  186. Yang, E. et al. Efficacy and safety of simultaneous treatment with two biologic medications in refractory Crohn’s disease. Aliment. Pharmacol. Ther. 51, 1031–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Alsoud, D., Verstockt, B., Fiocchi, C. & Vermeire, S. Breaking the therapeutic ceiling in drug development in ulcerative colitis. Lancet Gastroenterol. Hepatol. 6, 589–595 (2021).

    Article  PubMed  Google Scholar 

  189. Verstockt, B. et al. Results of the Seventh Scientific Workshop of ECCO: Precision medicine in IBD-disease outcome and response to therapy. J. Crohns Colitis 15, 1431–1442 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Petti for granting permission to re-use her figure in our manuscript (Fig. 2 Overview of S1P metabolism), and L. M. Shackelton for critical technical review and editing.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The authors contributed equally to all aspects of the article. All authors approved the final version of the manuscript and agreed to submission.

Corresponding author

Correspondence to Niels Vande Casteele.

Ethics declarations

Competing interests

B.V. reports financial support for research from Pfizer; lecture fees from Abbvie, Biogen, Chiesi, Falk, Ferring, Galapagos, Janssen, MSD, Pfizer, R-Biopharm, Takeda and Truvion; and consultancy fees from Janssen, Guidepont and Sandoz; these activities were all outside of the submitted work. A.S. reports research grants from Roche-Genentech, Abbvie, GSK, Scipher Medicine, Alimentiv (formerly Robarts Clinical Trials) and Boehringer Ingelheim and consulting fees from Genentech, GSK, Pfizer, HotSpot Therapeutics, Surrozen, and Morphic Therapeutic. M.D. reports advisory fees from Echo Pharma and Alimentiv (formerly Robarts Clinical Trials); speaker fees from Janssen, Merck & Co., Pfizer, Takeda and Tillotts Pharma; and non-financial support from Dr. Falk Pharm; these activities were all outside of the submitted work. N.V.C. reports research grants and personal fees from R-Biopharm, Takeda, and UCB and personal fees from Alimentiv (formerly Robarts Clinical Trials), Celltrion and Prometheus; these activities were all outside of the submitted work. N.V.C. holds a Research Scholar Award from the American Gastroenterological Association and this project was, in part, supported by the Digestive Diseases Research Center grant NIH DK120515. Alimentiv (formerly Robarts Clinical Trials) is an academic gastrointestinal contract research organization (CRO), operating under the Alimentiv Health Trust. Alimentiv provides centralized imaging management solutions in clinical trials, including endoscopy, histopathology and magnetic resonance imaging. Alimentiv provides full service CRO capabilities as well as precision medicine services. A.S., M.D. and N.V.C. as well as Alimentiv Translational Research Consortium Member Authors listed in Supplementary Box 1, including G.D’H., B.G.F., V.J., C.M. and W.J.S., are consultants, and have neither equity positions nor shares in the corporation. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Julie Saba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verstockt, B., Vetrano, S., Salas, A. et al. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 19, 351–366 (2022). https://doi.org/10.1038/s41575-021-00574-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00574-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing